Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-l69ms Total loading time: 1.693 Render date: 2022-08-11T23:53:41.062Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

24 - Precision Behavioral Management (PBM): A Novel Genetically Guided Therapy to Combat Reward Deficiency Syndrome (RDS) Relevant to the Opiate Crisis

from Part V - Ongoing and Future Research Directions

Published online by Cambridge University Press:  13 July 2020

Get access

Summary

Reward Deficiency Syndrome (RDS) is an umbrella term for all drug and nondrug addictive behaviors, due to a dopamine deficiency, “hypodopaminergia.” There is an opioid-overdose epidemic in the USA, which may result in or worsen RDS. A paradigm shift is needed to combat a system that is not working. This shift involves the recognition of dopamine homeostasis as the ultimate treatment of RDS via precision, genetically guided KB220 variants, called Precision Behavioral Management (PBM). Recognition of RDS as an endophenotype and an umbrella term in the future DSM 6, following the Research Domain Criteria (RDoC), would assist in shifting this paradigm.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C., Abraham, A., Grogan, C. M., et al. (2015). Despite resources from the ACA, Most states do little to help addiction treatment programs implement health care reform. Health Affairs (Millwood), 5, 828835.CrossRefGoogle Scholar
Barh, D., García-Solano, M. E., Tiwari, S., et al. (2017). BARHL1 is downregulated in Alzheimer’s disease and may regulate cognitive functions through ESR1 and multiple pathways. Genes (Basel), 10, 245.CrossRefGoogle Scholar
Baron, D., Blum, K., Chen, A., Gold, M. & Badgaiyan, R. D. (2018). Conceptualizing addiction from an osteopathic perspective:Dopamine homeostasis. Journal of the American Osteopathic Association, 118, 115118.CrossRefGoogle ScholarPubMed
Barratt, D. T., Coller, J. K. & Somogyi, A. A. (2006). Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 141, 323331.CrossRefGoogle Scholar
Berridge, K. C. & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. American Psychologist Journal, 71, 670679.CrossRefGoogle Scholar
Bershad, A. K., Miller, M. A., Norman, G. J. & de Wit, H. (2018). Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans. Hormones and Behavior, 102, 4147.CrossRefGoogle ScholarPubMed
Blum, K. (2017). Reward Deficiency Syndrome. The Sage Encyclopedia of Abnormal Clinical Psychology, Wenzel, A. (Ed.). Pennsylvania: Sage Publications.Google Scholar
Blum, K. & Baron, D. (2019). Opioid substitution therapy: Achieving harm reduction while searching for a prophylactic solution. Current Pharmaceutical Biotechnology, 20, 180182.CrossRefGoogle ScholarPubMed
Blum, K., Badgaiyan, R. D., Braverman, E. R., et al. (2016a). Hypothesizing that, a pro-dopamine regulator (KB220Z) should optimize, but not hyper-activate the activity of Trace Amine-Associated Receptor 1 (TAAR-1) and induce anti-craving of psychostimulants in the long-term. Journal of Reward Deficiency Syndrome Addiction Science, 2, 1421.CrossRefGoogle Scholar
Blum, K., Chen, A. L., Chen, T. J., et al. (2008a). Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long-term treatment of reward deficiency syndrome (RDS): A commentary. Theoretical Biology Medical Modelling, 12(5), 24.CrossRefGoogle Scholar
Blum, K., Chen, T. J., Meshkin, B., et al. (2007a) Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Medical Hypotheses, 68, 844852.CrossRefGoogle Scholar
Blum, K., Chen, A. L., Oscar-Berman, M., et al. (2011). Generational association studies of dopaminergic genes in reward deficiency syndrome (RDS) subjects: Selecting appropriate phenotypes for reward dependence behaviors. International Journal of Environmental Research and Public Health, 8, 44254459.CrossRefGoogle ScholarPubMed
Blum, K., Chen, A. L. C., Thanos, P. K., et al. (2018a). Genetic addiction risk score (GARS) ™, a predictor of vulnerability to opioid dependence. Frontiers in Bioscience (Elite Edition), 10, 175196.CrossRefGoogle ScholarPubMed
