Skip to main content Accessibility help
Hostname: page-component-55597f9d44-qcsxw Total loading time: 2.174 Render date: 2022-08-13T19:45:49.870Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Part VII - Interdisciplinary Perspectives on Employees and Technology

Published online by Cambridge University Press:  18 February 2019

Richard N. Landers
University of Minnesota
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abrahamson, E. & Rosenkopf, L. (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science, 8(3), 289309.CrossRefGoogle Scholar
Anagnostopoulos, A., Kumar, R., & Mahdian, M. (2008). Influence and correlation in social networks. The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 715). New York, NY: ACM Press.Google Scholar
Bakshy, E., Karrer, B., & Adamic., L. A. (2009). Social influence and the diffusion of user-created content. The 10th ACM conference on electronic commerce (pp. 325334). New York, NY: ACM Press.Google Scholar
Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. The 21st international conference on world wide web (pp. 519528). New York, NY: ACM Press.Google Scholar
Bass, B. M. (1990). From transactional to transformational leadership: Learning to share the vision. Organizational dynamics, 18(3), 1931.CrossRefGoogle Scholar
Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, 15(5), 215227.CrossRefGoogle Scholar
Budak, C., Agrawal, D., & Abbadi, A. E. (2012). Diffusion of information in social networks: Is it all local? The 12th international conference on data minings (pp. 121130). Washington, DC: IEEE Computer Society.Google Scholar
Burkhart, T., Werth, D., & Loos, P. (2012). Context-sensitive business process support based on emails. The 21st international conference on world wide web (pp. 851856). New York, NY: ACM Press.Google Scholar
Cha, M., Mislove, A., & Gummadi, K. P. (2009). A measurement-driven analysis of information propagation in the flickr social network. The 18th International Conference on World Wide Web (pp. 721730). New York, NY: ACM Press.Google Scholar
Chelmis, C. & Prasanna, V. K. (2013a). An empirical analysis of microblogging behavior in the enterprise. Social Network Analysis and Mining, 3(3), 611633.CrossRefGoogle Scholar
Chelmis, C. & Prasanna, V. K. (2013b). The role of organization hierarchy in technology adoption at the workplace. The 2013 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 815). New York, NY: ACM Press.Google Scholar
Chelmis, C., Ajitesh, S., & Prasanna, V. K. (2014). Computational models of technology adoption at the workplace. Social Network Analysis and Mining, 4(1), 199.CrossRefGoogle Scholar
Choi, H., Sang-Hoon, K., & Jeho, L. (2010). Role of network structure and network effects in diffusion of innovations. Industrial Marketing Management, 39(1), 170177.CrossRefGoogle Scholar
Chvátal, V. (1979). The tail of the hypergeometric distribution. Discrete Mathematics, 25(3), 285287.CrossRefGoogle Scholar
De Jong, J. P. & Den Hartog, D. N. (2007). How leaders influence employees’ innovative behaviour. European Journal of Innovation Management, 10(1), 4164.CrossRefGoogle Scholar
Ghosh, R. & Lerman, K. (2010). Predicting influential users in online social networks. The KDD Workshop on Social Network Analysis.
Gomez Rodriguez, M., Leskovec, J., & Krause, A. (2010). Inferring networks of diffusion and influence. The 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 10191028). New York, NY: ACM Press.CrossRefGoogle Scholar
Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 14201443.CrossRefGoogle Scholar
Günther, O., Krasnova, H., Riehle, D., & Schöndienst, V. (2009). Modeling micro-blogging adoption in the enterprise. The 15th Americas Conference on Information Systems.
Guy, I., Sigalit, U., Inbal, R., Adam, P., & Michal, J. (2011). Do you want to know?: Recommending strangers in the enterprise. The ACM 2011 conference on computer supported cooperative work (pp. 285294). New York, NY: ACM Press.Google Scholar
Hartline, M. D., III, J. G., & McKee, D. O. (2000). Corridors of influence in the dissemination of customer-oriented strategy to customer contact service employees. Journal of Marketing, 64(2), 3550.CrossRefGoogle Scholar
Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599653.CrossRefGoogle Scholar
Hua, G. & Haughton, D. (2012). A network analysis of an online expertise sharing community. Social Network Analysis and Mining, 2(4), 291303.CrossRefGoogle Scholar
Huang, J., Thornton, K. M., & Efthimiadis, E. N. (2010). Conversational tagging in twitter. The 21st ACM conference on hypertext and hypermedia (pp. 173178). New York, NY: ACM Press.CrossRefGoogle Scholar
Jacquez, J. A. & Simon, C. P. (1993). The stochastic SI model with recruitment and deaths: I. Comparison with the closed SIS model. Mathematical Biosciences, 117(1–2), 77125.CrossRefGoogle ScholarPubMed
Kamp, C. (2010). Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Computational Biology, 6, (11).CrossRefGoogle ScholarPubMed
Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. The ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 137146). New York, NY: ACM Press.CrossRefGoogle Scholar
Kraut, R. E., Fish, R. S., Root, R. W., & Chalfonte, B. L. (1990). Informal communication in organizations: Form, function, and technology. In Oskamp, I. S. & Spacapan, S. (Eds.), Human reactions to technology: The Claremont Symposium on Applied Social Psychology (pp. 145199). Beverly Hills, CA: Sage Publications.Google Scholar
Krishnamurthy, B., Gill, P., & Arlitt, M. (2008). A few chirps about twitter. The first workshop on online social networks (pp. 1924). New York, NY: ACM Press.CrossRefGoogle Scholar
Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? The 19th international conference on world wide web (pp. 591600). New York, NY: ACM Press.CrossRefGoogle Scholar
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5.CrossRefGoogle Scholar
Li, C. T., Kuo, T. T., Ho, C. T., Hong, S. C., Lin, W. S., & Lin, S. D. (2013). Modeling and evaluating information propagation in a microblogging social network. Social Network Analysis and Mining, 3(3), 341357.CrossRefGoogle Scholar
Lin, C. Y., Wu, L., Wen, Z., Tong, H., Griffiths-Fisher, V., Shi, L., et al. (2012). Social network analysis in enterprise. Proceedings of the IEEE, 100(9), 27592776.CrossRefGoogle Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2011). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415444.CrossRefGoogle Scholar
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007). Measurement and analysis of online social networks. The 7th ACM SIGCOMM Conference on Internet Measurement (pp. 2942). New York, NY: ACM Press.Google Scholar
Newman, M. E. (2002). Spread of epidemic disease on networks. Physical Review E, 66(1), 016128.CrossRefGoogle ScholarPubMed
Noe, R. A. & Wilk, S. L. (1993). Investigation of the factors that influence employees’ participation in development activities. Journal of Applied Psychology, 78(2), 291.CrossRefGoogle Scholar
Pinder, J. E., Wiener, J. G., & Smith, M. H. (1978). The Weibull distribution: A new method of summarizing survivorship data. Ecology, 59(1), 175179.CrossRefGoogle Scholar
Roberson, Q. M. & Colquitt, J. A. (2005). Shared and configural justice: A social network model of justice in teams. Academy of Management Review, 30(3), 595607.CrossRefGoogle Scholar
Schifanella, R., Barrat, A., Cattuto, C., Markines, B., & Menczer, F. (2010). Folks in folksonomies: social link prediction from shared metadata. The Third ACM International Conference on Web Search and Data Mining (pp. 271–280). New York, NY: ACM Press.Google Scholar
Solomon, S., Weisbuch, G., De Arcangelis, L., Jan, N., & Stauffer, D. (2000). Social percolation models. Physica A: Statistical Mechanics and Its Applications, 277(1), 239247.CrossRefGoogle Scholar
Srivastava, A., Chelmis, C., & Prasanna, V. K. (2014). Influence in social networks: A unified model? IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 451454).
