Skip to main content Accessibility help
×
Hostname: page-component-6b989bf9dc-md2j5 Total loading time: 0 Render date: 2024-04-13T08:06:08.242Z Has data issue: false hasContentIssue false

Part II - Mechanisms of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access
Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 125 - 278
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Angel, L., Bastin, C., Genon, S., et al. (2016). Neural correlates of successful memory retrieval in aging: Do executive functioning and task difficulty matter? Brain Research, 1631, 5371. https://doi.org/10.1016/j.brainres.2015.10.009Google Scholar
Ardiale, E., Hodzik, S., & Lemaire, P. (2012). Aging and strategy switch costs: A study in arithmetic problem solving. L’Année Psychologique, 112(3), 345360. https://doi.org/10.4074/S0003503312003028Google Scholar
Ardiale, E., & Lemaire, P. (2012). Within-item strategy switching: An age comparative study in adults. Psychology and Aging, 27(4), 11381151. https://doi.org/10.1037/a0027772Google Scholar
Ardiale, E., & Lemaire, P. (2013). Effects of execution duration on within-item strategy switching in young and older adults. Journal of Cognitive Psychology, 25(4), 464472. https://doi.org/10.1080/20445911.2013.789854CrossRefGoogle Scholar
Arning, K., & Ziefle, M. (2009). Effects of age, cognitive, and personal factors on PDA menu navigation performance. Behaviour and Information Technology, 28(3), 251268. https://doi.org/10.1080/01449290701679395Google Scholar
Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Learning and Memory, 4(5), 527538. https://doi.org/10.1037/0278-7393.4.5.527Google Scholar
Barulli, D. J., Rakitin, B. C., Lemaire, P., & Stern, Y. (2013). The influence of cognitive reserve on strategy selection in normal aging. Journal of the International Neuropsychological Society, 19(07), 841844. https://doi.org/10.1017/S1355617713000593CrossRefGoogle ScholarPubMed
Bouazzaoui, B., Isingrini, M., Fay, S., et al. (2010). Aging and self-reported internal and external memory strategy uses: The role of executive functioning. Acta Psychologica, 135(1), 5966. https://doi.org/10.1016/j.actpsy.2010.05.007Google Scholar
Burger, L., Uittenhove, K., Lemaire, P., & Taconnat, L. (2017). Strategy difficulty effects in young and older adults’ episodic memory are modulated by inter-stimulus intervals and executive control processes. Acta Psychologica, 175, 5059. https://doi.org/10.1016/j.actpsy.2017.02.003Google Scholar
Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 13941402. https://doi.org/10.1006/nimg.2002.1280Google Scholar
Cabeza, R., Nyberg, L., & Park, D. (Eds.) (2016). Cognitive neuroscience of aging: Linking cognitive and cerebral aging, 2nd ed. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cohen, G., & Faulkner, D. (1983). Age differences in performance on two information-processing tasks: Strategy selection and processing efficiency. Journal of Gerontology, 38(4), 447454. https://doi.org/10.1093/geronj/38.4.447Google Scholar
Costello, M. C., Madden, D. J., Mitroff, S. R., & Whiting, W. L. (2010). Age-related decline of visual processing components in change detection. Psychology and Aging, 25(2), 356368. https://doi.org/10.1037/a0017625Google Scholar
Daselaar, S. M., Iyengar, V., Davis, S. W., et al. (2015). Less wiring, more firing: Low-performing older adults compensate for impaired white matter with greater neural activity. Cerebral Cortex, 25(4), 983990. https://doi.org/10.1093/cercor/bht289Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2007). QuéPASA? The posterior–anterior shift in aging. Cerebral Cortex, 18(5), 12011209. https://doi.org/10.1093/cercor/bhm155Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135168. https://doi.org/10.1146/annurev-psych-113011-143750Google Scholar
Dirkx, E., & Craik, F. I. M. (1992). Age-related differences in memory as a function of imagery processing. Psychology and Aging, 7(3), 352358. http://dx.doi.org/10.1037/0882-7974.7.3.352Google Scholar
Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, p. 1001. https://doi.org/10.3389/fpsyg.2014.01001CrossRefGoogle ScholarPubMed
Duverne, S., & Lemaire, P. (2004). Age-related differences in arithmetic problem-verification strategies. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 59(3), 135142. https://doi.org/10.1093/geronb/59.3.P135CrossRefGoogle ScholarPubMed
El Yagoubi, R., Lemaire, P., & Besson, M. (2005). Effects of aging on arithmetic problem-solving: An event-related brain potential study. Journal of Cognitive Neuroscience, 17(1), 3750. https://doi.org/10.1162/0898929052880084Google Scholar
Fein, G., McGillivray, S., & Finn, P. (2007). Older adults make less advantageous decisions than younger adults: Cognitive and psychological correlates. Journal of the International Neuropsychological Society, 13(3), 480489. https://doi.org/10.1017/S135561770707052XGoogle Scholar
Folk, C. L., & Hoyer, W. J. (1992). Aging and shifts of visual spatial attention. Psychology and Aging, 7(3), 453465. http://dx.doi.org/10.1037/0882-7974.7.3.453Google Scholar
Gandini, D., Lemaire, P., Anton, J.-L., & Nazarian, B. (2008). Neural correlates of approximate quantification strategies in young and older adults: An fMRI study. Brain Research, 1246, 144157. https://doi.org/10.1016/j.brainres.2008.09.096Google Scholar
Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8(2), 242256. https://doi.org/10.1037//0882-7974.8.2.242Google Scholar
Geary, D. C., & Lin, J. (1998). Numerical cognition: Age-related differences in the speed of executing biologically primary and biologically secondary processes. Experimental Aging Research, 24(2), 101137. https://doi.org/10.1080/036107398244274Google Scholar
Geary, D. C., & Wiley, J. G. (1991). Cognitive addition: Strategy choice and speed-of-processing differences in young and elderly adults. Psychology and Aging, 6(3), 474483. https://doi.org/10.1037/0882-7974.6.3.474Google Scholar
Green, H. J., Lemaire, P., & Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125(3), 257278. https://doi.org/10.1016/j.actpsy.2006.08.001CrossRefGoogle ScholarPubMed
Hartley, A. A., & Anderson, J. W. (1983). Task complexity and problem-solving performance in younger and older adults. Journal of Gerontology, 38(1), 7277. https://doi.org/10.1093/geronj/38.1.72Google Scholar
Hartley, J. T. (1986). Reader and text variables as determinants of discourse memory in adulthood. Psychology and Aging, 1(2), 150158. http://dx.doi.org/10.1037/0882-7974.1.2.150Google Scholar
Hertzog, C., & Dunlosky, J. (2004). Aging, metacognition, and cognitive control. The Psychology of Learning and Motivation: Advances in Research and Theory, 45, 215251. https://doi.org/10.1016/S0079-7421(03)45006-8Google Scholar
Hertzog, C., Touron, D. R., & Hines, J. (2007). Does a time monitoring deficit influence older adults’ delayed retrieval shift during skill acquisition? Psychology and Aging, 22(3), 607624. https://doi.org/10.1037/0882-7974.22.3.607Google Scholar
Hinault, T., Badier, J.-M., Baillet, S., & Lemaire, P. (2017a). The sources of sequential modulations of control processes in arithmetic strategies: A magnetoencephalography study. Journal of Cognitive Neuroscience, 29(6), 10331043. https://doi.org/10.1162/jocn_a_01102Google Scholar
Hinault, T., Dufau, S., & Lemaire, P. (2014a). Strategy combination in human cognition: A behavioral and ERP study in arithmetic. Psychonomic Bulletin and Review, 22(1), 190199. https://doi.org/10.3758/s13423-014-0656-8Google Scholar
Hinault, T., Dufau, S., & Lemaire, P. (2014b). Sequential modulations of poorer-strategy effects during strategy execution: An event-related potential study in arithmetic. Brain and Cognition, 91, 123130. https://doi.org/10.1016/j.bandc.2014.09.001Google Scholar
Hinault, T., & Lemaire, P. (2016). Age-related changes in strategic variations during arithmetic problem solving: The role of executive control. Progress in Brain Research, 227, 257276. https://doi.org/10.1016/bs.pbr.2016.03.009CrossRefGoogle ScholarPubMed
Hinault, T., & Lemaire, P. (2017a). Aging and list-wide modulations of strategy execution: A study in arithmetic. Experimental Aging Research, 43(4), 323336. https://doi.org/10.1080/0361073X.2017.1333817CrossRefGoogle ScholarPubMed
Hinault, T., & Lemaire, P. (2017b). Aging, rule-violation checking strategies, and strategy combination: An EEG study in arithmetic. International Journal of Psychophysiology, 120, 2332. https://doi.org/10.1016/j.ijpsycho.2017.07.003Google Scholar
Hinault, T., Lemaire, P., & Phillips, N. (2016a). Aging and sequential modulations of poorer strategy effects: An EEG study in arithmetic problem solving. Brain Research, 1630, 144158. https://doi.org/10.1016/j.brainres.2015.10.057CrossRefGoogle ScholarPubMed
Hinault, T., Lemaire, P., & Touron, D. (2016b). Aging effects in sequential modulations of poorer-strategy effects during execution of memory strategies. Memory, 25(2), 176186. https://doi.org/10.1080/09658211.2016.1146300Google Scholar
Hinault, T., Lemaire, P., & Touron, D. (2017b). Strategy combination during execution of memory strategies in young and older adults. Memory, 25(5), 619625. https://doi.org/10.1080/09658211.2016.1200626Google Scholar
Hinault, T., Tiberghien, K., & Lemaire, P. (2015). Age-related differences in plausibility-checking strategies during arithmetic problem verification tasks. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 71(4), 613621. https://doi.org/10.1093/geronb/gbu178CrossRefGoogle ScholarPubMed
Hodzik, S., & Lemaire, P. (2011). Inhibition and shifting capacities mediate adults’ age-related differences in strategy selection and repertoire. Acta Psychologica, 137(3), 335344. https://doi.org/10.1016/j.actpsy.2011.04.002Google Scholar
Husa, R. A., Gordon, B. A., Cochran, M. M., et al. (2017). Left caudal middle frontal gray matter volume mediates the effect of age on self-initiated elaborative encoding strategies. Neuropsychologia, 106, 341349. https://doi.org/10.1016/j.neuropsychologia.2017.10.004Google Scholar
Johnson, M. M. (1990). Age differences in decision making: A process methodology for examining strategic information processing. Journals of Gerontology, 45(2), P75P78. https://doi.org/10.1093/geronj/45.2.p75Google Scholar
Kirchhoff, B. A., Gordon, B. A., & Head, D. (2014). Prefrontal gray matter volume mediates age effects on memory strategies. NeuroImage, 90, 326334. https://doi.org/10.1016/j.neuroimage.2013.12.052Google Scholar
Kuhlmann, B. G., & Touron, D. R. (2012). Mediator-based encoding strategies in source monitoring in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 13521364. https://doi.org/10.1037/a0027863Google Scholar
Lemaire, P. (2010). Cognitive strategy variations during aging. Current Directions in Psychological Science, 19(6), 363369. https://doi.org/10.1177/0963721410390354CrossRefGoogle Scholar
Lemaire, P. (2016). Cognitive aging: The role of strategies. London: Routledge.Google Scholar
Lemaire, P., & Arnaud, L. (2008). Young and older adults’ strategies in complex arithmetic. American Journal of Psychology, 121(1), 116. https://doi.org/10.2307/20445440Google Scholar
Lemaire, P., Arnaud, L., & Lecacheur, M. (2004). Adults’ age-related differences in adaptivity of strategy choices: Evidence from computational estimation. Psychology and Aging, 19(3), 467481. https://doi.org/10.1037/0882-7974.19.3.467Google Scholar
Lemaire, P., & Brun, F. (2014). Adults’ age-related differences in strategy perseveration are modulated by response-stimulus intervals and problem features. Quarterly Journal of Experimental Psychology, 67(10), 18631870. https://doi.org/10.1080/17470218.2014.939095Google Scholar
Lemaire, P., & Hinault, T. (2014). Age-related differences in sequential modulations of poorer-strategy effects. Experimental Psychology, 61(4), 253262. https://doi.org/10.1027/1618-3169/a000244Google Scholar