Blum, K., Chen, T. J., Meshkin, B., et al. (2007b). Genotrim, a DNA-customized nutrigenomic product, targets genetic factors of obesity: Hypothesizing a dopamine-glucose correlation demonstrating reward deficiency syndrome (RDS). Medical Hypotheses, 68, 844852.CrossRefGoogle ScholarPubMed
Blum, K., Chen, T. J., Morse, S., et al. (2010). Overcoming qEEG abnormalities and reward gene deficits during protracted abstinence in male psychostimulant and polydrug abusers utilizing putative dopamine D2 agonist therapy: Part 2. Postgraduate Medical Journal, 122, 214226.CrossRefGoogle ScholarPubMed
Blum, K., Chen, T. J. H., Chen, A. L. C., et al. (2008b). Dopamine D2 receptor Taq A1 allele predicts treatment compliance of LG839 in a subset analysis of pilot study in the Netherlands. Gene Therapy & Molecular Biology, 12, 129140.Google Scholar
Blum, K., Febo, M. & Badgaiyan, R. D. (2016b). Fifty years in the development of a glutaminergic-dopaminergic optimization complex (KB220) to balance brain reward circuitry in Reward Deficiency Syndrome: A pictorial. Austin Addiction Sciences, 1, 1006.Google ScholarPubMed
Blum, K., Febo, M., Badgaiyan, R. D., et al. (2017a). Common neurogenetic diagnosis and meso-limbic manipulation of hypodopaminergic function in Reward Deficiency Syndrome (RDS): Changing the recovery landscape. Current Neuropharmacology, 15, 184194.CrossRefGoogle ScholarPubMed
Blum, K., Febo, M., Fried, L., et al. (2017b). Hypothesizing that neuropharmacological and neuroimaging studies of glutaminergic-dopaminergic optimization complex (KB220Z) are associated with “dopamine homeostasis” in Reward Deficiency Syndrome (RDS). Substance Use and Misuse, 52, 535547.CrossRefGoogle Scholar
Blum, K., Febo, M., McLaughlin, T., et al. (2014a). Hatching the behavioral addiction egg: Reward Deficiency Solution System (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. Journal of Behavioral Addictions, 3, 149156.CrossRefGoogle Scholar
Blum, K., Febo, M., Thanos, P. K., et al. (2015a). Clinically combating Reward Deficiency Syndrome (RDS) with dopamine agonist therapy as a paradigm shift: Dopamine for dinner? Molecular Neurobiology, 52, 18621869.CrossRefGoogle ScholarPubMed
Blum, K., Gardner, E., Oscar-Berman, M. & Gold, M. (2012). “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): Hypothesizing differential responsivity in brain reward circuitry. Current Pharmaceutical Design, 18, 113118.CrossRefGoogle Scholar
Blum, K., Han, D., Hauser, M., et al. (2013a). Neurogenetic impairments of brain reward circuitry links to Reward Deficiency Syndrome (RDS) as evidenced by Genetic Addiction Risk Score (GARS): A case study. The Institute of Integrative Omics and Applied Biotechnology Journal, 4, 49.Google Scholar
Blum, K., Han, D., Modestino, E. J., et al. (2018b). A systematic, intensive statistical investigation of data from the Comprehensive Analysis of Reported Drugs (CARD) for compliance and illicit opioid abstinence in substance addiction treatment with buprenorphine/naloxone. Substance Use and Misuse, 53, 220229.CrossRefGoogle ScholarPubMed
Blum, K., Han, D., Femino, J., et al. (2014b). Systematic evaluation of “compliance” to prescribed treatment medications and “abstinence” from psychoactive drug abuse in chemical dependence programs: Data from the comprehensive analysis of reported drugs. PLoS ONE, 9, e104275.CrossRefGoogle ScholarPubMed
Blum, K., Jacobs, W., Modestino, E. J., et al. (2018c). Insurance companies fighting the peer review empire without any validity: The case for addiction and pain modalities in the face of an American drug epidemic. SEJ Surgery and Pain, 1, 111.Google ScholarPubMed
Blum, K., Liu, Y., Wang, W., et al. (2015b). rsfMRI effects of KB220Z™ on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgraduate Medical Journal, 127, 232241.CrossRefGoogle ScholarPubMed
Blum, K., Lott, L. Siwicki, D., et al. (2018d). Genetic Addiction Risk Score (GARS) as a predictor of substance use disorder: Identifying predisposition not diagnosis. Current Trends in Medical Diagnostic Methods, 1, 13.Google Scholar
Blum, K., Madigan, M. A., Fried, L., et al. (2017c). Coupling Genetic Addiction Risk Score (GARS) and pro dopamine regulation (KB220) to combat substance use disorder (SUD). Global Journal of Addiction and Rehabilitation Medicine, 1.CrossRefGoogle ScholarPubMed