Srivastava, A., Chelmis, C., & Prasanna, V. K. (2015a). Social influence computation and maximization in signed networks with competing cascades. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (pp. 4148).CrossRef
Srivastava, A., Chelmis, C., & Prasanna, V. K. (2015b). The unified model of social influence and its application in influence maximization. Social Network Analysis and Mining, 5(1), 66.CrossRefGoogle Scholar
Strang, D. & Macy, M. W. (2001). In search of excellence: Fads, success stories, and adaptive emulation. American Journal of Sociology, 107(1), 147182.CrossRefGoogle Scholar
Valente, T. W. (1996). Social network thresholds in the diffusion of innovations. Social Networks, 18(1), 6989.CrossRefGoogle Scholar
Weng, J., Lim, E. P., Jiang, J., & He, Q. (2010). Twitterrank: finding topic-sensitive influential twitterers. The Third ACM International Conference on Web Search and Data Mining (pp. 261270). New York, NY: ACM Press.Google Scholar
Wu, A., DiMicco, J. M., & Millen, D. R. (2010). Detecting professional versus personal closeness using an enterprise social network site. The SIGCHI Conference on Human Factors in Computing Systems (pp. 19551964). New York, NY: ACM Press.Google Scholar
Yang, J. & Leskovec, J. (2010). Modeling information diffusion in implicit networks. 10th international conference on data mining (pp. 599608). Washington, DC: IEEE Computer Society.Google Scholar
Zangerle, E., Gassler, W., & Specht, G. (2011). Using tag recommendations to homogenize folksonomies in microblogging environments. International conference on social informatics (pp. 113126). Springer.CrossRefGoogle Scholar
Zhang, J., Ackerman, M. S., & Adamic, L. (2007). Expertise networks in online communities: structure and algorithms. The 16th International Conference on World Wide Web (pp. 221230). New York, NY: ACM Press.Google Scholar
Zhang, J., Qu, Y., Cody, J., & Wu, Y. (2010). A case study of micro-blogging in the enterprise: Use, value, and related issues. The SIGCHI Conference on Human Factors in Computing Systems (pp. 123132). New York, NY: ACM Press.Google Scholar
Zhao, D. & Rosson, M. B. (2009). How and why people Twitter: The role that micro-blogging plays in informal communication at work. The ACM 2009 International Conference on Supporting Group Work (pp. 243252). New York, NY: ACM Press.CrossRefGoogle Scholar
Adams, T. (2008). Kia receives 43,000 applications for West Point auto plant. Columbus Ledger-Enquirer. Retrieved from
Aguinas, H., Henle, C. A., & Jr. Beaty, J. C. (2001). Virtual reality technology: A new tool for personnel selection. International Journal of Selection and Assessment, 9(1–2), 7083.CrossRefGoogle Scholar
Alavi, M., Marakas, G. M., & Yoo, Y. (2002). A comparative study of distributed learning environments on learning outcomes. Information Systems Research, 13(4), 404415.CrossRefGoogle Scholar
Alkhadher, O., Anderson, N., & Clarke, D. (1994). Computer-based testing: A review of recent developments in research and practice. European Work and Organizational Psychologist, 4(2), 169189.CrossRefGoogle Scholar
Allen, D. G., Biggane, J. E., Pitts, M., Otondo, R., & Van Scotter, J. (2013). Reactions to recruitment web sites: Visual and verbal attention, attraction, and intentions to pursue employment. Journal of Business and Psychology, 28(3), 263285.CrossRefGoogle Scholar
Allen, D. G., Mahto, R. V., & Otondo, R. F. (2007). Web-based recruitment: Effects of information, organizational brand, and attitudes towards website on applicant attraction. Journal of Applied Psychology, 92(6), 16961708.CrossRefGoogle Scholar
Alliger, G. M., Tannenbaum, S. I., Bennett Jr., W., Traver, H., & Shotland, A. (1997). A meta analysis of the relations among training criteria. Personnel Psychology, 50, 341358.CrossRefGoogle Scholar
Anderson, N. (2003). Applicant and recruiter reactions to new technology in selection: A critical review and agenda for future research. International Journal of Selection and Assessment, 11(2–3), 121136.CrossRefGoogle Scholar
Arbaugh, J. B. (2001). How instructor immediacy behaviors affect student satisfaction and learning in web-based courses. Business Communication Quarterly, 64(4), 4254.CrossRefGoogle Scholar
Arbaugh, J. B. (2005). Is there optimal design for on-line MBA courses? Academy of Management Learning & Education, 4(2), 135149.CrossRefGoogle Scholar
Arbaugh, J. B. (2014). System, scholar or students? Which most influences online MBA course effectiveness? Journal of Computer Assisted Learning, 30(4), 351362.CrossRefGoogle Scholar
Arbaugh, J. B. & Benbunan-Fich, R. (2007). The importance of participant interaction in online environments. Decision Support Systems, 43(3), 853865.CrossRefGoogle Scholar
Arbaugh, J. B. & Hornik, S. (2006). Do Chickering and Gamson’s seven principles also apply to online MBAs. The Journal of Educators Online, 3(2), 118.CrossRefGoogle Scholar
Arbaugh, J. B. & Rau, B. L. (2007). A study of disciplinary, structural, and behavioral effects on course outcomes in online MBA courses. Decision Sciences Journal of Innovative Education, 5(1), 6595.CrossRefGoogle Scholar
Astor, M. (2017). Microchip implants for employees? One company says yes. New York Times. Retrieved from
Baker, W. H., DeTienne, K., & Smart, K. L. (1998). How Fortune 500 companies are using electronic resume management systems. Business Communication Quarterly, 61(3), 819.CrossRefGoogle Scholar
Barber, A. E., Dunham, R. B., & Formisano, R. A. (1992). The impact of flexible benefits on employee satisfaction: A field study. Personnel Psychology, 45(1), 5574.CrossRefGoogle Scholar
Baturay, M. H. (2011). Relationships among sense of classroom community, perceived cognitive learning and satisfaction of students at an e-learning course. Interactive Learning Environments, 19(5), 563575.CrossRefGoogle Scholar
Bauer, T. N., Truxillo, D. M., Paronto, M. E., Weekley, J. A., & Campion, M. A. (2004). Applicant reactions to different selection technology: Face-to-face, interactive voice response, and computer-assisted telephone screening interviews. International Journal of Selection and Assessment, 12, 135148.CrossRefGoogle Scholar
Bell, B. S. & Kozlowski, S. W. J. (2008). Active learning: Effects of core training design elements on self-regulatory processes, learning, and adaptability. Journal of Applied Psychology, 93, 296316.CrossRefGoogle ScholarPubMed
Boese, S. (May 6, 2015). The engagement solution. Human Resource Executive.
Brasil, I. S., Neto, F. M. M., Chagas, J. F. S., de Lima, R. M., Souza, D. F. L., Bonates, M. F., & Dantas, A. (2011). An intelligent agent-based virtual game for oil drilling operators training. Paper presented at the Virtual Reality (SVR), 2011 XIII Symposium on, Uberlandia.CrossRef
Breaugh, J. A. & Starke, M. (2000). Research on employee recruitment: So many studies, so many remaining questions. Journal of Management, 26(3), 405434.CrossRefGoogle Scholar
Brink, S. & McDonnell, S. (2003). IHRIM Go-To-Guides: e-compensation. The e-merging technology series. Burlington, MA: IHRIM.Google Scholar
Brown, K. G., Howardson, G., & Fisher, S. L. (2016). Learner control and e-learning: Taking stock and moving forward. Annual Review of Organizational Psychology and Organizational Behavior, 3, 267291.CrossRefGoogle Scholar
Brynjolfsson, E. & Hitt, L. M. (1998). Beyond the productivity paradox. Communications of the ACM, 41(8), 4955.CrossRefGoogle Scholar
Buchanan, T. & Smith, J. L. (1999). Research on the internet: Validation of a World-Wide Web mediated personality scale. Behavior Research Methods, Instruments. & Computers, 31(4), 565571.CrossRefGoogle ScholarPubMed
Cappelli, P. (July/August 2015). Can Machines Ponder HR? Human Resource Executive, p. 5.
Carolan, T. F., Hutchins, S. D., Wickens, C. D., & Cumming, J. M. (2014). Costs and benefits of more learner freedom: Meta-analyses of exploratory and learner control training methods. Human Factors, 56, 9991014.CrossRefGoogle ScholarPubMed
Carswell, A. D. & Venkatesh, V. (2002). Learner outcomes in an asynchronous distance education environment. International Journal of Human-Computer Studies, 56, 475494.CrossRefGoogle Scholar
Cascio, W. F. (2016). Managing human resources: Productivity, quality of work life, profits (10th edn.). New York, NY: McGraw Hill.Google Scholar
CBS News. (2017). The Data Brokers: Selling Your Personal Information. Retrieved from
Cedar. (1999). 1999 Human Resources Self-Service Survey. Baltimore, MD: Cedar.