Lemaire, P., & Lecacheur, M. (2010). Strategy switch costs in arithmetic problem solving. Memory and Cognition, 38(3), 322332. https://doi.org/10.3758/MC.38.3.322Google Scholar
Lemaire, P., & Leclère, M. (2014). Strategy repetition in young and older adults: A study in arithmetic. Developmental Psychology, 50(2), 460468. https://doi.org/10.1037/a0033527Google Scholar
Lemaire, P., & Reder, L. (1999). What affects strategy selection in arithmetic? The example of parity and five effects on product verification. Memory and Cognition, 27(2), 364382. https://doi.org/10.3758/BF03211420Google Scholar
Luwel, K., Schillemans, V., Onghena, P., & Verschaffel, L. (2009). Does switching between strategies within the same task involve a cost? British Journal of Psychology, 100(4), 753771. https://doi.org/10.1348/000712609X402801Google Scholar
Madden, D. J. (1988). Adult age differences in the effects of sentence context and stimulus degradation during visual word recognition. Psychology and Aging, 3, 167172. https://doi.org/10.1037//0882-7974.3.2.167CrossRefGoogle ScholarPubMed
Masse, C., & Lemaire, P. (2001). Do people combine the parity- and five-rule checking strategies in product verification? Psychological Research, 65(1), 2833. https://doi.org/10.1007/s004260000030Google Scholar
Mata, R., Schooler, L. J., & Rieskamp, J. (2007). The aging decision maker: Cognitive aging and the adaptive selection of decision strategies. Psychology and Aging, 22(4), 796810. https://doi.org/10.1037/0882-7974.22.4.796CrossRefGoogle ScholarPubMed
Mata, R., von Helversen, B., & Rieskamp, J. (2010). Learning to choose: Cognitive aging and strategy selection learning in decision making. Psychology and Aging, 25(2), 299309. https://doi.org/10.1037/a0018923Google Scholar
Meiran, N., Diamond, G. M., Toder, D., & Nemets, B. (2011). Cognitive rigidity in unipolar depression and obsessive compulsive disorder: Examination of task switching, Stroop, working memory updating and post-conflict adaptation. Psychiatry Research, 185(1–2), 149156. https://doi.org/10.1016/j.psychres.2010.04.044Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., et al. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100. https://doi.org/10.1006/cogp.1999.0734Google Scholar
Naveh-Benjamin, M., Guez, J., & Sorek, S. (2007). The effects of divided attention on encoding processes in memory: Mapping the locus of interference. Canadian Journal of Experimental Psychology, 61(1), 112. https://doi.org/10.1037/cjep2007001Google Scholar
Osorio, A., Fay, S., Pouthas, V., & Ballesteros, S. (2010). Ageing affects brain activity in highly educated older adults: An ERP study using a word-stem priming task. Cortex, 46(4), 522534. https://doi.org/10.1016/j.cortex.2009.09.003Google Scholar
Partington, J. E., & Leiter, R. G. (1949). Partington’s Pathways Test. Psychological Service Center Journal, 1, 1120.Google Scholar
Poletti, C., Sleimen-Malkoun, R., Lemaire, P., & Temprado, J.-J. (2016). Sensori-motor strategic variations and sequential effects in young and older adults performing a Fitts’ task. Acta Psychologica, 163, 19. https://doi.org/10.1016/j.actpsy.2015.10.003Google Scholar
Poletti, C., Sleimen-Malkoun, R., Temprado, J.-J., & Lemaire, P. (2015). Older and younger adults’ strategies in sensorimotor tasks: Insights from Fitts’ pointing task. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 542555. http://dx.doi.org/10.1037/xhp0000033Google ScholarPubMed
Poletti, C., Temprado, J.-J., & Lemaire, P. (2017). Sequential difficulty effects in cognitive and sensorimotor tasks: Insights from arithmetic and Fitts’ tasks. American Journal of Psychology, 131(2), 161173. https://dx.doi.org/10.5406/amerjpsyc.131.2.0161Google Scholar
Reder, L. M., Wible, C. G., & Martin, J. (1986). Differential memory changes with age: Exact retrieval versus plausible inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(1), 7281. https://doi.org/10.1037/0278-7393.12.1.72Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://doi.org/10.1007/s11065-014-9270-9Google Scholar
Roquet, A., Hinault, T., Badier, J-M., & Lemaire, P. (2018). Aging and sequential strategy interference: A magnetoencephalography study in arithmetic problem solving. Frontiers in Aging Neuroscience, 10, 232. https://doi.org/10.3389/fnagi.2018.00232CrossRefGoogle ScholarPubMed
Rozencwajg, P., Cherfi, M., Ferrandez, A. M., et al. (2005). Age related differences in the strategies used by middle aged adults to solve a block design task. International Journal of Aging and Human Development, 60(2), 159182. https://doi.org/10.2190/H0AR-68HR-RRPE-LRBHGoogle Scholar
Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., & D’Esposito, M. (2005). Dissociating age-related changes in cognitive strategy and neural efficiency using event- related fMRI. Cortex, 41(4), 582594. https://doi.org/10.1016/S0010-9452(08)70198-9CrossRefGoogle ScholarPubMed
Schillemans, V., Luwel, K., Bulté, I., Onghena, P., & Verschaffel, L. (2010). The influence of previous strategy use on individuals’ subsequent strategy choice: Findings from a numerosity judgement task. Psychologica Belgica, 49(4), 191205. http://dx.doi.org/10.5334/pb-49-4-191Google Scholar
Schillemans, V., Luwel, K., Ceulemans, E., Onghena, P., & Verschaffel, L. (2012). The effect of single versus repeated previous strategy use on individuals’ subsequent strategy choice. Psychologica Belgica, 52(4), 307. https://doi.org/10.5334/pb-52-4-307Google Scholar
Schillemans, V., Luwel, K., Onghena, P., & Verschaffel, L. (2011). Strategy switch cost in mathematical thinking: Empirical evidence for its existence and importance. Mediterranean Journal for Research in Mathematics Education, 10(1–2), 122.Google Scholar
Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126(1), 7192. https://doi.org/10.1037/0096-3445.126.1.71Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662. https://doi.org/10.1037/h0054651Google Scholar
Strough, J., Mehta, C. M., McFall, J. P., & Schuller, K. L. (2008). Are older adults less subject to the sunk-cost fallacy than younger adults? Psychological Science, 19(7), 650652. https://doi.org/10.1111/j.1467-9280.2008.02138.xGoogle Scholar
Taillan, J., Ardiale, E., Anton, J.-L., et al. (2015). Processes in arithmetic strategy selection: A fMRI study. Frontiers in Psychology, 6, p. 61. https://doi.org/10.3389/fpsyg.2015.00061CrossRefGoogle ScholarPubMed
Tiberghien, K., Notebaert, W., Smedt, B. D., & Fias, W. (2018). Reactive and proactive control in arithmetical strategy selection. Journal of Numerical Cognition, 3(3), 598619. https://doi.org/10.5964/jnc.v3i3.124Google Scholar
Tournier, I., & Postal, V. (2011). Strategy selection and aging: Impact of item concreteness in paired-associate task. Aging, Neuropsychology, and Cognition, 18(2), 195213. https://doi.org/10.1080/13825585.2010.525623Google Scholar
Touron, D. R., & Hertzog, C. (2004). Distinguishing age differences in knowledge, strategy use, and confidence during strategic skill acquisition. Psychology and Aging, 19(3), 452466. https://doi.org/10.1037/0882-7974.19.3.452Google Scholar
Touron, D. R., & Hertzog, C. (2009). Age differences in strategic behavior during a computation-based skill acquisition task. Psychology and Aging, 24(3), 574585. https://doi.org/10.1037/a0015966Google Scholar
Uittenhove, K., Burger, L., Taconnat, L., & Lemaire, P. (2015). Sequential difficulty effects during execution of memory strategies in young and older adults. Memory, 23(6), 806816. https://doi.org/10.1080/09658211.2014.928730Google Scholar
Uittenhove, K., & Lemaire, P. (2012). Sequential difficulty effects during strategy execution. Experimental Psychology, 59(5), 295301. https://doi.org/10.1027/1618-3169/a000157Google Scholar
Uittenhove, K., & Lemaire, P. (2013). Strategy sequential difficulty effects vary with working-memory and response–stimulus-intervals: A study in arithmetic. Acta Psychologica, 143(1), 113118. https://doi.org/10.1016/j.actpsy.2013.02.007Google Scholar
Uittenhove, K., Poletti, C., Dufau, S., & Lemaire, P. (2013). The time course of strategy sequential difficulty effects: An ERP study in arithmetic. Experimental Brain Research, 227(1), 18. https://doi.org/10.1007/s00221-012-3397-9Google Scholar
Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601626. https://doi.org/10.1037/a0019791CrossRefGoogle ScholarPubMed
Von Helversen, B., & Mata, R. (2012). Losing a dime with a satisfied mind: Positive affect predicts less search in sequential decision making. Psychology and Aging, 27(4), 825839. https://dx.doi.org/10.1037/a0027845Google Scholar
Zanto, T. P., & Gazzaley, A. (2017). Selective attention and inhibitory control in the aging brain. In Cabeza, R., Nyberb, L., & Park, D. C. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 207–234). Oxford: Oxford University Press.Google Scholar

References

Amer, T., Anderson, J. A., Campbell, K. L., Hasher, L., & Grady, C. L. (2016). Age differences in the neural correlates of distraction regulation: A network interaction approach. NeuroImage, 139, 231239. https://doi.org/10.1016/j.neuroimage.2016.06.036Google Scholar
Amer, T., & Hasher, L. (2014). Conceptual processing of distractors by older but not younger adults. Psychological Science, 25(12), 22522258. https://doi.org/10.1177/0956797614555725Google Scholar
Anderson, J. A., Campbell, K. L., Amer, T., Grady, C. L., & Hasher, L. (2014). Timing is everything: Age differences in the cognitive control network are modulated by time of day. Psychology and Aging, 29(3), 648657. https://doi.org/10.1037/a0037243Google Scholar
Anderson, M. C., Reinholz, J., Kuhl, B. A., & Mayr, U. (2011). Intentional suppression of unwanted memories grows more difficult as we age. Psychology and Aging, 26(2), 397405. https://doi.org/10.1037/a0022505Google Scholar
Andrews‐Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self‐generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 2952. https://doi.org/10.1111/nyas.12360Google Scholar
Balota, D. A., Tse, C. S., Hutchison, K. A., et al. (2010). Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in Stroop color naming. Psychology and Aging, 25(1), p. 208. https://doi.org/10.1037/a0017474Google Scholar
Biss, R. K., Campbell, K. L., & Hasher, L. (2013). Interference from previous distraction disrupts older adults’ memory. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 68(4), 558561. https://doi.org/10.1093/geronb/gbs074Google Scholar
Biss, R. K., & Hasher, L. (2011). Delighted and distracted: Positive affect increases priming for irrelevant information. Emotion, 11(6), 14741478. https://doi.org/10.1037/a0023855Google Scholar
Biss, R. K., Ngo, K. W. J., Hasher, L., Campbell, K. L., & Rowe, G. (2013). Distraction can reduce age-related forgetting. Psychological Science, 24(4), 448455. https://doi.org/10.1177/0956797612457386Google Scholar
Biss, R. K., Rowe, G., Weeks, J. C., Hasher, L., & Murphy, K. J. (2018). Leveraging older adults’ susceptibility to distraction to improve memory for face-name associations. Psychology and Aging, 33(1), 158164. http://dx.doi.org/10.1037/pag0000192Google Scholar
Biss, R. K., Rowe, G., Weeks, J. C., Hasher, L., & Murphy, K. J. (2019). An implicit method to improve face-name memory in older adults with amnestic mild cognitive impairment. Ms submitted for publication.Google Scholar
Bjorklund, D. F., & Harnishfeger, K. K. (1990). The resources construct in cognitive development: Diverse sources of evidence and a theory of inefficient inhibition. Developmental Review, 10, 4871. https://doi.org/10.1016/0273-2297(90)90004-NGoogle Scholar
Bowles, N. L., & Poon, L. W. (1985). Aging and retrieval of words in semantic memory. Journal of Gerontology, 40(1), 7177. https://doi.org/10.1093/geronj/40.1.71Google Scholar
Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 138. https://doi.org/10.1196/annals.1440.011Google Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012a). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223. https://doi.org/10.1016/j.neuropsychologia.2012.05.025Google Scholar