Blum, K., Modestino, E. J., Gondre-Lewis, M., et al. (2018e). The benefits of Genetic Addiction Risk Score (GARS™) testing in Substance Use Disorder (SUD). International Journal of Genomics and Data Mining, 1, 115.Google Scholar
Blum, K., Modestino, E. J., Gondré-Lewis, M. C., et al. (2017d). Global opioid epidemic: Doomed to fail without genetically based precision addiction medicine (PAMTM): Lessons learned from America. Journal of Laboratory and Precision Medicine (Bangalore), 2, 1722.Google Scholar
Blum, K., Modestino, J. E., Gondre Lewis, C. M., et al. (2018f). Pro-dopamine regulator (KB220) a fifty year sojourn to combat Reward Deficiency Syndrome (RDS): Evidence based bibliography (annotated). CPQ Journal of Neurology and Psychology, 1.Google Scholar
Blum, K., Modestino, E. J., Lott, L., et al. (2018g). Introducing “Precision Addiction Management (PAM®)” as an adjunctive genetic guided therapy for abusable drugs in America. Open Access Journal of Psychology and Behavioral Science, 1, 14.Google Scholar
Blum, K., Modestino, E. J., Neary, J., et al. (2018h). Promoting Precision Addiction Management (PAM) to combat the global opioid crisis. Biomedical Journal of Scientific and Technical Research, 2, 14.CrossRefGoogle ScholarPubMed
Blum, K., Noble, E. P., Sheridan, P. J., et al. (1990). Allelic association of human dopamine D2 receptor gene in alcoholism. The Journal of American Medical Association, 263(15), 20552060.CrossRefGoogle ScholarPubMed
Blum, K., Oscar-Berman, M., Demetrovics, Z., Barh, D. & Gold, M. S. (2014c). Genetic Addiction Risk Score (GARS): Molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Molecular Neurobiology, 50, 765796.CrossRefGoogle ScholarPubMed
Blum, K., Oscar-Berman, M., Femino, J., et al. (2013b). Withdrawal from buprenorphine/naloxone and maintenance with a natural dopaminergic agonist: A cautionary note. Journal of Addiction Research and Therapy, 4.CrossRefGoogle ScholarPubMed
Blum, K., Thompson, B., Demotrovics, Z., et al. (2015c). The molecular neurobiology of twelve steps program & fellowship: Connecting the dots for recovery. Journal of Reward Deficiency Syndrome, 1, 4664.CrossRefGoogle ScholarPubMed
Blum, K., Wood, R. C., Braverman, E. P., Chen, T. J. H. & Sheridan, P. J. (1995). D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Functional Neurology, 10, 3744.Google ScholarPubMed
Bousman, C., Maruf, A. A. & Müller, D. J. (2019). Towards the integration of pharmacogenetics in psychiatry: a minimum, evidence-based genetic testing panel. Current Opinion in Psychiatry, 32, 715.CrossRefGoogle ScholarPubMed
Casey, B. J., Craddock, N., Cuthbert, B. N., Hyman, S. E., Lee, F. S. & Ressler, K. J. (2013). DSM-5 and RDoC: progress in psychiatry research? Nature reviews. Neuroscience, 14, 810814.Google ScholarPubMed
Chen, A. L., Blum, K., Chen, T. J., et al. (2012). Correlation of the Taq1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report. Food and Function, 3, 4048.CrossRefGoogle ScholarPubMed
Chen, A. L., Chen, T. J., Waite, R. L., et al. (2009). Hypothesizing that brain reward circuitry genes are genetic antecedents of pain sensitivity and critical diagnostic and pharmacogenomic treatment targets for chronic pain conditions. Medical Hypotheses, 72, 1422.CrossRefGoogle ScholarPubMed
Chen, D., Liu, F., Shang, Q., et al. (2011). Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. American Journal of Medical Genetics, 156, 661670.Google Scholar
Chen, T. J., Blum, K., Mathews, D., et al. (2005). Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Medical Hypotheses, 65, 703707.CrossRefGoogle Scholar
Comings, D. E., MacMurray, J., Johnson, P., Dietz, G. & Muhleman, D. (1995). Dopamine D2 receptor gene (DRD2) haplotypes and the defense style questionnaire in substance abuse, Tourette syndrome, and controls. Biological Psychiatry, 37, 798805.CrossRefGoogle ScholarPubMed
Corrigan, P. W., Schomerus, G., Shuman, V., et al. (2017). Developing a research agenda for reducing the stigma of addictions, part II: lessons from the mental health stigma literature. American Journal on Addictions, 1, 6774.CrossRefGoogle Scholar