CedarCrestone. (2010). CedarCrestone 2009–2010 HR Systems Survey. Retrieved from
Cennamo, L. & Gardner, D. (2008). Generational differences in work values, outcomes and person-organisation values fit. Journal of Managerial Psychology, 23(8), 891906.CrossRefGoogle Scholar
Chapman, D. S. & Godollei, A. (2017). E-Recruiting: Using technology to attract job applicants. In Hertel, G., Stone, D. L., Johnson, R. D., & Passmore, J. (Eds.), The Wiley-Blackwell handbook of the psychology of the internet at work (pp. 213230). Chichester, UK: Wiley Blackwell.Google Scholar
Chapman, D. S., Uggerslev, K. L., Carroll, S. A., Piasentin, K. A., & Jones, D. A. (2005). Applicant attraction to organizations and job choice: A meta-analytic review of the correlates of recruiting outcomes. Journal of Applied Psychology, 90, 928944.CrossRefGoogle ScholarPubMed
Chapman, D. S., Uggerslev, K. L., & Webster, J. (2003). Applicant reactions to face-to-face and technology-mediated interviews: A field of investigation. Journal of Applied Psychology, 88, 944953.CrossRefGoogle ScholarPubMed
Chapman, D. S. & Webster, J. (2003). The use of technologies in the recruiting, screening, and selection processes for job candidates. International Journal of Selection and Assessment, 11, 113120.CrossRefGoogle Scholar
Chuah, S. C., Drasgow, F., & Roberts, B. W. (2006). Personality assessment: Does the medium matter?. Journal of Research in Personality, 40, 359376.CrossRefGoogle Scholar
Cober, R. T., Brown, D. J., Blumental, A. J., Doverspike, D., & Levy, P. (2000). The quest for the qualified job surfer: It’s time the public sector catches the wave. Public Personnel Management, 29(4), 479494.CrossRefGoogle Scholar
Cober, R. T., Brown, D. J., Levy, P. E., Keeping, L. M., & Cober, A. L. (2003). Organizational web sites: Web site content and style as determinants of organizational attraction. International Journal of Selection and Assessment, 11, 158168.CrossRefGoogle Scholar
Cooper, J. (2006). The digital divide: The special case of gender. Journal of Computer Assisted Learning, 22, 320334.CrossRefGoogle Scholar
Coyne, I., Warszta, T., Beadle, S., & Sheehan, N. (2005). The impact of mode of administration on the equivalence of a test battery: A quasi-experimental design. International Journal of Selection and Assessment, 13, 220223.CrossRefGoogle Scholar
Cronk, B. C. & West, J. L. (2002). Personality research on the internet: A comparison of web-based and traditional instruments in take-home and in-class settings. Behavior Research Methods, Instruments, & Computers, 34, 177180.CrossRefGoogle ScholarPubMed
Daft, R. L. & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32, 554571.CrossRefGoogle Scholar
Davenport, T. & Ronanki, R. (2018). Artificial intelligence for the real world: Don’t start with moon shots. Harvard Business Review (January-February), 108116.
deNoyelles, A., Hornik, S. R., & Johnson, R. D. (2014). Exploring the Dimensions of Self-Efficacy in Virtual World Learning: Environment, Task, and Content. Journal of Online Learning and Teaching, 10, 255271.Google Scholar
DeRouin, R. E., Fritzsche, B. A., & Salas, E. (2004). Optimizing e‐learning: Research‐based guidelines for learner‐controlled training. Human Resource Management, 43(2–3), 147162.CrossRefGoogle Scholar
DeSanctis, G. & Poole, M. S. (1994). Capturing the complexity in advanced technology use: Adaptive structuration theory. Organization Science, 5(2), 121147.CrossRefGoogle Scholar
Dineen, B. R., Ash, S. R., & Noe, R. A. (2002). A web of applicant attraction: Person-organization fit in the context of web-based recruitment. Journal of Applied Psychology, 87(4), 723734.CrossRefGoogle ScholarPubMed
Dineen, B. R. & Noe, R. A. (2009). Effects of customization on application decisions and applicant pool characteristics in a web-based recruitment context. Journal of Applied Psychology, 94, 224234.CrossRefGoogle Scholar
Dixon, L. (2017). This Firm Uses Virtual Reality to Recruit. Should Others Follow? Retrieved from
Dominguez, A., Saenz-de-Navarrete, J., De-Marcos, L., Fernandez-Sanz, L., Pages, C., & Martinez-Herraiz, J. J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers & Education, 63, 380392.CrossRefGoogle Scholar
Drasgow, F. (1984). Scrutinizing psychological tests: Measurement equivalence and equivalent relations with external variables are the central issues. Psychological Bulletin, 95, 134135.CrossRefGoogle Scholar
Dulebohn, J. H. (2003). Information technology implementation: The need for compensation system congruency. In Stone, D. L. (Eds.), Advances in human performance and cognitive engineering research (vol. 3, pp. 153186). Greenwich, CT: JAI Press.Google Scholar
Dulebohn, J. H. & Johnson, R. D. (2013). Human resource metrics and decision support: A classification framework. Human Resource Management Review, 23, 7183.CrossRefGoogle Scholar
Eaton, C., Deutsch, T., Deroos, D., Lapis, G., & Zikopoulos, P. (2012). Understanding big data: Analytics for enterprise class hadoop and streaming data. San Francisco, CA: McGraw Hill.Google Scholar
Eddy, E. R., Stone, D. L., & Stone-Romero, E. F. (1999). The effects of information management policies on reactions to human resource information systems: An integration of privacy and procedural justice perspectives. Personnel Psychology, 52(2), 335358.CrossRefGoogle Scholar
Efron, L. (2016). How gaming is helping organizations accelerate recruitment. Forbes. Retrieved from
Fallaw, S. S., Solomonson, A. L., & McClelland, L. (2009). Current trends in assessment use: A multi-organizational survey. Paper presented at the 24th Annual Meeting of the Society for Industriall and Organizational Psychology, New Orleans, LA.
Fetzer, M. (2015). Serious games for talent selection and development. TIP: The Industrial-Organizational Psychologist, 52(3), 117125.Google Scholar
Fisher, S. L., Howardson, G., Wasserman, M., & Orvis, K. (forthcoming). How do learners interact with elearning? Examining patterns of learner control behaviors. AIS Transactions on Human Computer Interaction, 9(2), 7598.CrossRef
Fisher, S. L., Wasserman, M., & Orvis, K. (2010). Trainee reactions to learner control: An important link in the e-learning equation. International Journal of Training and Development, 14(3), 198210.CrossRefGoogle Scholar
Fleck, C. (2016). An algorithm for success. HR Magazine (June), 130135.
Flood, J. (2002). Read all about it: On-line learning facing 80 percent attrition rates. Turkish Journal Online of Distance Education, 3(2).Google Scholar
Foster, J. A., Sheridan, P. K., Irish, R., & Frost, G. S. (2012). Gamification as a strategy for promoting deeper investigation in a reverse engineering activity. Paper presented at the 2012 American Society for Engineering Education Conference.