Campbell, K. L., & Hasher, L. (2018). Hyper-binding only apparent under fully implicit test conditions. Psychology and Aging, 33(1), 176181. https://doi.org/10.1037/pag0000216Google Scholar
Campbell, K. L., Hasher, L., & Thomas, R. C. (2010). Hyper-binding: A unique age effect. Psychological Science, 21(3), 399405. https://doi.org/10.1177/0956797609359910Google Scholar
Campbell, K. L., Trelle, A., & Hasher, L. (2014). Hyper-binding across time: Age differences in the effect of temporal proximity on paired associate learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 293299. https://doi.org/10.1037/a0034109Google Scholar
Campbell, K. L., Zimerman, S., Healey, M. K., Lee, M. M. S., & Hasher, L. (2012b). Age differences in visual statistical learning. Psychology and Aging, 27(3), 650656. http://dx.doi.org/10.1037/a0026780Google Scholar
Carlson, M. C., Hasher, L., Connelly, S. L., & Zacks, R. T. (1995). Aging, distraction, and the benefits of predictable location. Psychology and Aging, 10(3), 427436. http://dx.doi.org/10.1037/0882-7974.10.3.427Google Scholar
Comalli, P. E. Jr., Wapner, S., & Werner, H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. Journal of Genetic Psychology, 100(1), 4753. http://dx.doi.org/10.1080/00221325.1962.10533572Google Scholar
Connelly, S. L., Hasher, L., & Zacks, R. T. (1991). Age and reading: The impact of distraction. Psychology and Aging, 6(4), 533541. http://dx.doi.org/10.1037/0882-7974.6.4.533Google Scholar
Coxon, J. P., Goble, D. J., Leunissen, I., et al. (2016). Functional brain activation associated with inhibitory control deficits in older adults. Cerebral Cortex, 26, 1222. https://doi.org/10.1093/cercor/bhu165CrossRefGoogle ScholarPubMed
Craik, F. I. M. (1986). A functional account of age differences in memory. In Klix, F. & Hagendorf, H. (Eds.), Human memory and cognitive capabilities: Mechanisms and performance (pp. 409422). Amsterdam: North-Holland and Elsevier.Google Scholar
Darowski, E. S., Helder, E., Zacks, R. T., Hasher, L., & Hambrick, D. Z. (2008). Age-related differences in cognition: The role of distraction control. Neuropsychology, 22(5), 638644. https://doi.org/10.1037/0894-4105.22.5.638Google Scholar
Davidson, D. J., Zacks, R. T., & Williams, C. C. (2003). Stroop interference, practice, and aging. Aging, Neuropsychology, and Cognition, 10(2), 8598. https://doi.org/10.1076/anec.10.2.85.14463Google Scholar
Dey, A., Sommers, M. S., & Hasher, L. (2017). An age- related deficit in resolving interference: Evidence from speech perception. Psychology and Aging, 32(6), 572587. https://doi.org/10.1037/pag0000189Google Scholar
Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19(3), 313332. https://doi.org/10.1080/02699930441000238Google Scholar
Gazzaley, A., Clapp, W., Kelley, J., et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences USA, 105(35), 1312213126. https://doi.org/10.1073/pnas.0806074105Google Scholar
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300. https://doi.org/10.1038/nn1543Google Scholar
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491501. https://doi.org/10.1196/annals.1440.009Google Scholar
Hamm, V. P., & Hasher, L. (1992). Age and the availability of inferences. Psychology and Aging, 7, 5664.Google Scholar
Hartman, M., & Hasher, L. (1991). Aging and suppression: Memory for previously relevant information. Psychology and Aging, 6(4), 587594.Google Scholar
Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108(3), 356388. http://dx.doi.org/10.1037/0096-3445.108.3.356Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193225). New York: Academic Press.Google Scholar
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In Gopher, D. & Koriat, A. (Eds.), Attention & performance, XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653675). Cambridge, MA: MIT Press.Google Scholar
Healey, M. K., Hasher, L., & Campbell, K. L. (2013). The role of suppression in resolving interference: Evidence for an age-related deficit. Psychology and Aging, 28(3), 721728. https://doi.org/10.1037/a0033003CrossRefGoogle ScholarPubMed
Healey, M. K., Hasher, L., & Danilova, E. (2011). The stability of working memory: Do previous tasks influence complex span? Journal of Experimental Psychology: General, 140(4), 573585. https://doi.org/10.1037/a0024587Google Scholar
Healey, M. K., Ngo, K. J., & Hasher, L. (2014). Below-baseline suppression of competitors during interference resolution by younger but not older adults. Psychological Science, 25(1), 145151. https://doi.org/10.1177/0956797613501169Google Scholar
Hess, T. M. (2014). Selective engagement of cognitive resources: Motivational influences on older adults’ cognitive functioning. Perspectives on Psychological Science, 9(4), 388407. https://doi.org/10.1177/1745691614527465Google Scholar
Howard, D. V., McAndrews, M. P., & Lasaga, M. I. (1981). Semantic priming of lexical decisions in young and old adults. Journal of Gerontology, 36(6), 707714. https://doi.org/10.1093/geronj/36.6.707Google Scholar
Ikier, S., & Hasher, L. (2006). Age differences in implicit interference. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 61, 278284. https://doi.org/10.1111/j.1467-9280.2008.02109.xGoogle Scholar
Ikier, S., Yang, L., & Hasher, L. (2008). Implicit proactive interference, age, and automatic versus controlled retrieval strategies. Psychological Science, 19(5), 456461. https://doi.org/10.1111/j.1467-9280.2008.02109.xGoogle Scholar
Jonker, T. R., Seli, P., & MacLeod, C. M. (2013). Putting retrieval-induced forgetting in context: An inhibition-free, context-based account. Psychological Review, 120(4), 852872. https://doi.org/10.1037/a0034246Google Scholar
Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 11471154. https://doi.org/10.1093/cercor/bhq185CrossRefGoogle ScholarPubMed
Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 530540. https://doi.org/10.1037//0278-7393.28.3.530Google Scholar
Kim, S., Hasher, L., & Zacks, R. T. (2007). Aging and a benefit of distractibility. Psychonomic Bulletin and Review, 14(2), 301305. https://doi.org/10.3758/bf03194068Google Scholar
Laver, G. D., & Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging, 8(1), 3443. http://dx.doi.org/10.1037/0882-7974.8.1.34CrossRefGoogle ScholarPubMed
Logan, G. D., & Etherton, J. L. (1994). What is learned during automatization? The role of attention in constructing an instance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 10221050. http://dx.doi.org/10.1037/0278-7393.20.5.1022Google Scholar
Lustig, C., Hasher, L., & Tonev, S. T. (2006). Distraction as a determinant of processing speed. Psychonomic Bulletin and Review, 13(4), 619625. https://doi.org/10.3758/bf03193972Google Scholar
Lustig, C., Hasher, L., & Zacks, R. T. (2007). Inhibitory deficit theory: Recent developments in a “new view.” In Gorfein, D. S. & MacLeod, C. M. (Eds.), The place of inhibition in cognition (pp. 145162). Washington: American Psychological Association.Google Scholar
Lustig, C., & Jantz, T. (2015). Questions of age differences in interference control: When and how, not if. Brain Research, 1612, 5969. https://doi.org/10.1016/j.brainres.2014.10.024Google Scholar
Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199207. https://doi.org/10.1037//0096-3445.130.2.199Google Scholar
May, C. P., & Hasher, L. (1998). Synchrony effects in inhibitory control over thought and action. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 363379. https://doi.org/10.1037/0096-1523.24.2.363Google Scholar
May, C. P., & Hasher, L. (2017). Synchrony affects performance for older but not younger neutral-type adults. Timing and Time Perception, 5(2), 129148. https://doi.org/10.1163/22134468-00002087Google Scholar
May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory and Cognition, 27(5), 759767. https://doi.org/10.3758/BF03198529Google Scholar
May, C. P., Hasher, L., & Stoltzfus, E. R. (1993). Optimal time of day and the magnitude of age differences in memory. Psychological Science, 4(5), 326330. https://doi.org/10.1111/j.1467-9280.1993.tb00573.xGoogle Scholar
May, C. P., Rahhal, T., Berry, E. M., & Leighton, E. A. (2005). Aging, source memory, and emotion. Psychology and Aging, 20(4), 571578. https://doi.org/10.1037/0882-7974.20.4.571CrossRefGoogle ScholarPubMed
Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227234. http://dx.doi.org/10.1037/h0031564Google Scholar
Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4(3), 257267. https://doi.org/10.1162/jocn.1992.4.3.257Google Scholar
Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105134. https://doi.org/10.1146/annurev-psych-113011-143733Google Scholar
Mullet, H. G., Scullin, M. K., Hess, T. J., et al. (2013). Prospective memory and aging: Evidence for preserved spontaneous retrieval with exact but not related cues. Psychology and Aging, 28(4), 910922. https://doi.org/10.1037/a0034347Google Scholar
Neely, J. H. (1976). Semantic priming and retrieval from lexical memory: Evidence for facilitatory and inhibitory processes. Memory and Cognition, 4(5), 648654. https://doi.org/10.3758/BF03213230Google Scholar
Ngo, K. W. J., Biss, R. K., & Hasher, L. (2018). Time of day effects on the use of distraction to minimise forgetting. Quarterly Journal of Experimental Psychology, 71(11), 23342341. https://doi.org/10.117/1747021817740808Google Scholar
Ngo, K. W. J., & Hasher, L. (2017). Optimal testing time for suppression of competitors during interference resolution. Memory, 25(10), 13961401. https://doi.org/10.1080/09658211.2017.1309437Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104118. http://dx.doi.org/10.1037/0882-7974.23.1.104Google Scholar
Ortega, A., Gómez-Ariza, C. J., Román, P., & Bajo, M. T. (2012). Memory inhibition, aging, and the executive deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 178186. https://doi.org/10.1037/a0024510Google Scholar
Powell, P. S., Strunk, J., James, T., Polyn, S., & Duarte, A. (2018). Decoding selective attention to context memory: An aging study. NeuroImage, 181, 95107. https://doi.org/10.1016/j.neuroimage.2018.06.085Google Scholar
Raaijmakers, J. G. W., & Jakab, E. (2013). Is forgetting caused by inhibition? Current Directions in Psychological Science, 22(3), 205209. https://doi.org/10.1177/0963721412473472Google Scholar
Rabbitt, P. (1965). An age-decrement in the ability to ignore irrelevant information. Journal of Gerontology, 20(2), 233238. https://doi.org/10.1093/geronj/20.2.233Google Scholar
Rey-Mermet, A., & Gade, M. (2017). Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychonomic Bulletin and Review, 25(5), 16951716. https://doi.org/10.3758/s13423-017-1384-7Google Scholar
Rowe, G., Hasher, L., & Turcotte, J. (2008). Age differences in visuospatial working memory. Psychology and Aging, 23(1), 7984. https://doi.org/10.1037/0882-7974.23.1.79Google Scholar
Rowe, G., Valderrama, S., Hasher, L., & Lenartowicz, A. (2006). Attentional disregulation: A benefit for implicit memory. Psychology and Aging, 21(4), 826830. https://doi.org/10.1037/0882-7974.21.4.826Google Scholar
Schmitz, T. W., Cheng, F. H., & De Rosa, E. (2010). Failing to ignore: Paradoxical neural effects of perceptual load on early attentional selection in normal aging. Journal of Neuroscience, 30(44), 1475014758. https://doi.org/10.1523/JNEUROSCI.2687-10.2010Google Scholar
Schwarzkopp, T., Mayr, U., & Jost, K. (2016). Early selection versus late correction: Age-related differences in controlling working memory contents. Psychology and Aging, 31(5), 430441. http://dx.doi.org/10.1037/pag0000103Google Scholar
Scullin, M. K., Bugg, J. M., McDaniel, M. A., & Einstein, G. O. (2011). Prospective memory and aging: Preserved spontaneous retrieval, but impaired deactivation, in older adults. Memory and Cognition, 39(7), 12321240. https://doi.org/10.3758/s13421-011-0106-zGoogle Scholar