Dahlgren, A., Wargelius, H. L., Berglund, K. J., et al. (2011). Do alcohol-dependent individuals with DRD2 A1 allele have an increased risk of relapse? Alcohol and Alcoholism, 46, 509513.CrossRefGoogle ScholarPubMed
Dunn, K E. & Strain, E. C. (2013). Pretreatment alcohol drinking goals are associated with treatment outcomes. Alcoholism: Clinical and Experimental Research, 37, 17451752.Google ScholarPubMed
Elston, S. F., Blum, K., DeLallo, L. & Briggs, A. H. (1982). Ethanol intoxication as a function of genotype dependent responses in three inbred mice strains. Pharmacology Biochemistry and Behavior, 16, 1315.CrossRefGoogle ScholarPubMed
Erickson, C. (2007). The Science of Addiction. New York: W. W. Norton & Co.Google Scholar
Febo, M., Blum, K., Badgaiyan, R. D., et al. (2017a). Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS ONE, 12, e0174774.CrossRefGoogle ScholarPubMed
Febo, M., Blum, K., Badgaiyan, R. D., et al. (2017b). Dopamine homeostasis: brain functional connectivity in reward deficiency syndrome. Frontiers Bioscience (Landmark Edition), 22, 669691.Google ScholarPubMed
Florence, C. S., Zhou, C., Luo, F. & Xu, L. (2016). The economic burden of prescription opioid overdose, abuse, and dependence in the United States. Medical Care, 54, 901906.CrossRefGoogle ScholarPubMed
Gardner, E. L. (2011). Addiction and brain reward and antireward pathways. Advances in Psychosomatic Medicine, 30, 2260.CrossRefGoogle ScholarPubMed
Gelernter, J., O'Malley, S., Risch, N., et al. (1991). No association between an allele at the D2 dopamine receptor gene (DRD2) and alcoholism. The Journal of American Medical Association, 266, 18011807.CrossRefGoogle ScholarPubMed
Gerra, G., Somaini, L., Leonardi, C., et al. (2014). Association between gene variants and response to buprenorphine maintenance treatment. Psychiatry Research, 215, 202207.CrossRefGoogle ScholarPubMed
Gold, M. S., Blum, K., Febo, M., et al. (2018). Molecular role of dopamine in anhedonia linked to reward deficiency syndrome (RDS) and anti-reward systems. Frontiers in Bioscience (Scholar Edition), 10, 309325.Google ScholarPubMed
Gressler, L. E., Martin, B. C., Hudson, T. J. & Painter, J. T. (2018) Relationship between concomitant benzodiazepine-opioid use and adverse outcomes among US veterans. Pain, 159, 451459.CrossRefGoogle ScholarPubMed
Hill, E., Han, D., Dumouchel, P., et al. (2013). Long term Suboxone™ emotional reactivity as measured by automatic detection in speech. PLoS ONE, 8, e69043.CrossRefGoogle Scholar
Hyman, S. E. (2007). Can neuroscience be integrated into the DSM-V? Nature Reviews Neuroscience, 8(9), 725732.CrossRefGoogle ScholarPubMed
Johnson, M. I., Paley, C. A., Howe, T. E. & Sluka, K. A. (2015). Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Systematic Review, CD006142.CrossRefGoogle Scholar
Joseph, Z., Victor, K. & Rimona, D. (2011). “Ego-dystonic” delusions as a predictor of dangerous behavior. Psychiatric Quaterly, 82, 113120.CrossRefGoogle ScholarPubMed
Kandel, D. & Kandel, E. (2015). The Gateway Hypothesis of substance abuse: developmental, biological and societal perspectives. Acta Paediatrica, 104, 130137.CrossRefGoogle ScholarPubMed
Krebs, E. E., Gravely, A., Nugent, S., et al. (2018). Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: The SPACE randomized clinical trial. The Journal of American Medical Association, 319, 872882.CrossRefGoogle ScholarPubMed
Loth, E., Carvalho, F. & Schumann, G. (2011). The contribution of imaging genetics to the development of predictive markers for addictions. Trends in Cognitive Sciences, 15, 436446.CrossRefGoogle ScholarPubMed
Lötsch, J., Skarke, C., Liefhold, J. & Geisslinger, G. (2004). Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clinical Pharmacokinetics, 43, 9831013.CrossRefGoogle ScholarPubMed
Makhinson, M. & Gomez-Makhinson, J. (2014). A successful treatment of buprenorphine withdrawal with the dopamine receptor agonist pramipexole. The American Journal on Addictions, 23, 475477.CrossRefGoogle ScholarPubMed
Matthews, S., Dwyer, R. & Snoek, A. (2017). Stigma and self-stigma in addiction. Journal of Bioethical Inquiry, 14, 275286.CrossRefGoogle ScholarPubMed