Furtmüller, E., Wilderom, C., & Van Dick, R. (2010). Sustainable e-Recruiting portals: How to motivate applicants to stay connected throughout their careers? International Journal of Technology and Human Interaction, 6(3), 120.CrossRefGoogle Scholar
Galanaki, E. (2002). The decision to recruit online: A descriptive study. Career Development International, 7, 243251.CrossRefGoogle Scholar
Garrison, D. R. & Arbaugh, J. B. (2007). Researching the community of inquiry framework: Review, issues, and future directions. The Internet and Higher Education, 10(3), 157172.CrossRefGoogle Scholar
Gartner. (2015). Gartner Reveals Top Predictions for IT Organizations and Users for 2016 and Beyond. Retrieved from
Gherson, D. & Jackson, A. P. (2000). Web-based compensation planning. In Walker, A. J. (Ed.), Web-based human resources (pp. 8395). New York, NY: McGraw-Hill.Google Scholar
Gill, M. (2000). E-learning technology and strategy for organisations. In Fry, K. (Ed.), The Business of e-learning: Bringing your Organization in the Knowledge Economy. Sydney, Australia University of Technology.Google Scholar
Granger, B. & Levine, E. (2010). The perplexing role of learner control in e-learning: Will learning and the transfer benefit suffer? International Journal of Training and Development, 14(3), 180197.CrossRefGoogle Scholar
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 16451660.CrossRefGoogle Scholar
Gueutal, H. G. & Falbe, C. M. (2005). eHR: Trends in delivery methods. In Gueutal, H. G. & Stone, D. L. (Eds.), The brave new world of eHR: Human resources management in the digital age (pp. 190225). San Francisco, CA: Jossey-Bass.Google Scholar
Gueutal, H. G. & Stone, D. L. (2005). The brave new world of eHR:Human resources management in the digital age. San Francisco, CA: Jossey-Bass.Google Scholar
Gunawardena, C. N. & Zittle, F. J. (1997). Social presence as a predictor of satisfaction within a computer-mediated conferencing environment. The American Journal of Distance Education, 11(3), 826.CrossRefGoogle Scholar
Gutek, B. A. (1995). The dynamics of service: Reflections on the changing nature of customer/provider interactions. San Francisco, CA: Jossey-Bass.Google Scholar
Gutek, B. A., Bhappu, A. D., Liao-Troth, M. A., & Cherry, B. (1999). Distinguishing between service relationships and encounters. Journal of Applied Psychology, 84(2), 218233baker.CrossRefGoogle Scholar
Hall, B. & LeCavalier, J. (2000). E-learning across the enterprise: The benchmarking study of best practices. Retrieved from
Harris, M. M., Van Hoye, G., & Lievens, F. (2003). Privacy and attitudes towards internet-based selection systems: A cross-cultural comparison. International Journal of Selection and Assessment, 11(2/3), 230236.CrossRefGoogle Scholar
Harrison, T. L. & Stone, D. L. (2015). Understanding an e-recruiting method: Aligning website features and applicants’ values. Paper presented at the Academy of Management Annual Meeting, Vancouver, CA.CrossRef
Hawking, P., Stein, A., & Foster, S. (2004). E-HR and employee self service: A case study of a Victorian public sector organisation. Journal of Issues in Informing Science and Information Technology, 1, 10191026.Google Scholar
Hays, R. T., Jacobs, J. W., Prince, C., & Salas, E. (1992). Flight simulator training effectiveness: A meta-analysis. Military Psychology, 4(2), 6374.CrossRefGoogle Scholar
Heinssen, R. K., Glass, C. R., & Knight, L. A. (1987). Assessing computer anxiety: Development and validation of the computer anxiety rating scale. Computers in Human Behavior, 3(1), 4959.CrossRefGoogle Scholar
Hornik, S. & Thornburg, S. (2010). Really engaging accounting: Second Life™ as a learning platform. Issues in Accounting Education, 25(3), 361378.CrossRefGoogle Scholar
Huang, J.-H., Jin, B.-H., & Yang, C. (2004). Satisfaction with business-to-employee benefit ssytems and organiational citizenship behavior. International Journal of Manpower, 25(2), 195210.CrossRefGoogle Scholar
Huang, J.-H., Yang, C., Jin, B.-H., & Chiu, H. (2004). Measuring satisfaction with business-to-employee systems. Computers in Human Behavior, 20, 1735.CrossRefGoogle Scholar
Hughes, M. G., Day, E. A., Wang, X., Schuelke, M. J., Arsenault, M. L., Harkrider, L. N., & Cooper, O. D. (2013). Learner-controlled practice difficulty in the training of a complex task: Cognitive and motivational mechanisms. Journal of Applied Psychology, 98, 8098.CrossRefGoogle ScholarPubMed
Huselid, M. A. (1995). The impact of human resource management practices on turnover, productivity, and corporate financial performance. Academy of Management Journal, 38, 635672.Google Scholar
Inayat, I., Amin, R., Inayat, Z., & Salim, S. S. (2013). Effects of collaborative web based vocational education and training (VET) on learning outcomes. Computers & Education, 68, 153166.CrossRefGoogle Scholar
Jackson, S. E. & Schuler, R. S. (1995). Understanding human resource management in the context of organizations and their environments. Annual review of psychology, 46(1), 237264.CrossRefGoogle ScholarPubMed
Johnson, R. D. & Brown, K. G. (2017). e-Learning. In Hertel, G., Stone, D. L., Johnson, R. D., & Passmore, J. (Eds.), The Wiley-Blackwell handbook of the psychology of the internet at work. Chichester, UK: Wiley-Blackwell.Google Scholar
Johnson, R. D. & Gueutal, H. G. (2012). Transforming HR through technology: The use of eHR and human resource information system in organisations. Alexandria, VA: Society for Human Resource Management. Retrieved from Scholar
Johnson, R. D., Gueutal, H. G., & Falbe, C. M. (2009). Technology, trainees, metacognitive activity and e-learning effectiveness. Journal of Managerial Psychology, 24(6), 545566.CrossRefGoogle Scholar
Johnson, R. D., Hornik, S., & Salas, E. (2008). An empirical examination of factors contributing to the creation of successful e-learning environments. International Journal of Human-Computer Studies, 66(5), 356369.CrossRefGoogle Scholar
Johnson, R. D., Lukaszewski, K. M., & Stone, D. L. (2016). The evolution of the field of human resource information systems: Co-evolution of technology and HR processes. Communications of the Association for Information Systems, 38, 533553.CrossRefGoogle Scholar
Johnson, R. D., Marakas, G. M., & Palmer, J. W. (2006). Differential social attributions toward computing technology: An empirical investigation. International Journal of Human Computer Studies, 64(5), 446460.CrossRefGoogle Scholar
Johnson, R. D., Marakas, G. M., & Palmer, J. W. (2008). Beliefs about the social role and capabilities of computing technology: Development of the computing technology continuum of perspective. Behaviour & Information Technology, 27(2), 169181.CrossRefGoogle Scholar
Johnson, R. D., Stone, D. L., & Navas, D. S. (2011). Factors Related to the Digital Divide and Hispanics’ Use of Computers. Paper presented at the Academy of Management Annual Meeting, San Antonio, TX.