Sebastian, A., Baldermann, C., Feige, B., Katzev, M., & Scheller, E. (2013). Differential effects of age on subcomponents of response inhibition. Neurobiology of Aging, 34(9), 21832193. https://doi.org/10.1016/j.neurobiolaging.2013.03.013CrossRefGoogle ScholarPubMed
Tsvetanov, K. A., Ye, Z., Hughes, L., et al. (2018). Activity and connectivity differences underlying inhibitory control across the adult lifespan. Journal of Neuroscience, 38(36), 78877900. https://doi.org/10.1523/JNEUROSCI.2919-17.2018Google Scholar
Verhaeghen, P., & De Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13(1), 120126. https://doi.org/10.1037//0882-7974.13.1.120Google Scholar
Wechsler, D. (1981). The Wechsler Adult Intelligence Scale – Revised. New York: Psychological Corporation.Google Scholar
Weeks, J. C., Biss, R. K., Murphy, K. J., & Hasher, L. (2016). Face–name learning in older adults: A benefit of hyper-binding. Psychonomic Bulletin and Review, 23(5), 15591565. http://dx.doi.org/10.3758/s13423-016-1003-zGoogle Scholar
Weeks, J. C., & Hasher, L. (2014). The disruptive – and beneficial – effects of distraction on older adults’ cognitive performance. Frontiers in Psychology, 5, p. 133. https://doi.org/10.3389/fpsyg.2014.00133Google Scholar
Weeks, J. C., & Hasher, L. (2017). Older adults encode more, not less: Evidence for age-related attentional broadening. Aging, Neuropsychology, and Cognition, 25(4), 576587. https://doi.org/10.1080/13825585.2017.1353678Google Scholar
Weith, M. B., & Zacks, R. T. (2011). Time of day effects on problem solving: When the non-optimal is optimal. Thinking and Reasoning, 17(4), 387401. https://doi.org/10.1080/13546783.2011.625663Google Scholar
West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179189. https://doi.org/10.1111/1469-8986.3720179Google Scholar
Yang, L., & Hasher, L. (2007). The enhanced effects of pictorial distraction in older adults, Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62(4), 230233. https://doi.org/10.1093/geronb/62.4.P230Google Scholar
Yang, L., Hasher, L., & Wilson, D. E. (2007). Synchrony effects in automatic and controlled retrieval. Psychonomic Bulletin and Review, 14(1), 5156. https://doi.org/10.3758/BF03194027Google Scholar
Yoon, C., May, C. P., & Hasher, L. (2000). Aging, circadian arousal patterns, and cognition. In Park, D. C. & Schwarz, D. (Eds.), Cognitive aging: A primer (pp. 151171). Philadelphia: Psychology Press.Google Scholar

References

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924935. https://dx.doi.org/10.1016/j.neuron.2007.10.038Google Scholar
Berry, A. S., Blakely, R. D., Sarter, M., & Lustig, C. (2015). Cholinergic capacity mediates prefrontal engagement during challenges to attention: Evidence from imaging genetics. NeuroImage, 108, 386395. https://dx.doi.org/10.1016/j.neuroimage.2014.12.036Google Scholar
Berry, A. S., Demeter, E., Sabhapathy, S., et al. (2014). Disposed to distraction: Genetic variation in the cholinergic system influences distractibility but not time-on-task effects. Journal of Cognitive Neuroscience, 26(9), 19811991. https://dx.doi.org/10.1162/jocn_a_00607Google Scholar
Berry, A. S., Sarter, M., & Lustig, C. (2017). Distinct frontoparietal networks underlying attentional effort and cognitive control. Journal of Cognitive Neuroscience, 29(7), 12121225. https://dx.doi.org/10.1162/jocn_a_01112Google Scholar
Berry, A. S., Shah, V. D., & Jagust, W. J. (2018). The influence of dopamine on cognitive flexibility is mediated by functional connectivity in young but not older adults. Journal of Cognitive Neuroscience, 30(9), 13301344. https://dx.doi.org/10.1162/jocn_a_01286Google Scholar
Birdi, K. S., & Zapf, D. (1997). Age differences in reactions to errors in computer-based work. Behaviour and Information Technology, 16(6), 309319. https://dx.doi.org/10.1080/014492997119716Google Scholar
Brown, S. W., & Perreault, S. T. (2017). Relation between temporal perception and inhibitory control in the Go/No-Go task. Acta Psychologica, 173, 8793. https://dx.doi.org/10.1016/j.actpsy.2016.12.004Google Scholar
Carstensen, L. L. (1995). Evidence for a life-span theory of socioemotional selectivity. Current Directions in Psychological Science, 4(5), 151156. https://dx.doi.org/10.1111/1467-8721.ep11512261Google Scholar
Carstensen, L. L., & DeLiema, M. (2018). The positivity effect: A negativity bias in youth fades with age. Current Opinion in Behavioral Sciences, 19, 712. https://dx.doi.org/10.1016/j.cobeha.2017.07.009Google Scholar
Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being across adulthood. Psychological Bulletin, 136(6), 10681091. https://dx.doi.org/10.1037/a0021232Google Scholar
Chauvin, J. J., Gillebert, C. R., Rohenkohl, G., Humphreys, G. W., & Nobre, A. C. (2016). Temporal orienting of attention can be preserved in normal aging. Psychology and Aging, 31(5), 442455. https://dx.doi.org/10.1037/pag0000105Google Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences USA, 106(21), 87198724. https://dx.doi.org/10.1073/pnas.0900234106Google Scholar
Cooper, J. A., Blanco, N. J., & Maddox, W. T. (2017). Framing matters: Effects of framing on older adults’ exploratory decision-making. Psychology and Aging, 32(1), 6068. https://dx.doi.org/10.1037/pag0000146Google Scholar
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306324 https://dx.doi.org/10.1016/j.neuron.2008.04.017Google Scholar
Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Craik, F. I. M. & Trehub, S. (Eds.), Aging and cognitive processes (Advances in the study of communication and affect) (Vol. 8, pp. 199211). Boston, MA: Springer.Google Scholar
Cronin-Golomb, A., Gilmore, G. C., Neargarder, S., Morrison, S. R., & Laudate, T. M. (2007). Enhanced stimulus strength improves visual cognition in aging and Alzheimer’s disease. Cortex, 43(7), 952966. https://dx.doi.org/10.1016/s0010-9452(08)70693-2Google Scholar
Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., et al. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 18561864. https://dx.doi.org/10.1093/cercor/bhm207Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 12011209. https://dx.doi.org/10.1093/cercor/bhm155Google Scholar
Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. (2011). Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. NeuroImage, 54(2), 15181529. https://dx.doi.org/10.1016/j.neuroimage.2010.09.026Google Scholar
Dumas, J. A., & Newhouse, P. A. (2011). The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacology Biochemistry and Behavior, 99(2), 254261. https://dx.doi.org/10.1016/j.pbb.2011.02.022Google Scholar
Fabiani, M. (2012). It was the best of times, it was the worst of times: A psychophysiologist’s view of cognitive aging. Psychophysiology, 49(3), 283304. https://dx.doi.org/10.1111/j.1469-8986.2011.01331.xGoogle Scholar
Ford, J. M., Roth, W. T., Isaacks, B. G., et al. (1995). Elderly men and women are less responsive to startling noises – N1, P3 and blink evidence. Biological Psychology, 39(2–3), 5780. https://dx.doi.org/10.1016/0301-0511(94)00959-2Google Scholar
Ford, J. M., Roth, W. T., Isaacks, B. G., et al. (1997). Automatic and effortful processing in aging and dementia: Event-related brain potentials. Neurobiology of Aging, 18(2), 169180. https://dx.doi.org/10.1016/s0197-4580(96)00072-3Google Scholar
Giambra, L. M. (1989). Task-unrelated thought frequency as a function of age: A laboratory study. Psychology and Aging, 4(2), 136143. https://dx.doi.org/10.1037/0882-7974.4.2.136Google Scholar
Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18(2), 227241. https://dx.doi.org/10.1162/jocn.2006.18.2.227Google Scholar
Gutchess, A., & Samanez-Larkin, G. R. (2019). Social function and motivation in the aging brain. In Samanez-Larkin, G. (Ed.), The aging brain: Functional adaptation across adulthood (pp. 165184). Washington: American Psychological Association.Google Scholar
Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108(3), 356388. https://dx.doi.org/10.1037/0096-3445.108.3.356Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193225). San Diego: Academic Press.Google Scholar
Heideman, S. G., Rohenkohl, G., & Chauvin, J. J., et al. (2018). Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. NeuroImage, 178, 4656. https://dx.doi.org/10.1016/j.neuroimage.2018.05.002Google Scholar
Henry, J. D., MacLeod, M. S., Phillips, L. H., & Crawford, J. D. (2004). A meta-analytic review of prospective memory and aging. Psychology and Aging, 19(1), 2739. https://dx.doi.org/10.1037/0882-7974.19.1.27Google Scholar
Hess, T. M., Smith, B. T., & Sharifian, N. (2016). Aging and effort expenditure: The impact of subjective perceptions of task demands. Psychology and Aging, 31(7), 653660. https://dx.doi.org/10.1037/pag0000127Google Scholar
James, W. ([1890]1950). The principles of psychology. New York: Dover Publications.Google Scholar
Jang, H., & Lustig, C. (2019). Losing money and motivation: Effects of loss incentives on motivation and metacognition in younger and older adults. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/uwb7vGoogle Scholar
Jennings, J. M., & Jacoby, L. L. (1993). Automatic versus intentional uses of memory: Aging, attention, and control. Psychology and Aging, 8(2), 283293. https://dx.doi.org/10.1037/0882-7974.8.2.283Google Scholar
Kennedy, B. L., & Mather, M. (2019). Neural mechanisms underlying age-related changes in attentional selectivity. In Samanez-Larkin, G. (Ed.), The aging brain: Functional adaptation across adulthood (pp. 4572). Washington: American Psychological Association.Google Scholar
Kim, K., Bohnen, N., Mueller, M., & Lustig, C. (2019). Compensatory dopaminergic-cholinergic interactions in conflict processing: Evidence from patients with Parkinson’s disease. NeuroImage, 190, 94106. https://dx.doi.org/10.1016/j.neuroimage.2018.01.021Google Scholar
La Fleur, C. G., Meyer, M. J., & Dodson, C. (2018). Exploring dedifferentiation across the adult lifespan. Psychology and Aging, 33(5), 855870. https://dx.doi.org/10.1037/pag0000274Google Scholar
Lalwani, P. S., Gagnon, H., Cassady, K., et al. (2019). Neural distinctiveness declines with age in auditory cortex and is associated with auditory GABA levels, 201, p. 116033. https://doi.org/10.1016/j.neuroimage.2019.116033Google Scholar
Lee, S. J. (2018). The relationship between hearing impairment and cognitive function in middle-aged and older adults: A meta-analysis. Communication Sciences and Disorders, 23(2), 378391. https://dx.doi.org/10.12963/csd.18492Google Scholar
Li, S. C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148158. https://dx.doi.org/10.1016/j.conb.2014.07.009Google Scholar
Lin, Z., Berry, A. S., & Lustig, C. (submitted). Don’t pay attention! Paradoxical effects of incentive on attention and mind-wandering in older adults.Google Scholar
Lindenberger, U., & Mayr, U. (2014). Cognitive aging: Is there a dark side to environmental support? Trends in Cognitive Sciences, 18(1), 715. https://dx.doi.org/10.1016/j.tics.2013.10.006Google Scholar
Lustig, C. (2003). Grandfather’s clock: Attention and interval timing in older adults. In Meck, W. H. (Ed.), Functional and neural mechanisms of interval timing (pp. 261–293). Boca Raton, FL: CRC Press. https://doi.org/10.1201/9780203009574.ch10Google Scholar
Lustig, C., & Jantz, T. (2015). Questions of age differences in interference control: When and how, not if? Brain Research, 1612, 5969. https://dx.doi.org/10.1016/j.brainres.2014.10.024Google Scholar
Lustig., C., & Sarter, M. (2016). Attention and the cholinergic system: Relevance to schizophrenia. Current Topics in Behavioral Neurosciences, 28, 327362. https://dx.doi.org/10.1007/7854_2015_5009hGoogle Scholar
Lustig, C., Snyder, A. Z., Bhakta, M., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences USA, 100(24), 1450414509. https://dx.doi.org/10.1073/pnas.2235925100Google Scholar
Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 7074. https://dx.doi.org/10.1111/j.1467-8721.2007.00478.xGoogle Scholar
Madden, D. J., Parks, E. L., Tallman, C. W., et al. (2017). Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age. Human Brain Mapping, 38(4), 21282149. https://dx.doi.org/10.1002/hbm.23509Google Scholar