Moeller, S. J., Parvaz, M. A., Shumay, E., et al. (2013). Gene x abstinence effects on drug cue reactivity in addiction: multimodal evidence. Journal of Neuroscience, 33, 1002710036.CrossRefGoogle ScholarPubMed
Mogil, J. S. & Wilson, S. G. (1997). Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6 inbred mouse strains: implications for transgenic knock-out studies. European Journal of Pain, 1, 293297.CrossRefGoogle ScholarPubMed
Palmer, R. H., Brick, L., Nugent, N. R., et al. (2015). Examining the role of common genetic variants on alcohol, tobacco, cannabis and illicit drug dependence: genetics of vulnerability to drug dependence. Addiction, 110, 530537.CrossRefGoogle ScholarPubMed
Pergolizzi, J. V. Jr, LeQuang, J. A., Taylor, R. Jr. & Raffa, R. B. (2018) Going beyond prescription pain relievers to understand the opioid epidemic: the role of illicit fentanyl, new psychoactive substances, and street heroin. Postgraduate Medicine Journal, 130, 18.CrossRefGoogle ScholarPubMed
Raheb, G., Khaleghi, E., Moghanibashi-Mansourieh, A., Farhoudian, A. & Teymouri, R. (2016). Effectiveness of social work intervention with a systematic approach to improve general health in opioid addicts in addiction treatment centers. Psychology Research and Behavior Management, 9, 309315.CrossRefGoogle ScholarPubMed
Reilly, M. T., Noronha, A., Goldman, D. & Koob, G. F. (2017). Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology, 122, 321.CrossRefGoogle ScholarPubMed
Ritchie, T. & Noble, E. P. (1996). (3H) naloxone binding in the human brain: alcoholism and the TaqI A D2 dopamine receptor polymorphism. Brain Research, 718, 193197.CrossRefGoogle Scholar
Rudd, R. A., Seth, P., David, F. & Scholl, L. (2016). Increases in drug and opioid-involved overdose deaths – United States, 2010–2015.Morbidity and Mortality Weekly Report, 65, 14451452.CrossRefGoogle ScholarPubMed
Salling, M. C. & Martinez, D. (2016). Brain stimulation in addiction. Neuropsychopharmacology, 41, 27982809.CrossRefGoogle ScholarPubMed
Schoenthaler, S. J., Blum, K., Fried, L., et al. (2017). The effects of residential dual diagnosis treatment on alcohol abuse. Journal of Systems and Integrative Neuroscience, 3.CrossRefGoogle ScholarPubMed
Schreiber, A. L. (2014). Challenging pain syndromes. Physical Medicine and Rehabilitation Clinics of North America, 2, xvxvi.CrossRefGoogle Scholar
Severino, A. L., Shadfar, A., Hakimian, J. K., et al. (2018). Pain therapy guided by purpose and perspective in light of the opioid epidemic. Frontiers in Psychiatry, 9, 119.CrossRefGoogle ScholarPubMed
Simpatico, T. A. (2015). Vermont responds to its opioid crisis. Preventive Medicine, 80, 1011.CrossRefGoogle ScholarPubMed
Smith, D. E. (2012). The process addictions and the new ASAM definition of addiction. Journal of Psychoactive Drugs, 44, 14.CrossRefGoogle Scholar
Smith, S. R., Deshpande, B. R., Collins, J. E., Katz, J. N. & Losina, E. (2016). Comparative pain reduction of oral non-steroidal anti-inflammatory drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthritis Cartilage, 24, 962972.CrossRefGoogle ScholarPubMed
Stamer, U. M. & Stüber, F. (2007). Genetic factors in pain and its treatment. Current Opinion in Anaesthesiology, 20, 478484.CrossRefGoogle ScholarPubMed
Sussman, S. & Pakdaman, S. (2020). Appetitive needs and addiction. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 311.Google Scholar
Szutorisz, H. & Hurd, Y. L. (2016). Epigenetic effects of cannabis exposure. Biological Psychiatry, 79, 586594.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wise, R. A. & Baler, R. (2017). The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741752.CrossRefGoogle ScholarPubMed
Vonasch, A. J., Clark, C. J., Lau, S., Vohs, K. D. & Baumeister, R. F. (2017). Ordinary people associate addiction with loss of free will. Addictive Behaviors Reports, 5, 5666.CrossRefGoogle ScholarPubMed
Willuhn, I., Burgeno, L. M., Groblewski, P. A. & Phillips, P. E. (2014). Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nature Neuroscience, 17, 704709.CrossRefGoogle ScholarPubMed
43
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×