Johnson, R. D., Thatcher, J. B., & Burleson, J. (2016). A framework and research agenda for studying eHRM: Automating and informating capabilities of HR technology. In Stone, D. L. & Dulebohn, J. H. (Eds.), Research in human resource management: Human resource management theory and research on new employment relationships (pp. 225-253). Charlotte, NC: Information Ag.Google Scholar
Karim, M. N. & Behrend, T. S. (2014). Reexamining the nature of learner control: Dimensionality and effects on learning and training reactions. Journal of Business and Psychology, 29(1), 8799.CrossRefGoogle Scholar
Katz, D., & Kahn, R. L. (1978). The social psychology of organizations (2nd edn.). New York, NY: Wiley.Google Scholar
Kavanagh, M. J. & Johnson, R. D. (2018). Human resource information systems: Basics, applications, and future directions (4th edn.). Thousand Oaks, CA: Sage.Google Scholar
Kehoe, J. F., Dickter, D. N., Russell, D. P., & Sacco, J. M. (2005). E-selection. In Gueutal, H. G. & Stone, D. L. (Eds.), The brave new world of e HR: Human resource management in the digitalaAge. San Francisco, CA: Jossey-Bass.Google Scholar
Keith, N. & Frese, M. (2005). Self-regulation in error management training: Emotion control and metacognition as mediators of performance effects. Journal of Applied Psychology, 90, 677691.CrossRefGoogle ScholarPubMed
Kiesler, S., Siegel, J., & McGuire, T. W. (1984). Social psychological aspects of computer-mediated communication. American Psychologist, 39, 11231134.CrossRefGoogle Scholar
Kraichy, D. & Chapman, D. S. (2014). Tailoring web-based recruiting messages: Individual differences in the persuasiveness of affective and cognitive messages. Journal of Business and Psychology, 29(2), 253268.CrossRefGoogle Scholar
Kraiger, K., Ford, J. K., & Salas, E. (1993). Application of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluation. Journal of Applied Psychology, 78(2), 311328.CrossRefGoogle Scholar
Kraiger, K. & Jerden, E. (2007). A meta-analytic investigation of learner control: Old findings and new directions. In Fiore, S. M. & Salas, E. (Eds.), Toward a science of distributed learning (pp. 6590). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Larsen, C. R., Oestergaard, J., Ottesen, B. S., & Soerensen, J. L. (2012). The efficacy of virtual reality simulation training in laparoscopy: a systematic review of randomized trials. Acta obstetricia et gynecologica Scandinavica, 91(9), 10151028.CrossRefGoogle ScholarPubMed
Lim, C. K. (2001). Computer self-efficacy, academic self-concept, and other predictors of satisfaction and future participation of adult distance learners. The American Journal of Distance Education, 15(2), 4151.CrossRefGoogle Scholar
Long, L. K., Dubois, C., & Faley, R. (2009). A case study analysis of factors that influence attrition rates in voluntary online training programs. International Journal of E-learning, 8(3), 347359.Google Scholar
Lukaszewski, K. M., Stone, D. L., & Johnson, R. D. (2016). Impact of human resource information system policies on privacy. AIS Transactions on Human-Computer Interaction, 8(2), 5873.CrossRefGoogle Scholar
Makransky, G. & Glas, C. A. (2011). Unproctored internet test verification: Using adaptive confirmation testing. Organizational Research Methods, 14(4), 608630.CrossRefGoogle Scholar
Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The multilevel and multifaceted character of computer self-efficacy: Toward clarification of the construct and an integrative framework for research. Information Systems Research, 9(2), 126163.CrossRefGoogle Scholar
Markus, M. L. & Robey, D. (1988). Information technology and organizational change: Causal structure in theory and research. Management Science, 34(5), 583598.CrossRefGoogle Scholar
Martin, C. L. & Nagao, D. H. (1989). Some effects of computerized interviewing on job applicant responses. Journal of Applied Psychology, 74(1), 7280.CrossRefGoogle Scholar
Mauldin, E. G. (2003). An experimental examination of information technology and compensation structure complementarities in an expert system context. Journal of Information Systems Research, 17, 1941.CrossRefGoogle Scholar
Maurath, D. (2014). A critical incident for big data. TIP: The Industrial-Organizational Psychologist, 51(3), 1625.Google Scholar
McDaniel, R., Lindgren, R., & Friskics, J. (2012). Using badges for shaping interactions in online learning environments. Paper presented at the 2012 IEEE International Professional Communication Conference, Orlando, FL.CrossRef
McManus, M. A. & Ferguson, M. W. (2003). Biodata, personality, and demographic differences of recruits from threes sources. International Journal of Selection and Assessment, 11, 175183.CrossRefGoogle Scholar
Mennecke, B. E., Hassall, L. M., & Triplett, J. (2008). The mean business of Second Life: Teaching entrepreneurship, technology and e-commerce in immersive environments. MERLOT Journal of Online Learning and Teaching, 4(3), 339348.Google Scholar
Mennecke, B. E., Triplett, J. L., Hassall, L. M., Conde, Z. J., & Heer, R. (2011). An examination of a theory of embodied social presence in virtual worlds. Decision Sciences, 42(2), 413450.CrossRefGoogle Scholar
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551568.CrossRefGoogle Scholar
Mohamed, A. A., Orife, J. N., & Wibowo, K. (2002). The legality of key word search as a personnel selection tool. Employee Relations, 24, 516522.CrossRefGoogle Scholar
Mooney, A. (May 15, 2017). US faces crisis as pension funding hole hits $3.85tn. Financial Times. Retrieved from
Mujber, T. S., Szecsi, T., & Hashimi, M. S. (2004). Virtual reality applications in manufacturing process simulation. Journal of materials processing technology, 155, 18341838.CrossRefGoogle Scholar
Mullich, J. (2004). A second act for e-learning. Workforce Management, 83, 5155.Google Scholar
Nguyen, H. H. D., & Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. Journal of Applied Psychology, 24, 645662.Google Scholar
Nikolaou, I. (2014). Social networking web sites in job search and employee recruiting. International Journal of Selection and Assessment, 22, 179189.CrossRefGoogle Scholar
Organ, D. (1988). Organizational citizenship behavior: The good soldier syndrome. Lexington, MA: Lexington Books.Google Scholar
Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology in organizations. Organization Science, 3(3), 398427.CrossRefGoogle Scholar
Orvis, K. A., Brusso, R. C., Wasserman, M. E., & Fisher, S. L. (2010). E-nabled for e-learning? The moderating role of personality in determining the optimal degree of learner control in an e-learning environment. Human Performance, 24(1), 6078.CrossRefGoogle Scholar
Orvis, K. A., Fisher, S. L., & Wasserman, M. E. (2009). Power to the people: Using learner control to improve trainee reactions and learning in web-based instructional environments. Journal of Applied Psychology, 94, 960971.CrossRefGoogle ScholarPubMed
Oswald, F. L., Carr, J. Z., & Schmidt, A. M. (2001). The medium and the message: Dual effects of supervision and web-based testing on measurement equivalence for ability and personality measures. Paper presented at the Society for Industrial and Organizational Psychoogy Annual Meeting, San Diego, CA.
Overton, R. C., Harms, H. J., Taylor, L. R., & Zickar, M. J. (1997). Adapting to adaptive testing. Personnel Psychology, 50, 171185.CrossRefGoogle Scholar
Panepinto, R. (1995). Voice technology for 401(k) plans. Benefits Quarterly, 11, 811.Google Scholar
Pew Internet. (2017). Minorities use of the internet and broadband. Retrieved from
Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-based virtual learning environments: A research framework and a preliminary assessment of effectiveness in basic IT skills training. MIS Quarterly, 25(4), 401426.CrossRefGoogle Scholar
Ployhart, R. E., Weekley, J. A., Holtz, B. C., & Kemp, C. (2003). Web‐based and paper‐and‐pencil testing of applicants in a proctored setting: Are personality, biodata, and situational judgment tests comparable? Personnel Psychology, 56(3), 733752.CrossRefGoogle Scholar
Potosky, D., & Bobko, P. (2004). Selection testing via the internet: Practical considerations and exploratory empirical findings. Personnel Psychology, 57, 10031034.CrossRefGoogle Scholar
Robson, K., Plangger, K., Kietzman, J. H., McCarthy, I., & Pitt, L. (2015). Is it all a game? Understanding the principles of gamification. Business Horizons, 588(4), 411420.CrossRefGoogle Scholar
Rosenbloom, J. S., & Hallman, G. V. (1991). Employee benefit planning. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Rynes, S. L. (1991). Recruitment, job choice, and post-hire consequences: A call for new research directions. In Dunnette, M. D. & Hough, L. M. (Eds.), Handbook of industrial and organizational psychology (2nd edn., vol. 2, pp. 399444). Palo Alto, CA: Consulting Psychologists.Google Scholar
Salas, E., DeRouin, R., & Littrell, L. (2005). Research-based guidelines for designing distance learning: What we know so far. In Guetal, H. G. & Stone, D. L. (Eds.), The brave new world of eHr (pp. 104137. San Francisco, CA: Jossey-Bass.Google Scholar
Salgado, J. F. & Moscoso, S. (2003). Internet-based personality testing: Equivalence of measures and assesses’ perceptions and reactions. International Journal of Selection and Assessment, 11, 194205.CrossRefGoogle Scholar
Scheu, C., Ryan, A. M., & Nona, F. (1999). Company web sites as a recruiting mechanism: What influences applicant impressions. Paper presented at the Society for Industrial and Organizational Psychology Annual Conference, Atlanta, GA.
Schmidt, A. M. & Ford, J. K. (2003). Learning within a learner control training environment: The interactive effects of goal orientation and metacognitive instruction on learning outcomes. Personnel Psychology, 56, 405429.CrossRefGoogle Scholar
Schmidt, J. A., Chapman, D. S., & Jones, D. A. (2015). Does emphasizing different types of person–environment fit in online job ads influence application behavior and applicant quality? Evidence from a field experiment. Journal of Business and Psychology, 30(2), 267282.CrossRefGoogle Scholar
Searle, R. H. (2002). Organizational justice in e-recruiting: Issues and controversies. Surveillance & society, 1(2), 227231.CrossRefGoogle Scholar
Selden, S. & Orenstein, J. (2011). Government E‐Recruiting Web Sites: The influence of e‐recruitment content and usability on recruiting and hiring outcomes in US state governments. International Journal of Selection and Assessment, 19(1), 3140.CrossRefGoogle Scholar
Sierra-Cedar. (2016). Sierra-Cedar 2015–2016 HRSystems Survey: 18th Annual Edition. Alpharetta, GA: SierraCedar.