Madden, D. J., Spaniol, J., Bucur, B., & Whiting, W. L. (2007). Age-related increase in top-down activation of visual features. Quarterly Journal of Experimental Psychology, 60(5), 644651. https://dx.doi.org/10.1080/17470210601154347Google Scholar
Madden, D. J., Whiting, W. L., Provenzale, J. M., & Huettel, S. A. (2004). Age-related changes in neural activity during visual target detection measured by fMRI. Cerebral Cortex, 14(2), 143155. https://dx.doi.org/10.1093/cercor/bhg113Google Scholar
Mather, M. (2016). The affective neuroscience of aging. Annual Review of Psychology, 67, 213238. https://dx.doi.org/10.1146/annurev-psych-122414-033540Google Scholar
Mather, M., & Harley, C. W. (2016). The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences, 20(3), 214226. https://dx.doi.org/10.1016/j.tics.2016.01.001Google Scholar
Mayr, U., Spieler, D. H., & Hutcheon, T. G. (2015). When and why do old adults outsource control to the environment? Psychology and Aging, 30(3), 624633. https://dx.doi.org/10.1037/a0039466Google Scholar
Monge, Z. A., Geib, B. R., Siciliano, R. E., et al. (2017). Functional modular architecture underlying attentional control in aging. NeuroImage, 155, 257270. https://dx.doi.org/10.1016/j.neuroimage.2017.05.002Google Scholar
Monge, Z. A., & Madden, D. J. (2016). Linking cognitive and visual perceptual decline in healthy aging: The information degradation hypothesis. Neuroscience and Biobehavioral Reviews, 69, 166173. https://dx.doi.org/10.1016/j.neubiorev.2016.07.031Google Scholar
Park, J., Carp, J., Kennedy, K. M., et al. (2012). Neural broadening or neural attenuation? Investigating age-related dedifferentiation in the face network in a large lifespan sample. Journal of Neuroscience, 32(6), 21542158. https://dx.doi.org/10.1523/jneurosci.4494-11.2012Google Scholar
Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: A link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 10211032. https://dx.doi.org/10.1162/jocn.2007.19.6.1021Google Scholar
Poldrack, R. A., Kittur, A., Kalar, D. J., et al. (2011). The Cognitive Atlas: Toward a knowledge foundation for cognitive neuroscience. Frontiers in Neuroinformatics, 5, 17. https://doi.org/10.3389/fninf.2011.00017Google Scholar
Porto, F. H. G., Tusch, E. S., Fox, A. M., et al. (2016). One of the most well-established age-related changes in neural activity disappears after controlling for visual acuity. NeuroImage, 130, 115122. https://dx.doi.org/10.1016/j.neuroimage.2016.01.035Google Scholar
Raz, N., & Lindenberger, U. (2011). Only time will tell: Cross-sectional studies offer no solution to the age–brain–cognition triangle: Comment on Salthouse (2011). Psychological Bulletin, 137(5), 790795. https://dx.doi.org/10.1037/a0024503Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. https://dx.doi.org/10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Reuter-Lorenz, P. A., & Lustig, C. (2005). Brain aging: Reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245251. https://dx.doi.org/10.1016/j.conb.2005.03.016Google Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. https://dx.doi.org/10.1007/s11065-014-9270-9Google Scholar
Roper, Z. J. J., Vecera, S. P., & Vaidya, J. G. (2014). Value-driven attentional capture in adolescence. Psychological Science, 25(11), 19871993. https://dx.doi.org/10.1177/0956797614545654Google Scholar
Rugg, M. D. (2016). Interpreting age-related differences in memory-related neural activity. In Cabeza, R., Nyberg, L., & Park, D. C. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 183204). New York: Oxford University Press.Google Scholar
Samanez-Larkin, G. R., & Knutson, B. (2015). Decision making in the ageing brain: Changes in affective and motivational circuits. Nature Reviews Neuroscience, 16(5), 278289. https://dx.doi.org/10.1038/nrn3917Google Scholar
Schmitt, H., Ferdinand, N. K., & Kray, J. (2015). The influence of monetary incentives on context processing in younger and older adults: An event-related potential study. Cognitive Affective and Behavioral Neuroscience, 15(2), 416434. https://dx.doi.org/10.3758/s13415-015-0335-xGoogle Scholar
Schmitt, H., Kray, J., & Ferdinand, N. K. (2017). Does the effort of processing potential incentives influence the adaption of context updating in older adults? Frontiers in Psychology, 8. https://dx.doi.org/10.3389/fpsyg.2017.01969Google Scholar
Scott, S. B., Ram, N., Smyth, J. M., Almeida, D. M., & Sliwinski, M. J. (2017). Age differences in negative emotional responses to daily stressors depend on time since event. Developmental Psychology, 53(1), 177190. https://dx.doi.org/10.1037/dev0000257Google Scholar
Staub, B., Doignon-Camus, N., Bacon, E., & Bonnefond, A. (2014a). The effects of aging on sustained attention ability: An ERP study. Psychology and Aging, 29(3), 684695. https://dx.doi.org/10.1037/a0037067Google Scholar
Staub, B., Doignon-Camus, N., Bacon, E., & Bonnefond, A. (2014b). Investigating sustained attention ability in the elderly by using two different approaches: Inhibiting ongoing behavior versus responding on rare occasions. Acta Psychologica, 146, 5157. https://dx.doi.org/10.1016/j.actpsy.2013.12.003Google Scholar
Staub, B., Doignon-Camus, N., Marques-Carneiro, J. E., Bacon, E., & Bonnefond, A. (2015). Age-related differences in the use of automatic and controlled processes in a situation of sustained attention. Neuropsychologia, 75, 607616. https://dx.doi.org/10.1016/j.neuropsychologia.2015.07.021Google Scholar
Stevens, W. D., Hasher, L., Chiew, K. S., & Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. Journal of Neuroscience, 28(48), 1282012824. https://dx.doi.org/10.1523/jneurosci.2622-08.2008Google Scholar
Turgeon, M., Lustig, C., & Meck, W. H. (2016). Cognitive aging and time perception: Roles of Bayesian optimization and degeneracy. Frontiers in Aging Neuroscience, 8. https://dx.doi.org/10.3389/fnagi.2010.00102Google Scholar
Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS One, 8(7). https://dx.doi.org/10.1371/journal.pone.0068210Google Scholar
Williams, R. S., Biel, A. L., Dyson, B. J., & Spaniol, J. (2017). Age differences in gain- and loss-motivated attention. Brain and Cognition, 111, 171181. https://dx.doi.org/10.1016/j.bandc.2016.12.003Google Scholar
Williams, R. S., Kudus, F., Dyson, B. J., & Spaniol, J. (2018). Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults. Cognitive Affective and Behavioral Neuroscience, 18(2), 313330. https://dx.doi.org/10.3758/s13415-018-0571-yGoogle Scholar
Wood, J., Chaparro, A., Anstey, K., et al. (2010). Simulated visual impairment leads to cognitive slowing in older adults. Optometry and Vision Science, 87(12), 10371043. https://dx.doi.org/10.1097/OPX.0b013e3181fe64d7Google Scholar
Yee, D. M., & Braver, T. S. (2018). Interactions of motivation and cognitive control. Current Opinion in Behavioral Sciences, 19, 8390. https://dx.doi.org/10.1016/j.cobeha.2017.11.009Google Scholar
Zhuang, J., Madden, D. J., Duong-Fernandez, X., et al. (2018). Language processing in age-related macular degeneration associated with unique functional connectivity signatures in the right hemisphere. Neurobiology of Aging, 63, 6574. https://dx.doi.org/10.1016/j.neurobiolaging.2017.11.003Google Scholar

References

Abel, S. M., Giguère, C., Consoli, A., & Papsin, B. C. (2000). The effect of aging on horizontal plane sound localization. Journal of the Acoustical Society of America, 108(2), 743752. https://doi.org/10.1121/1.429607Google Scholar
Adamsons, I., Rubin, G. S., Vitale, S., Taylor, H. R., & Stark, W. J. (1992). The effect of early cataracts on glare and contrast sensitivity: A pilot study. Archives of Ophthalmology, 110(8), 10811086. https://doi.org/10.1001/archopht.1992.01080200061025Google Scholar
Agrawal, Y., Carey, J. P., Della Santina, C. C., Schubert, M. C., & Minor, L. B. (2009). Disorders of balance and vestibular function in US adults: Data from the National Health and Nutrition Examination Survey, 2001–2004. Archives of Internal Medicine, 169(10), 938944. https://doi.org/10.1001/archinternmed.2009.66Google Scholar
Akutsu, H., Legge, G. E., Ross, J. A., & Schuebel, K. J. (1991). Psychophysics of reading – X. Effects of age-related changes in vision. Journal of Gerontology, 46(6), 325331. https://doi.org/10.1093/geronj/46.6.P325Google Scholar
Anderson, S. (2017). Clinical translation: Aging, hearing loss, and amplification. In Kraus, N., Anderson, S., White-Schwoch, T., Fay, R. R., & Popper, A. N. (Eds.), The frequency-following response (pp. 267294). Cham: Springer.Google Scholar
Anderson, S., Parbery-Clark, A., White-Schwoch, T., Drehobl, S., & Kraus, N. (2013). Effects of hearing loss on the subcortical representation of speech cues. Journal of the Acoustical Society of America, 133(5), 30303038. https://doi.org/10.1121/1.4799804Google Scholar
Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. Journal of Neuroscience, 32(41), 1415614164. https://doi.org/10.1523/JNEUROSCI.2176-12.2012Google Scholar
Artal, P., Guirao, A., Berrio, E., Piers, P., & Norrby, S. (2003). Optical aberrations and the aging eye. International Ophthalmology Clinics, 43(2), 6377. https://doi.org/10.1097/00004397-200343020-00008Google Scholar
Attems, J., Walker, L., & Jellinger, K. A. (2015). Olfaction and aging: A mini-review. Gerontology, 61(6), 485490. https://doi.org/10.1159/000381619Google Scholar
Ball, K., Owsley, C., Sloane, M. E., Roenker, D. L., & Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Ophthalmology and Visual Science, 34(11), 31103123.Google Scholar
Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America A: Optics and Image Science, 5(12), 22102219. https://doi.org/10.1364/JOSAA.5.002210Google Scholar
Ball, K. K., Roenker, D. L., Wadley, V. G., et al. (2006). Can high‐risk older drivers be identified through performance‐based measures in a Department of Motor Vehicles setting? Journal of the American Geriatrics Society, 54(1), 7784. https://doi.org/10.1111/j.1532-5415.2005.00568.xGoogle Scholar
Barr, R. A. (1991). Recent changes in driving among older adults. Human Factors, 33(5), 597600. https://doi.org/10.1177/001872089103300510Google Scholar
Birren, J. E., & Shock, N. W. (1950). Age changes in rate and level of visual dark adaptation. Journal of Applied Physiology, 2(7), 407411. https://doi.org/10.1152/jappl.1950.2.7.407Google Scholar
Bolia, R. S., Nelson, W. T., Ericson, M. A., & Simpson, B. D. (2000). A speech corpus for multitalker communications research. Journal of the Acoustical Society of America, 107(2), 10651066. https://doi.org/10.1121/1.428288Google Scholar
Brown, L. A., Shumway-Cook, A., & Woollacott, M. H. (1999). Attentional demands and postural recovery: The effects of aging. Journals of Gerontology, Series A: Biomedical Sciences and Medical Sciences, 54(4), 165171. https://doi.org/10.1093/gerona/54.4.M165Google Scholar
Buss, E., Hall, J. W. III, & Grose, J. H. (2004). Temporal fine-structure cues to speech and pure tone modulation in observers with sensorineural hearing loss. Ear and Hearing, 25(3), 242250. https://doi.org/10.1097/01.AUD.0000130796.73809.09Google Scholar
Carlile, S., Delaney, S., & Corderoy, A. (1999). The localisation of spectrally restricted sounds by human listeners. Hearing Research, 128(1–2), 175189. https://doi.org/10.1016/S0378-5955(98)00205-6Google Scholar
Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10(10), 32273246. https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990Google Scholar
Chen, H. L. (1994). Hearing in the elderly: Relation of hearing loss, loneliness, and self-esteem. Journal of Gerontological Nursing, 20(6), 2228. https://doi.org/10.3928/0098-9134-19940601-07Google Scholar
Cruickshanks, K. J., Wiley, T. L., Tweed, T. S., et al. (1998). Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin: The epidemiology of hearing loss study. American Journal of Epidemiology, 148(9), 879886. https://doi.org/10.1093/oxfordjournals.aje.a009713Google Scholar
Crundall, D., Underwood, G., & Chapman, P. (1999). Driving experience and the functional field of view. Perception, 28(9), 10751087. https://doi.org/10.1068/p281075Google Scholar
Curcio, C. A., Millican, C. L., Allen, K. A., & Kalina, R. E. (1993). Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investigative Ophthalmology and Visual Science, 34(12), 32783296.Google Scholar
Derefeldt, G., Lennerstrand, G., & Lundh, B. (1979). Age variations in normal human contrast sensitivity. Acta Ophthalmologica, 57(4), 679690. https://doi.org/10.1111/j.1755-3768.1979.tb00517.xGoogle Scholar
Dobreva, M. S., O’Neill, W. E., & Paige, G. D. (2011). Influence of aging on human sound localization. Journal of Neurophysiology, 105(5), 24712486. https://doi.org/10.1111/j.1755-3768.1979.tb00517.xGoogle Scholar
Doty, R. L. (2018). Age-related deficits in taste and smell. Otolaryngologic Clinics of North America, 51(4), 815825. https://doi.org/10.1016/j.otc.2018.03.014Google Scholar
Eckert, M. A., Cute, S. L., Vaden, K. I., Kuchinsky, S. E., & Dubno, J. R. (2012). Auditory cortex signs of age-related hearing loss. Journal of the Association for Research in Otolaryngology, 13(5), 703713.Google Scholar
Eckert, M. A., Teubner-Rhodes, S., & Vaden, K. I. Jr. (2016). Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear and Hearing, 37(Suppl. 1), 101110. https://doi.org/10.1097/AUD.0000000000000300Google Scholar
Elliott, D. B., Gilchrist, J., & Whitaker, D. (1989). Contrast sensitivity and glare sensitivity changes with three types of cataract morphology: Are these techniques necessary in a clinical evaluation of cataract? Ophthalmic and Physiological Optics, 9(1), 2530. https://doi.org/10.1111/j.1475-1313.1989.tb00800.xGoogle Scholar
Evans, L. (1988a). Older driver involvement in fatal and severe traffic crashes. Journal of Gerontology, 43(6), S186S193. https://doi.org/10.1093/geronj/43.6.S186Google Scholar
Evans, L. (1988b). Risk of fatality from physical trauma versus sex and age. Journal of Trauma, 28(3), 368378. https://doi.org/10.1097/00005373-198803000-00013Google Scholar
Fitzgibbons, P. J., & Gordon-Salant, S. (2010). Behavioral studies with aging humans: Hearing sensitivity and psychoacoustics. In Gordon-Salant, S., Frisina, R. D., Popper, A. N., & Fay, R. R. (Eds.), The aging auditory system (pp. 111134). New York: Springer.Google Scholar
Gallun, F. J., Diedesch, A. C., Kampel, S. D., & Jakien, K. M. (2013). Independent impacts of age and hearing loss on spatial release in a complex auditory environment. Frontiers in Neuroscience, 7, p. 252. https://doi.org/10.3389/fnins.2013.00252Google Scholar
Gao, X., Levinthal, B. R., & Stine-Morrow, E. A. (2012). The effects of ageing and visual noise on conceptual integration during sentence reading. Quarterly Journal of Experimental Psychology, 65(9), 18331847.Google Scholar
Gao, X., Stine-Morrow, E. A., Noh, S. R., & Eskew, R. T. (2011). Visual noise disrupts conceptual integration in reading. Psychonomic Bulletin and Review, 18(1), 8388. https://doi.org/10.1080/17470218.2012.674146Google Scholar
Gates, G. A., & Mills, J. H. (2005). Presbycusis. Lancet, 366(9491), 11111120. https://doi.org/10.1016/S0140-6736(05)67423-5Google Scholar
Gelfand, S. A., Ross, L., & Miller, S. (1988). Sentence reception in noise from one versus two sources: Effects of aging and hearing loss. Journal of the Acoustical Society of America, 83(1), 248256. https://doi.org/10.1121/1.396426Google Scholar
Gittings, N. S., & Fozard, J. L. (1986). Age related changes in visual acuity. Experimental Gerontology, 21(4–5), 423433. https://doi.org/10.1016/0531-5565(86)90047-1Google Scholar
Glyde, H., Buchholz, J. M., Dillon, H., Cameron, S., & Hickson, L. (2013). The importance of interaural time differences and level differences in spatial release from masking. Journal of the Acoustical Society of America, 134(2), EL147EL152. https://doi.org/10.1121/1.4812441Google Scholar
Goode, K. T., Ball, K. K., Sloane, M., et al. (1998). Useful field of view and other neurocognitive indicators of crash risk in older adults. Journal of Clinical Psychology in Medical Settings, 5(4), 425440. https://doi.org/10.1023/A:1026206927686Google Scholar
Gordon-Salant, S., Yeni-Komshian, G. H., Fitzgibbons, P. J., & Barrett, J. (2006). Age-related differences in identification and discrimination of temporal cues in speech segments. Journal of the Acoustical Society of America, 119(4), 24552466. https://doi.org/10.1121/1.2171527Google Scholar
Grose, J. H., & Mamo, S. K. (2012). Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects. Hearing Research, 294(1–2), 4954. https://doi.org/10.1016/j.heares.2012.09.007Google Scholar
Guirao, A., Gonzalez, C., Redondo, M., et al. (1999). Average optical performance of the human eye as a function of age in a normal population. Investigative Ophthalmology and Visual Science, 40(1), 203213.Google Scholar
Haegerstrom-Portnoy, G., Schneck, M. E., & Brabyn, J. A. (1999). Seeing into old age: Vision function beyond acuity. Optometry and Vision Science, 76(3), 141158. http://doi.org/10.1097/00006324-199903000-00014Google Scholar
Heinrich, A., Schneider, B. A., & Craik, F. I. (2008). Investigating the influence of continuous babble on auditory short-term memory performance. Quarterly Journal of Experimental Psychology, 61(5), 735751. https://doi.org/10.1080/17470210701402372Google Scholar
Hinds, J. W., & McNelly, N. A. (1981). Aging in the rat olfactory system: Correlation of changes in the olfactory epithelium and olfactory bulb. Journal of Comparative Neurology, 203(3), 441453. https://doi.org/10.1002/cne.902030308Google Scholar
Horowitz, A. (2004). The prevalence and consequences of vision impairment in later life. Topics in Geriatric Rehabilitation, 20(3), 185195.Google Scholar
Humes, L. E. (1996). Speech understanding in the elderly. Journal of the American Academy of Audiology, 7, 161167.Google Scholar
Humes, L. E., & Dubno, J. R. (2010). Factors affecting speech understanding in older adults. In Gordon-Salant, S., Frisina, R. D., Popper, A. N., & Fay, R. R. (Eds.), The aging auditory system (pp. 111134). New York: Springer.Google Scholar
Jackson, G. R., Owsley, C., Cordle, E. P., & Finley, C. D. (1998). Aging and scotopic sensitivity. Vision Research, 38(22), 36553662. https://doi.org/10.1016/S0042-6989(98)00044-3Google Scholar
Jackson, G. R., Owsley, C., & McGwin, G. P. Jr. (1999). Aging and dark adaptation. Vision Research, 39(23), 39753982. https://doi.org/10.1016/S0042-6989(99)00092-9Google Scholar
Johnsson, L. G. (1971). Degenerative changes and anomalies of the vestibular system in man. The Laryngoscope, 81(10), 16821694. https://doi.org/10.1288/00005537-197110000-00016Google Scholar
Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 15831585. https://doi.org/10.1126/science.154.3756.1583Google Scholar
Kline, D. W., Kline, T. J., Fozard, J. L., et al. (1992). Vision, aging, and driving: The problems of older drivers. Journal of Gerontology, 47(1), 2734. https://doi.org/10.1093/geronj/47.1.P27Google Scholar
Koeritzer, M. A., Rogers, C. S., Van Engen, K. J., & Peelle, J. E. (2018). The impact of age, background noise, semantic ambiguity, and hearing loss on recognition memory for spoken sentences. Journal of Speech, Language, and Hearing Research, 61(3), 740751. https://doi.org/10.1044/2017_JSLHR-H-17-0077Google Scholar
Kosnik, W., Winslow, L., Kline, D., Rasinski, K., & Sekuler, R. (1988). Visual changes in daily life throughout adulthood. Journal of Gerontology, 43(3), 6370. https://doi.org/10.1093/geronj/43.3.P63Google Scholar
Kramer, S. E., Kapteyn, T. S., Festen, J. M., & Kuik, D. J. (1997). Assessing aspects of auditory handicap by means of pupil dilatation. Audiology, 36(3), 155164. https://doi.org/10.3109/00206099709071969Google Scholar
Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191199. https://doi.org/10.1016/j.heares.2015.02.009Google Scholar
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7(1), 1827. https://doi.org/10.1177/1745691611427305Google Scholar
Lamb, T. D., & Pugh, E. N. Jr. (2004). Dark adaptation and the retinoid cycle of vision. Progress in Retinal and Eye Research, 23(3), 307380. https://doi.org/10.1016/j.preteyeres.2004.03.001Google Scholar
Lin, F. R., Metter, E. J., O’Brien, R. J., et al. (2011). Hearing loss and incident dementia. Archives of Neurology, 68(2), 214220. https://doi.org/10.1001/archneurol.2010.362Google Scholar
Lin, F. R., Yaffe, K., Xia, J., et al. (2013). Hearing loss and cognitive decline in older adults. JAMA Internal Medicine, 173(4), 293299. https://doi.org/10.1001/jamainternmed.2013.1868Google Scholar
Lipsitz, L. A., Jonsson, P. V., Kelley, M. M., & Koestner, J. S. (1991). Causes and correlates of recurrent falls in ambulatory frail elderly. Journals of Gerontology, 46(4), M114M122. https://doi.org/10.1093/geronj/46.4.M114Google Scholar
Lopez, I., Honrubia, V., & Baloh, R. W. (1997). Aging and the human vestibular nucleus. Journal of Vestibular Research, 7(1), 7785. https://doi.org/10.3233/VES-1997-7107Google Scholar
Lott, L. A., Schneck, M. E., Haegerström-Portnoy, G., et al. (2001). Reading performance in older adults with good acuity. Optometry and Vision Science, 78(5), 316324. https://doi.org/10.1097/00006324-200105000-00015Google Scholar
Merchant, S. N., & Nadol, J. B. (2010). Schuknecht’s pathology of the inner ear, 3rd ed. Shelton, CT: People’s Publishing House.Google Scholar
Mick, P., Kawachi, I., & Lin, F. R. (2014). The association between hearing loss and social isolation in older adults. Otolaryngology – Head and Neck Surgery, 150(3), 378384. https://doi.org/10.1177/0194599813518021Google Scholar
Middlebrooks, J. C. (1992). Narrow‐band sound localization related to external ear acoustics. Journal of the Acoustical Society of America, 92(5), 26072624. https://doi.org/10.1121/1.404400Google Scholar
Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42(1), 135159. https://doi.org/10.1146/annurev.ps.42.020191.001031Google Scholar
Moore, B. C., Peters, R. W., & Glasberg, B. R. (1992). Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. Journal of the Acoustical Society of America, 92(4), 19231932. https://doi.org/10.1121/1.405240Google Scholar
Owsley, C. (2016). Vision and aging. Annual Review of Vision Science, 2, 255271. https://doi.org/10.1146/annurev-vision-111815-114550Google Scholar
Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23(7), 689699. https://doi.org/10.1016/0042-6989(83)90210-9Google Scholar
Owsley, C., & Sloane, M. E. (1987). Contrast sensitivity, acuity, and the perception of “real-world” targets. British Journal of Ophthalmology, 71(10), 791796. http://dx.doi.org/10.1136/bjo.71.10.791Google Scholar
Ozmeral, E. J., Eddins, A. C., Frisina, D. R. Sr., & Eddins, D. A. (2016). Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity. Neurobiology of Aging, 43, 7278. https://doi.org/10.1016/j.neurobiolaging.2015.12.024Google Scholar
Peelle, J. E. (2018). Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and Hearing, 39(2), 204214. https://doi.org/10.1097/AUD.0000000000000494Google Scholar
Peelle, J. E., Troiani, V., Grossman, M., & Wingfield, A. (2011). Hearing loss in older adults affects neural systems supporting speech comprehension. Journal of Neuroscience, 31(35), 1263812643. https://doi.org/10.1523/JNEUROSCI.2559-11.2011Google Scholar
Peelle, J. E., & Wingfield, A. (2016). The neural consequences of age-related hearing loss. Trends in Neurosciences, 39(7), 486497. https://doi.org/10.1016/j.tins.2016.05.001Google Scholar
Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., et al. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing, 37(Suppl. 1), 527. https://doi.org/10.1097/AUD.0000000000000312Google Scholar
Pichora‐Fuller, M. K., Schneider, B. A., & Daneman, M. (1995). How young and old adults listen to and remember speech in noise. Journal of the Acoustical Society of America, 97(1), 593608. https://doi.org/10.1121/1.412282Google Scholar