Silvester, J., Anderson, N., Haddleton, E., Cunningham-Snell, N., & Gibb, A. (2000). A cross-modal comparison of telephone and face-to-face selection interviews in graduate recruitment. International Journal of Selection and Assessment, 8(1), 1621.CrossRefGoogle Scholar
Sinar, E. F. & Reynolds, D. H. (2001). Applicant reactions to internet-based selection techniques. Paper presented at the 16th Annual Conference of the Society for Industrial and Organizational Psychology, San Diego, CA.
Sitzmann, T., Brown, K. G., Casper, W. J., Ely, K., & Zimmerman, R. D. (2008). A review and meta-analysis of the nomological network of trainee reactions. Journal of Applied Psychology, 93(2), 280295.CrossRefGoogle ScholarPubMed
Sitzmann, T. & Ely, K. (2010). Sometimes you need a reminder: The effects of self-regulation on regulatory processes, learning and attrition. Journal of Applied Psychology, 95(1), 132144.CrossRefGoogle Scholar
Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effectiveness of web-based and classroom instruction: A meta-analysis. Personnel Psychology, 59(3), 623664.CrossRefGoogle Scholar
Smith, T. L. (1996). Using computer technology to enhance learning: Compensation in the real world. Journal of Education for Business, 72(2), 98101.CrossRefGoogle Scholar
Snyder, E. & Hartig, J. R. (2013). Gamification of board review: A residency curricular innovation. Medical Education, 47(5), 524525.CrossRefGoogle ScholarPubMed
Society for Human Resource Management. (2002). The future of the HR profession: Eight leading consulting firms share their visions for the future of human resources. Retrieved from
Society for Human Resource Management. (2007). SHRM case study: Manager self-service. Retrieved from
Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797811.CrossRefGoogle ScholarPubMed
Stone, D. L., Deadrick, D. L., Lukaszewski, K. M., & Johnson, R. D. (2015). The influence of technology on the future of human resource management. Human Resource Management Review, 25(2), 216231.CrossRefGoogle Scholar
Stone, D. L., & Dulebohn, J. H. (2013). Emerging issues in theory and research on electronic human resource management (eHRM). Human Resource Management Review, 23(1), 15.CrossRefGoogle Scholar
Stone, D. L., Johnson, R. D., Stone-Romero, E. F., & Hartman, M. (2006). A comparative study of Hispanic-American and Anglo-American cultural values and job choice preferences. Management Research, 4, 722.Google Scholar
Stone, D. L., Krueger, D., & Takach, S. (2017). Social issues associated with the internet at work. In Hertel, G., Stone, D. L., Johnson, R. D., & Passmore, J. (Eds.), Handbook of the Psychology of the Internet at Work (pp. 423448). Chichester, UK: Wiley Blackwell.Google Scholar
Stone, D. L., & Lukaszewski, K. M. (2009). An expanded model of the factors affecting the acceptance and effectiveness of electronic human resource management systems. Human Resource Management Review, 19(2), 134143.CrossRefGoogle Scholar
Stone, D. L., Lukaszewski, K. M., & Isenhour, L. C. (2005). E-recruiting: Online strategies for attracting talent. In Gueutal, H. G. & Stone, D. L. (Eds.), The brave new world of eHR: Human resources management in the digital age (pp. 2253). San Francisco, CA: Jossey Bass.Google Scholar
Stone, D. L., Lukaszewski, K. M., Stone-Romero, E. F., & Johnson, T. L. (2013). Factors affecting the effectiveness and acceptance of electronic selection systems. Human Resource Management Review, 23(1), 5070.CrossRefGoogle Scholar
Stone, D. L., Stone-Romero, E. F., & Lukaszewski, K. (2003). The functional and dysfunctional consequences of human resource information technology for organizations and their employees. In Stone, D. L. (Ed.), Advances in human performance and cognitive engineering research (pp. 3768). Oxford, UK: JAI Press.Google Scholar
Stone, E. F. & Stone, D. L. (1990). Privacy in organizations: Theoretical issues, research findings, and protection mechanisms. Research in personnel and human resources management, 8(3), 349411.Google Scholar
Stone-Romero, E. F., Isenhour, L. C., & Stone, D. L. (2011). Relations among values,ethnicity, and job choice trade off preferences. Paper presented at the Academy of Management Annual Meeting, San Antonio, TX.
Sturman, M. C., Hannon, J. M., & Milkovich, G. T. (1996). Computerized decision aids for flexible benefits decisions: The effects of an expert system and decision support system on employee intentions and satisfaction with benefits. Personnel Psychology, 49(4), 883908.CrossRefGoogle Scholar
Sturman, M. C. & Milkovich, G. T. (1995). Validating expert systems: a demonstration using personal choice expert, a flexible employee benefit system. Decision Sciences, 26(1), 105118.CrossRefGoogle Scholar
Thatcher, M. E. & Oliver, J. R. (2001). The impact of technology investments on a firm’s production efficiency, product quality, and productivity. Journal of Management Information Systems, 18(2), 1745.CrossRefGoogle Scholar
Todd, P. & Benbasat, I. (1991). An experimental investigation of the impact of computer based decision aids on decision making strategies. Information Systems Research, 2(2), 87115.CrossRefGoogle Scholar
Twenge, J. M., Campbell, S. M., Hoffman, B. J., & Lance, C. E. (2010). Generational differences in work values: Leisure and extrinsic values increasing, social and intrinsic values decreasing. Journal of Management, 36(5), 11171142.CrossRefGoogle Scholar
Ulrich, D. (2001). From e-Business to e-HR. IHRIM Journal, 5, 9097.Google Scholar
Webster, J. & Hackley, P. (1997). Teaching effectiveness in technology-mediated distance learning. Academy of Management Journal, 40(6), 12821309.Google Scholar
Welsh, E. T., Wanberg, C. R., Brown, K. G., & Simmering, M. J. (2003). E-learning: emerging uses, empirical results and future directions. International Journal of Training and Development, 7(4), 245258.CrossRefGoogle Scholar
Whitman, T. S. & Hyde, A. C. (1978). HRIS: Systematically matching the right person to the right position. Defense Management Journal, 14(2), 2834.Google Scholar
Wiechmann, D. & Ryan, A. M. (2003). Reactions to computerized testing in selection contexts. International Journal of Selection and Assessment, 11(2/3), 215229.CrossRefGoogle Scholar
Workscape. (2010). Automated compensation planning process enables more strategic decision making at Raytheon. Retrieved from
Wright, A. (2017). Top HR Technology Trends for 2018. Retrieved from
Yanson, R. & Johnson, R. D. (2016). An empirical examination of e-learning design: The role of trainee socialization and complexity in short term training. Computers & Education, 101, 4354.CrossRefGoogle Scholar
Zhang, D. (2003). Powering e-learning in the new millennium: An overview of e-learning and enabling technology. Information Systems Frontiers, 5(2), 201212.CrossRefGoogle Scholar
Zielinski, D. (2000). The lie of online learning. Training, 37(2), 3840.Google Scholar
Zingheim, P. & Schuster, J. R. (2004). What’s the next great pay and reward innovation? Business value, paying for skill, and the internet. IHRIM Journal, 3(5), 4750.Google Scholar
Zuboff, S. (1985). Automate/informate: The two faces of intelligent technology. Organizational Dynamics, 14(2), 518.CrossRefGoogle Scholar
Zusman, R. R. & Landis, R. S. (2002). Applicant preferences for web-based versus traditional job postings. Computers in Human Behavior, 18, 285296.CrossRefGoogle Scholar
ABI Research. (August 20, 2014). More than 30 billion devices will drive wireless connected devices to 40.9 billion in 2020. Retrieved from
ABI Research. (September 29, 2016). New workplace wearables bridge communication gap between employees and systems. Retrieved from
Abraham, M. & Annunziata, M. (March 13, 2017). Augmented reality is already improving worker performance. Harvard Business Review. Retrieved from
Adams, J. S. (1976). The structure and dynamics of behavior in organizational boundary roles. Handbook of Industrial and Organizational Psychology, 1175, 1199.Google Scholar