Pichora-Fuller, M. K., & Souza, P. E. (2003). Effects of aging on auditory processing of speech. International Journal of Audiology, 42(Suppl.2), 1116. https://doi.org/10.3109/14992020309074638Google Scholar
Rabbitt, P. M. (1968). Channel-capacity, intelligibility and immediate memory. Quarterly Journal of Experimental Psychology, 20(3), 241248. https://doi.org/10.1080/14640746808400158Google Scholar
Richter, M. (2016). The moderating effect of success importance on the relationship between listening demand and listening effort. Ear and Hearing, 37(Suppl.1), 111117. https://doi/org/10.1097/AUD.0000000000000295Google Scholar
Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 12611269. https://doi.org/10.1093/cercor/bhi009Google Scholar
Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society B: Biological Sciences, 336(1278), 367373. https://doi.org/10.1098/rstb.1992.0070Google Scholar
Rubin, G. S., Adamsons, I. A., & Stark, W. J. (1993). Comparison of acuity, contrast sensitivity, and disability glare before and after cataract surgery. Archives of Ophthalmology, 111(1), 5661. https://doi.org/10.1001/archopht.1993.01090010060027Google Scholar
Ryan, E. B., Anas, A. P., Beamer, M., & Bajorek, S. (2003). Coping with age-related vision loss in everyday reading activities. Educational Gerontology, 29(1), 3754. https://doi.org/10.1080/713844234Google Scholar
Sanders, A. F. (1970). Some aspects of the selective process in the functional visual field. Ergonomics, 13(1), 101117. https://doi.org/10.1080/00140137008931124Google Scholar
Schiffman, S. S. (1997). Taste and smell losses in normal aging and disease. JAMA, 278(16), 13571362. https://doi.org/10.1001/jama.1997.03550160077042Google Scholar
Schiffman, S. S. (2018). Influence of medications on taste and smell. World Journal of Otorhinolaryngology – Head and Neck Surgery, 4(1), 8491. https://doi.org/10.1016/j.wjorl.2018.02.005Google Scholar
Schneider, B. A., Pichora‐Fuller, M. K., Kowalchuk, D., & Lamb, M. (1994). Gap detection and the precedence effect in young and old adults. Journal of the Acoustical Society of America, 95(2), 980991. https://doi.org/10.1121/1.408403Google Scholar
Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. Journal of Neuroscience, 33(34), 1368613694. https://doi.org/10.1523/JNEUROSCI.1783-13.2013Google Scholar
Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302324. https://doi.org/10.1097/AUD.0b013e3181cdb272Google Scholar
Snell, K. B. (1997). Age-related changes in temporal gap detection. Journal of the Acoustical Society of America, 101(4), 22142220. https://doi.org/10.1121/1.418205Google Scholar
Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision Research, 33(18), 25892609. https://doi.org/10.1016/0042-6989(93)90218-LGoogle Scholar
Stine-Morrow, E. A., Miller, L. M. S., & Hertzog, C. (2006). Aging and self-regulated language processing. Psychological Bulletin, 132(4), 582606. https://dx.doi.org/10.1037/0033-2909.132.4.582Google Scholar
Sturnieks, D. L., St. George, R., & Lord, S. R. (2008). Balance disorders in the elderly. Neurophysiologie Clinique/Clinical Neurophysiology, 38(6), 467478. https://doi.org/10.1016/j.neucli.2008.09.001Google Scholar
Summala, H., Nieminen, T., & Punto, M. (1996). Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors, 38(3), 442451. https://doi.org/10.1518/001872096778701944Google Scholar
Tang, Y., Lopez, I., & Baloh, R. W. (2001). Age-related change of the neuronal number in the human medial vestibular nucleus: A stereological investigation. Journal of Vestibular Research, 11(6), 357363.Google Scholar
Tun, P. A., & Wingfield, A. (1999). One voice too many: Adult age differences in language processing with different types of distracting sounds. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 54(5), 317327. https://doi.org/10.1093/geronb/54B.5.P317Google Scholar
Van Engen, K. J., & McLaughlin, D. J. (2018). Eyes and ears: Using eye tracking and pupillometry to understand challenges to speech recognition. Hearing Research, 369, 5666. https://doi.org/10.1016/j.heares.2018.04.013Google Scholar
Velayudhan, L. (2015). Smell identification function and Alzheimer’s disease: A selective review. Current Opinion in Psychiatry, 28(2), 173179. https://doi.org/10.1097/YCO.0000000000000146Google Scholar
Walton, J. P. (2010). Timing is everything: Temporal processing deficits in the aged auditory brainstem. Hearing Research, 264(1–2), 6369. https://doi.org/10.1016/j.heares.2010.03.002Google Scholar
Ward, C. M., Rogers, C. S., Van Engen, K. J., & Peelle, J. E. (2016). Effects of age, acoustic challenge, and verbal working memory on recall of narrative speech. Experimental Aging Research, 42(1), 97111. https://doi.org/10.1080/0361073X.2016.1108785Google Scholar
Wayne, R. V., & Johnsrude, I. S. (2015). A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Research Reviews, 23, 154166. https://doi.org/10.1016/j.arr.2015.06.002Google Scholar
Wingfield, A., Tun, P. A., & McCoy, S. L. (2005). Hearing loss in older adulthood: What it is and how it interacts with cognitive performance. Current Directions in Psychological Science, 14(3), 144148. https://doi.org/10.1111/j.0963-7214.2005.00356.xGoogle Scholar
Wolfe, B., Dobres, J., Rosenholtz, R., & Reimer, B. (2017). More than the useful field: Considering peripheral vision in driving. Applied Ergonomics, 65, 316325. https://doi.org/10.1016/j.apergo.2017.07.009Google Scholar
Worden, F. G., & Marsh, J. T. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Clinical Neurophysiology, 25(1), 4252. https://doi.org/10.1016/0013-4694(68)90085-0Google Scholar
Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology, 51(3), 277284. https://doi.org/10.1111/psyp.12151Google Scholar
Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful listening: The influence of sentence intelligibility. Ear and Hearing, 31(4), 480490. https://doi.org/10.1097/AUD.0b013e3181d4f251Google Scholar
Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech perception in noise: The influence of age, hearing loss, and cognition on the pupil response. Ear and Hearing, 32(4), 498510. https://doi.org/10.1097/AUD.0b013e31820512bbGoogle Scholar

References

Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic Proceedings, 86(9), 876884. doi: 10.4065/mcp.2011.0252Google Scholar
Angel, L., Bastin, C., Genon, S., et al. (2013). Differential effects of aging on the neural correlates of recollection and familiarity. Cortex, 49(6), 15851597. doi: 10.1016/j.cortex.2012.10.002Google Scholar
Ankudowich, E., Pasvanis, S., & Rajah, M. N. (2016). Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan. NeuroImage, 139, 103113. doi: 10.1016/j.neuroimage.2016.06.022Google Scholar
Antonenko, D., & Floel, A. (2014). Healthy aging by staying selectively connected: A mini-review. Gerontology, 60(1), 39. doi: 10.1159/000354376Google Scholar
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193200. doi: 10.1016/j.tics.2008.02.004Google Scholar
Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22(2), 170188. doi: 10.1016/j.tics.2017.11.005Google Scholar
Banducci, S. E., Daugherty, A. M., Biggan, J. R., et al. (2017). Active experiencing training improves episodic memory recall in older adults. Frontiers in Aging Neuroscience, 9, 133. doi: 10.3389/fnagi.2017.00133Google Scholar
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. doi: 10.1016/j.tics.2013.08.012Google Scholar
Becker, N., Laukka, E. J., Kalpouzos, G., et al. (2015). Structural brain correlates of associative memory in older adults. NeuroImage, 118, 146153. doi: 10.1016/j.neuroimage.2015.06.002Google Scholar
Blumenfeld, R. S., Parks, C. M., Yonelinas, A. P., & Ranganath, C. (2011). Putting the pieces together: The role of dorsolateral prefrontal cortex in relational memory encoding. Journal of Cognitive Neuroscience, 23(1), 257265. doi: 10.1162/jocn.2010.21459Google Scholar
Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. Neuroscientist, 13(3), 280291. doi: 10.1177/1073858407299290Google Scholar
Brainerd, C. J., & Reyna, V. F. (2001). Fuzzy-trace theory: Dual processes in memory, reasoning, and cognitive neuroscience. Advances in Child Development and Behavior, 28, 41100. doi: 10.1016/s0065-2407(02)80062-3Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences USA, 106(18), 73517356. doi: 10.1073/pnas.0808187106Google Scholar
Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46(7), 18131827. doi: 10.1016/j.neuropsychologia.2008.03.019Google Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223. doi: 10.1016/j.neuropsychologia.2012.05.025Google Scholar
Cansino, S., Estrada-Manilla, C., Trejo-Morales, P., et al. (2015a). fMRI subsequent source memory effects in young, middle-aged and old adults. Behavioural Brain Research, 280, 2435. doi: 10.1016/j.bbr.2014.11.042CrossRefGoogle ScholarPubMed
Cansino, S., Hernandez-Ramos, E., & Trejo-Morales, P. (2012). Neural correlates of source memory retrieval in young, middle-aged and elderly adults. Biological Psychology, 90(1), 3349. doi: 10.1016/j.biopsycho.2012.02.004Google Scholar
Cansino, S., Trejo-Morales, P., Estrada-Manilla, C., et al. (2015b). Brain activity during source memory retrieval in young, middle-aged and old adults. Brain Research, 1618, 168180. doi: 10.1016/j.brainres.2015.05.032Google Scholar
Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nature Neuroscience, 14(7), 830832. doi: 10.1038/nn.2823Google Scholar
Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences USA, 111(46), E49975006. doi: 10.1073/pnas.1415122111Google Scholar
Ciaramelli, E., & Ghetti, S. (2007). What are confabulators’ memories made of? A study of subjective and objective measures of recollection in confabulation. Neuropsychologia, 45(7), 14891500. doi: 10.1016/j.neuropsychologia.2006.11.007Google Scholar
Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 18281851. doi: 10.1016/j.neuropsychologia.2008.03.022Google Scholar
Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131138. doi: 10.1016/j.tics.2006.01.007Google Scholar
Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences USA, 100(4), 21572162. doi: 10.1073/pnas.0337195100Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 12011209. doi: 10.1093/cercor/bhm155Google Scholar
de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (2015). Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance. Brain Research, 1612, 1629. doi: 10.1016/j.brainres.2014.09.045Google Scholar
de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (2016). The neural correlates of recollection and retrieval monitoring: Relationships with age and recollection performance. NeuroImage, 138, 164175. doi: 10.1016/j.neuroimage.2016.04.071Google Scholar
Dennis, N. A., Hayes, S. M., Prince, S. E., et al. (2008a). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 791808. doi: 10.1037/0278–7393.34.4.791Google Scholar
Dennis, N. A., Kim, H., & Cabeza, R. (2008b). Age-related differences in brain activity during true and false memory retrieval. Journal of Cognitive Neuroscience, 20(8), 13901402. doi: 10.1162/jocn.2008.20096Google Scholar
Dey, A., Sommers, M. S., & Hasher, L. (2017). An age-related deficit in resolving interference: Evidence from speech perception. Psychology and Aging, 32(6), 572587. doi: 10.1037/pag0000189Google Scholar
Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2009). Medial temporal lobe activity during source retrieval reflects information type, not memory strength. Journal of Cognitive Neuroscience, 22(8), 18081818. doi: 10.1162/jocn.2009.21335Google Scholar
Duarte, A., Henson, R. N., & Graham, K. S. (2008). The effects of aging on the neural correlates of subjective and objective recollection. Cerebral Cortex, 18(9), 21692180. doi: 10.1093/cercor/bhm243Google Scholar
Duarte, A., Henson, R. N., Knight, R. T., Emery, T., & Graham, K. S. (2010). Orbito-frontal cortex is necessary for temporal context memory. Journal of Cognitive Neuroscience, 22(8), 18191831. doi: 10.1162/jocn.2009.21316Google Scholar