Aiello, J. R. & Kolb, K. J. (1995). Electronic performance monitoring and social context: Impact on productivity and stress. Journal of Applied Psychology, 80(3), 339.CrossRefGoogle Scholar
Amabile, T. M. (1979). Effects of external evaluation on artistic creativity. Journal of Personality and Social Psychology, 37(2), 221.CrossRefGoogle Scholar
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357.CrossRefGoogle Scholar
Alge, B. J. (2001). Effects of computer surveillance on perceptions of privacy and procedural justice. Journal of Applied Psychology, 86(4), 797.CrossRefGoogle ScholarPubMed
Armstrong, P. (September 30, 2017). Smart companies are already using Apple’s ARkit to make cash registers ring. Forbes. Retrieved from
Avolio, B. J. & Kahai, S. S. (2003). Adding the “E” to e-leadership: How it may impact your leadership. Organizational Dynamics, 31(4), 325338.CrossRefGoogle Scholar
Bailenson, J. N. & Blascovich, J. (2004). Avatars. In Encyclopedia of human-computer interaction. Great Barrington, MA: Berkshire Publishing Group.Google Scholar
Bernstein, E. (2014). The transparency trap. Harvard Business Review, 92(10), 5866.Google ScholarPubMed
Boitnott, J. (April 28, 2015). Wearable tech is improving employee productivity and happiness. Retrieved from
Brandimarte, L., Acquisti, A., & Loewenstein, G. (2013). Misplaced confidences: Privacy and the control paradox. Social Psychological and Personality Science, 4(3), 340347.CrossRefGoogle Scholar
Brockner, J., Rubin, J. Z., & Lang, E. (1981). Face-saving and entrapment. Journal of Experimental Social Psychology, 17(1), 6879.CrossRefGoogle Scholar
Brown, R. H. (March 28, 2011). Virtual world, mobile tech finding use as innovative education tools. Retrieved from
Brown, B. R. & Garland, H. (1971). The effects of incompetency, audience acquaintanceship, and anticipated evaluative feedback on face-saving behavior. Journal of Experimental Social Psychology, 7(5), 490502.CrossRefGoogle Scholar
Busel, M. (July 7, 2017). The 6 biggest challenges facing augmented reality: A look at the biggest risk factors for near-term AR adoption. Retrieved from
Cain, M. (November 2, 2016). Top 10 emerging technologies in the digital workplace. Forbes. Retrieved from
Chalykoff, J. & Kochan, T. A. (1989). Computer‐aided monitoring: Its influence on employee job satisfaction and turnover. Personnel Psychology, 42(4), 807834.CrossRefGoogle Scholar
ClevengerJr, T. (1959). A synthesis of experimental research in stage fright. Quarterly Journal of Speech, 45(2), 134145.CrossRefGoogle Scholar
Colbert, A., Yee, N., & George, G. (2016). The digital workforce and the workplace of the future. Academy of Management Journal, 59(3), 731739.CrossRefGoogle Scholar
Corsello, J. (January, 2013). What the Internet of Things will bring to the workplace. WIRED. Retrieved from
Cox, L. (March, 2017). Personal technology in the workplace: Wearables. Retrieved from
Cummings, J. J. & Bailenson, J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272-309.CrossRefGoogle Scholar
Deci, E. L. (1975). Intrinsic motivation. New York, NY: Plenum.CrossRefGoogle Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125 (6), 627668.CrossRefGoogle ScholarPubMed
De Cremer, D. (April, 2017). CC’ing the boss on email makes employees feel less trusted. Retrieved from
Detert, J. R. & Burris, E. R. (2007). Leadership behavior and employee voice: Is the door really open? Academy of Management Journal, 50(4), 869884.CrossRefGoogle Scholar
DeRosa, D. M., Hantula, D. A., Kock, N., & D’Arcy, J. (2004). Trust and leadership in virtual teamwork: A media naturalness perspective. Human Resource Management, 43(2‐3), 219232.CrossRefGoogle Scholar
Derousseau, R. (June 14, 2017). The tech that tracks your movements at work. Retrieved from
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355.CrossRefGoogle ScholarPubMed
Eaton, K. (August 26, 2009). Three unexpected dangers of augmented reality. Retrieved from:
Elliot, A. J. & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and intrinsic motivation: A mediational analysis. Journal of Personality and Social Psychology, 70, 461475.CrossRefGoogle Scholar
Fayol, H. (1949). General and Industrial Administration. New York, NY: Pitman.Google Scholar
Future Workplace Study (July 18, 2016). Dell and Intel Future Workforce Study provides key insights into technology trends shaping the modern global workplace. Retrieved from:–07-18-future-workforce-study-provides-key-insights.
Gallup (2017). State of the American Workplace. Retrieved from:
Gartner (February 2, 2016). Gartner says worldwide wearable devices sales to grow 18.4 percent in 2016. Retrieved from:
Gartner (October 4, 2017). Gartner identifies the top ten strategic technology trends for 2018. Retrieved from:
Gartner (2018a). Internet of Things. Retrieved from:
Gartner (2018b). Virtual Reality (VR). Retrieved from:
Gartner (2018c). Augmented Reality (AR). Retrieved from:
Garland, H. & Brown, B. R. (1972). Face-saving as affected by subjects’ sex, audiences’ sex and audience expertise. Sociometry, 280289.CrossRef
Gaudiosi, J. (2015). How Ford goes further with virtual reality. Retrieved from: Date published: September 23, 2015.
Goffman, E. (1959). The moral career of the mental patient. Psychiatry, 22(2), 123142.CrossRefGoogle ScholarPubMed
Hackman, J. R. & Oldham, G. R. (1975). Development of the job diagnostic survey. Journal of Applied Psychology, 60(2), 159.CrossRefGoogle Scholar
Hammick, J. K. & Lee, M. J. (2014). Do shy people feel less communication apprehension online? The effects of virtual reality on the relationship between personality characteristics and communication outcomes. Computers in Human Behavior, 33, 302310.CrossRefGoogle Scholar
Harkins, S. G. (2006). Mere effort as the mediator of the evaluation-performance relationship. Journal of Personality and Social Psychology, 91(3), 436.CrossRefGoogle ScholarPubMed
Hunt, (February 5, 2015). Experts: Wearable tech tests our privacy limits. Retrieved from:
IDC (June 23, 2015). IDC forecasts U.S. mobile worker population to surpass 105 million by 2020. Retrieved from:
IDC (February 27, 2017a). Worldwide spending on augmented and virtual reality forecast to reach $13.9 billion in 2017, according to IDC. Retrieved from:
IDC (October, 2017b). IDC futurescape: Worldwide connected devices and augmented reality/virtual reality 2018 Predictions. Retrieved from:
Identity Theft Resource Center (December 13, 2016). 2016 Data breach category summary. Retrieved from:
Interact Report (February, 2015). New Interact Report: Many leaders shrink from straight talk with employees. Retrieved from:
Jackson, J. M. & Latané, B. (1981). All alone in front of all those people: Stage fright as a function of number and type of co-performers and audience. Journal of Personality and Social Psychology, 40(1), 73.CrossRefGoogle Scholar
Jacques, P. H., Garger, J., Brown, C. A., & Deale, C. S. (2009). Personality and virtual reality team candidates: The roles of personality traits, technology anxiety and trust as predictors of perceptions of virtual reality teams. Journal of Business and Management, 15(2), 143.Google Scholar
Jamieson, J. P. & Mendes, W. B. (2016). Social stress facilitates risk in youths. Journal of Experimental Psychology: General, 145(4), 467.CrossRefGoogle ScholarPubMed
Kahai, S. S., Sosik, J. J., & Avolio, B. J. (2003). Effects of leadership style, anonymity, and rewards on creativity-relevant processes and outcomes in an electronic meeting system context. The Leadership Quarterly, 14(4), 499524.CrossRefGoogle Scholar
Karau, S. J. & Williams, K. D. (1993). Social loafing: A Meta-Analytic Review and Theoretical Integration. Journal of Personality and Social Psychology, 65(4), 681706.CrossRefGoogle Scholar
Kim, T., McFee, E., Olguin, D. O., Waber, B., & Pentland, A. (2012). Sociometric badges: Using sensor technology to capture new forms of collaboration. Journal of Organizational Behavior, 33(3), 412427.CrossRefGoogle Scholar
Kluger, A. N. & DeNisi, A. (1996). The Effects of Feedback Interventions on Performance: A Historical Review, a Meta-analysis, and a Preliminary Feedback Intervention Theory. Psychological Bulletin, 119(2), 254284.CrossRefGoogle Scholar
Komaki, J. L. (1986). Toward effective supervision: An operant analysis and comparison of managers at work. Journal of Applied Psychology, 71(2), 270.CrossRefGoogle Scholar
Komaki, J. L., Zlotnick, S., & Jensen, M. (1986). Development of an operant-based taxonomy and observational index of supervisory behavior. Journal of Applied Psychology, 71(2), 260.CrossRefGoogle Scholar
Koslov, K., Mendes, W. B., Pajtas, P. E., & Pizzagalli, D. A. (2011). Asymmetry in resting intracortical activity as a buffer to social threat. Psychological Science, 22(5), 641649.CrossRefGoogle ScholarPubMed
Lapowsky, I. (April 23, 2015). Oculus’ founder on the pros and cons of VR for social good. Retrieved from:
Larson, J. R. & Callahan, C. (1990). Performance monitoring: How it affects work productivity. Journal of Applied Psychology, 75(5), 530.CrossRefGoogle Scholar
Leary, M. R. (1983). A brief version of the Fear of Negative Evaluation Scale. Personality and Social Psychology Bulletin, 9(3), 371375.CrossRefGoogle Scholar
Leary, M. R. & Baumeister, R. F. (2000). The nature and function of self-esteem: Sociometer theory. Advances in Experimental Social Psychology, 32, 162.Google Scholar
Leary, M. R. & Kowalski, R. M. (1990). Impression management: A literature review and two-component model. Psychological Bulletin, 107(1), 34.CrossRefGoogle Scholar
Levski, Y. (2017). 10 Real world examples of AR marketing success. Retrieved from:
Locke, E. A. & Latham, G. P. (2002). Building a Practically Useful theory of goal setting and task motivation: A 35-year odyssey. American Psychologist, 57(9), 705.CrossRefGoogle ScholarPubMed
Lopez, M. (November 11, 2016). Augmented and virtual reality fuel the future workplace. Retrieved from:
Martens, R. & Landers, D. M. (1972). Evaluation potential as a determinant of coaction effects. Journal of Experimental Social Psychology, 8(4), 347359.CrossRefGoogle Scholar
McCroskey, J. C. (1977). Oral communication apprehension: A summary of recent theory and research. Human Communication Research, 4(1), 7896.CrossRefGoogle Scholar
Middleton, M. J. & Midgley, C. (1997). Avoiding the demonstration of lack of ability: An underexplored aspect of goal theory. Journal of Educational Psychology, 89(4), 710.CrossRefGoogle Scholar
Miller, S. (May 17, 2017). Best practices for using wearable devices in wellness programs. Retrieved from:
Mintzberg, H. (1973). The nature of managerial work. New York: Harper & Row.Google Scholar
Modigliani, A. (1971). Embarrassment, facework, and eye contact: Testing a theory of embarrassment. Journal of Personality and social Psychology, 17(1), 15.CrossRefGoogle ScholarPubMed
Muller, D. & Butera, F. (2007). The focusing effect of self-evaluation threat in coaction and social comparison. Journal of Personality and Social Psychology, 93(2), 194.CrossRefGoogle ScholarPubMed
Nah, F. F. H., Eschenbrenner, B., & DeWester, D. (2011). Enhancing brand equity through flow and telepresence: A comparison of 2D and 3D virtual worlds. MIS Quarterly, 731747.CrossRef
Niehoff, B. P. & Moorman, R. H. (1993). Justice as a mediator of the relationship between methods of monitoring and organizational citizenship behavior. Academy of Management Journal, 36(3), 527556.Google Scholar
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91(3), 328.CrossRefGoogle Scholar
Nussbaum, K. & DuRivage, V. (1986). Computer monitoring: Mismanagement by remote control. Business and Society Review, 56, 1620.Google Scholar
Oldham, G. R. & Cummings, A. (1996). Employee creativity: Personal and contextual factors at work. Academy of Management Journal, 39(3), 607634.Google Scholar
Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241.CrossRefGoogle Scholar
Pedersen, D. M. (1999). Model for types of privacy by privacy functions. Journal of Environmental Psychology, 19(4), 397405.CrossRefGoogle Scholar
Pepitone, J. (October 27, 2016). Designing the workplace of the future: Virtual reality and 3D panoramas. Retrieved from:
Pew Research Center (May 20, 2015). Americans’ attitudes about privacy, security and surveillance. Retrieved from:
Pew Research Center (June 6, 2017). The Internet of Things connectivity binge: What are the implications?. Retrieved from:
Phillips, G. M. (1968). Reticence: Pathology of the normal speaker. Communications Monographs, 35(1), 3949.Google Scholar
Phillips, B. & Zhao, H. (1993). Predictors of assistive technology abandonment. Assistive Technology, 5(1), 3645.CrossRefGoogle ScholarPubMed
Raveendhran, R. & Fast, N.J. (2018). Tracked by technology: Adoption of behavior-tracking products. Unpublished manuscript. University of Southern California.
Raveendhran, R., Fast, N.J., & Carnevale, P.J. (2018). Hiding behind technology: Managers adopt technology to avoid negative evaluations. Unpublished manuscript. University of Southern California.
Roberts, K., Kossek, E. E., & Ozeki, C. (1998). Managing the global workforce: Challenges and strategies. The Academy of Management Executive, 12(4), 93106.Google Scholar
Ryan, R. M. & Connell, J. P. (1989). Perceived locus of causality and internalization: examining reasons for acting in two domains. Journal of Personality and Social Psychology, 57(5), 749.CrossRefGoogle ScholarPubMed
Sabelman, E. & Lam, R. (June 23, 2015). The real-life dangers of augmented reality. Retrieved from:
Schlenker, B. R. & Leary, M. R. (1982). Social anxiety and self-presentation: A conceptualization model. Psychological Bulletin, 92(3), 641.CrossRefGoogle Scholar
Sewell, G. & Barker, J. R. (2006). Coercion versus care: Using irony to make sense of organizational surveillance. Academy of Management Review, 31(4), 934961.CrossRefGoogle Scholar
Shah, J. (2003). Automatic for the people: how representations of significant others implicitly affect goal pursuit. Journal of Personality and Social Psychology, 84(4), 661.CrossRefGoogle ScholarPubMed
Silva, C. (June 6, 2017). The Internet of Things is becoming more difficult to escape. Retrieved from:
Smith, W. P. & Tabak, F. (2009). Monitoring employee e-mails: Is there any room for privacy?. The Academy of Management Perspectives, 23(4), 3348.CrossRefGoogle Scholar
Spector, P. E. (1986). Perceived control by employees: A meta-analysis of studies concerning autonomy and participation at work. Human Relations, 39(11), 10051016.CrossRefGoogle Scholar
Steiner, F. (April 6, 2017). Future of communication with VR and AR. Retrieved from:
Strickland, L. H. (1958). Surveillance and trust. Journal of Personality, 26(2), 200215.CrossRefGoogle ScholarPubMed
Stritzke, W. G., Nguyen, A., & Durkin, K. (2004). Shyness and computer-mediated communication: A self-presentational theory perspective. Media Psychology, 6(1), 122.CrossRefGoogle Scholar
Solomon, L. (March 9, 2016). Two-thirds of managers are uncomfortable communicating with employees. Harvard Business Review. Retrieved from:
Tangney, J. P. (1992). Situational determinants of shame and guilt in young adulthood. Personality and Social Psychology Bulletin, 18(2), 199206.CrossRefGoogle Scholar
Tangney, J. P. (1999). The self-conscious emotions: Shame, guilt, embarrassment and pride. In Dalgleish, T. & Power, M. J. (Eds.), Handbook of cognition and emotion, 541568.CrossRef
Van Boven, L., Loewenstein, G., & Dunning, D. (2005). The illusion of courage in social predictions: Underestimating the impact of fear of embarrassment on other people. Organizational Behavior and Human Decision Processes, 96, 130141.CrossRefGoogle Scholar
Wasko, M., Teigland, R., Leidner, D., & Jarvenpaa, S. (2011). Stepping into the internet: New ventures in virtual worlds. MIS Quarterly, 35(3), 645652.CrossRefGoogle Scholar
Wilson, J. (September, 2013). Wearables in the workplace. Retrieved from:
Yukl, G. (1989). Managerial leadership: A review of theory and research. Journal of Management, 15(2), 251289.CrossRefGoogle Scholar
Zajonc, R. B. (1965). Social facilitation. Science, 149(3681), 269274.CrossRefGoogle ScholarPubMed