Duarte, A., Ranganath, C., & Knight, R. T. (2005). Effects of unilateral prefrontal lesions on familiarity, recollection, and source memory. Journal of Neuroscience, 25(36), 83338337. doi: 10.1523/JNEUROSCI.1392-05.2005Google Scholar
Duarte, A., Ranganath, C., Trujillo, C., & Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18(1), 3347. doi: 10.1162/089892906775249988Google Scholar
Dulas, M. R., & Duarte, A. (2011). The effects of aging on material-independent and material-dependent neural correlates of contextual binding. NeuroImage, 57(3), 11921204. doi: 10.1016/j.neuroimage.2011.05.036Google Scholar
Dulas, M. R., & Duarte, A. (2012). The effects of aging on material-independent and material-dependent neural correlates of source memory retrieval. Cerebral Cortex, 22(1), 3750. doi: 10.1093/cercor/bhr056Google Scholar
Dulas, M. R., & Duarte, A. (2013). The influence of directed attention at encoding on source memory retrieval in the young and old: An ERP study. Brain Research, 1500, 5571. doi: 10.1016/j.brainres.2013.01.018Google Scholar
Dulas, M. R., & Duarte, A. (2014). Aging affects the interaction between attentional control and source memory: An fMRI study. Journal of Cognitive Neuroscience, 26(12), 26532669. doi: 10.1162/jocn_a_00663Google Scholar
Dulas, M. R., & Duarte, A. (2016). Age-related changes in overcoming proactive interference in associative memory: The role of PFC-mediated executive control processes at retrieval. NeuroImage, 132, 116128. doi: 10.1016/j.neuroimage.2016.02.017Google Scholar
Dulas, M. R., Newsome, R. N., & Duarte, A. (2011). The effects of aging on ERP correlates of source memory retrieval for self-referential information. Brain Research, 1377, 84100. doi: 10.1016/j.brainres.2010.12.087Google Scholar
Duverne, S., Motamedinia, S., & Rugg, M. D. (2009). The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex, 19(3), 733744. doi: 10.1093/cercor/bhn122Google Scholar
Eichenbaum, H., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123152. doi: 10.1146/annurev.neuro.30.051606.094328Google Scholar
Erickson, K. I., Prakash, R. S., Voss, M. W., et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19(10), 10301039. doi: 10.1002/hipo.20547Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences USA, 108(7), 30173022. doi: 10.1073/pnas.1015950108Google Scholar
Gazzaley, A., Clapp, W., Kelley, J., et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences USA, 105(35), 1312213126. doi: 10.1073/pnas.0806074105Google Scholar
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300. doi: 10.1038/nn1543Google Scholar
Gazzaley, A., & D’Esposito, M. (2007). Top-down modulation and normal aging. Annals of the New York Academy of Sciences, 1097, 6783. doi: 10.1196/annals.1379.010Google Scholar
Gutchess, A. H., Sokal, R., Coleman, J. A., et al. (2015). Age differences in self-referencing: Evidence for common and distinct encoding strategies. Brain Research, 1612, 118127. doi: 10.1016/j.brainres.2014.08.033Google Scholar
Hasher, L., Lustig, C., & Zacks, J. M. (2007). Inhibitory mechanisms and the control of attention. In Jarold, C. (Ed.), Variation in working memory (pp. 227249). New York: Oxford University Press.Google Scholar
Hasher, L., & Zacks, R. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. (Ed.), The psychology of learning and motivation (pp. 193225). San Diego: Academic Press.Google Scholar
Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1990). Aging and qualitative characteristics of memories for perceived and imagined complex events. Psychology and Aging, 5(1), 119126. doi: 10.2307/1422927Google Scholar
Healey, M. K., Campbell, K. L., & Hasher, L. (2008). Cognitive aging and increased distractibility: Costs and potential benefits. Progress in Brain Research, 169, 353363. doi: 10.1016/S0079-6123(07)00022-2Google Scholar
Healey, M. K., Campbell, K. L., Hasher, L., & Ossher, L. (2010). Direct evidence for the role of inhibition in resolving interference in memory. Psychological Science, 21(10), 14641470. doi: 10.1177/0956797610382120Google Scholar
Horecka, K. M., Dulas, M. R., Schwarb, H., et al. (2018). Reconstructing relational information. Hippocampus, 28(2), 164177. doi: 10.1002/hipo.22819Google Scholar
Jacoby, L. L., Bishara, A. J., Hessels, S., & Toth, J. P. (2005). Aging, subjective experience, and cognitive control: Dramatic false remembering by older adults. Journal of Experimental Psychology: General, 134(2), 131148. doi: 10.1037/0096-3445.134.2.131Google Scholar
Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27(8), 10431056. doi: 10.1016/j.neuropsychologia.2008.07.003Google Scholar
Jonasson, L. S., Nyberg, L., Kramer, A. F., et al. (2016). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the Physical Influences on Brain in Aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, p. 336. doi: 10.3389/fnagi.2016.00336Google Scholar
Kattenstroth, J. C., Kalisch, T., Holt, S., Tegenthoff, M., & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5, p. 5. doi: 10.3389/fnagi.2013.00005Google Scholar
Konkel, A., Warren, D. E., Duff, M. C., Tranel, D. N., & Cohen, N. J. (2008). Hippocampal amnesia impairs all manner of relational memory. Frontiers in Human Neuroscience, 2, p. 15. doi: 10.3389/neuro.09.015.2008Google Scholar
Kopelman, M. D., Stanhope, N., & Kingsley, D. (1997). Temporal and spatial context memory in patients with focal frontal, temporal lobe, and diencephalic lesions. Neuropsychologia, 35(12), 15331545. doi: 10.1016/s0028-3932(97)00076-6Google Scholar
Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101(4), 12371242. doi: 10.1152/japplphysiol.00500.2006Google Scholar
Kwon, D., Maillet, D., Pasvanis, S., et al. (2016). Context memory decline in middle aged adults is related to changes in prefrontal cortex function. Cerebral Cortex, 26(6), 24402460. doi: 10.1093/cercor/bhv068Google Scholar
Leshikar, E. D., & Duarte, A. (2014). Medial prefrontal cortex supports source memory for self-referenced materials in young and older adults. Cognitive, Affective, and Behavioral Neuroscience, 14(1), 236252. doi: 10.3758/s13415-013-0198-yGoogle Scholar
Leshikar, E. D., Dulas, M. R., & Duarte, A. (2015). Self-referencing enhances recollection in both young and older adults. Aging, Neuropsychology, and Cognition, 22(4), 388412. doi: 10.1080/13825585.2014.957150Google Scholar
Liang, J. C., & Preston, A. R. (2017). Medial temporal lobe reinstatement of content-specific details predicts source memory. Cortex, 91, 6778. doi: 10.1016/j.cortex.2016.09.011Google Scholar
Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572578. doi: 10.1126/science.1254403Google Scholar
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging. Neuron, 33(5), 827840. doi: 10.1016/s0896-6273(02)00612-8Google Scholar
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87(3), 252271. doi: 10.1037/0033-295X.87.3.252Google Scholar
Mark, R. E., & Rugg, M. D. (1998). Age effects on brain activity associated with episodic memory retrieval: An electrophysiological study. Brain, 121(Pt. 5), 861873. doi: 10.1093/brain/121.5.861Google Scholar
McDonough, I. M., & Gallo, D. A. (2013). Impaired retrieval monitoring for past and future autobiographical events in older adults. Psychology and Aging, 28(2), 457466. doi: 10.1037/a0032732Google Scholar
McDonough, I. M., Haber, S., Bischof, G. N., & Park, D. C. (2015). The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency. Restorative Neurology and Neuroscience, 33(6), 865882. doi: 10.3233/RNN-150533Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi: 10.1146/annurev.neuro.24.1.167Google Scholar
Miller, S. L., Celone, K., DePeau, K., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences USA, 105(6), 21812186. doi: 10.1073/pnas.0706818105Google Scholar
Milner, B. (2005). The medial temporal-lobe amnesic syndrome. Psychiatric Clinics, 28(3), 599611. doi: 10.1016/j.psc.2005.06.002Google Scholar
Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638677. doi: 10.1037/a0015849Google Scholar
Monti, J. M., Cooke, G. E., Watson, P. D., et al. (2015). Relating hippocampus to relational memory processing across domains and delays. Journal of Cognitive Neuroscience, 27(2), 234245. doi: 10.1162/jocn_a_00717Google Scholar
Morcom, A. M., & Henson, R. N. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. Journal of Neuroscience, 38(33), 73037313. doi: 10.1523/JNEUROSCI.1701-17.2018Google Scholar
Morcom, A. M., Li, J., & Rugg, M. D. (2007). Age effects on the neural correlates of episodic retrieval: Increased cortical recruitment with matched performance. Cerebral Cortex, 17(11), 24912506. doi: 10.1093/cercor/bhl155Google Scholar
Naveh-Benjamin, M., Brav, T. K., & Levy, O. (2007). The associative memory deficit of older adults: The role of strategy utilization. Psychology and Aging, 22(1), 202208. doi: 10.1037/0882–7974.22.1.202Google Scholar
Noice, T., Noice, H., & Kramer, A. F. (2015). Theatre arts for improving cognitive and affective health. Activities, Adaptation and Aging, 39(1), 1931. doi: 10.1080/01924788.2015.994440Google Scholar
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424430. doi: 10.1016/j.tics.2006.07.005Google Scholar
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154160. doi: 10.1136/bjsports-2016-096587Google Scholar
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305. doi: 10.1016/j.tics.2012.04.005Google Scholar
Nyberg, L., & Pudas, S. (2018). Successful memory aging. Annual Review of Psychology, 70, 219243 doi: 10.1146/annurev-psych-010418-103052Google Scholar
Nyberg, L., Salami, A., Andersson, M., et al. (2010). Longitudinal evidence for diminished frontal cortex function in aging. Proceedings of the National Academy of Sciences USA, 107(52), 2268222686. doi: 10.1073/pnas.1012651108Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104118. doi: 10.1037/0882–7974.23.1.104Google Scholar
Park, D. C., & Bischof, G. N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109119.Google Scholar
Park, D. C., Lodi-Smith, J., & Drew, L., et al. (2014). The impact of sustained engagement on cognitive function in older adults: The Synapse Project. Psychological Science, 25(1), 103112. doi: 10.1177/0956797613499592Google Scholar
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. doi: 10.1146/annurev.psych.59.103006.093656Google Scholar
Postman, L., & Underwood, B. J. (1973). Critical issues in interference theory. Memory and Cognition, 1(1), 1940. doi: 10.3758/BF03198064Google Scholar
Powell, P. S., Strunk, J., James, T. J., Polyn, S. M., & Duarte, A. (2018). Decoding selective attention to context memory: An aging study. NeuroImage, 181, 95107. doi: 10.1016/j.neuroimage.2018.06.085Google Scholar
Pudas, S., Josefsson, M., Rieckmann, A., & Nyberg, L. (2017). Longitudinal evidence for increased functional response in frontal cortex for older adults with hippocampal atrophy and memory decline. Cerebral Cortex, 28(3), 936948. doi: 10.1093/cercor/bhw418Google Scholar
Rajah, M. N., Languay, R., & Valiquette, L. (2010). Age-related changes in prefrontal cortex activity are associated with behavioural deficits in both temporal and spatial context memory retrieval in older adults. Cortex, 46(4), 535549. doi: 10.1016/j.cortex.2009.07.006Google Scholar
Raz, N., & Kennedy, K. M. (2009). A systems approach to the aging brain: Neuroanatomic changes, their modifiers, and cognitive correlates. In Jagust, W. J. & D’Esposito, M. (Eds.), Imaging the aging brain (pp. 4370). New York: Oxford University Press.Google Scholar
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. doi: 10.1111/j.1467-8721.2008.00570.xGoogle Scholar
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. doi: 10.1007/s11065-014-9270-9Google Scholar
Rugg, M. D., & Morcom, A. M. (2005). The relationship between brain activity, cognitive performance and aging: The case of memory. In Cabeza, R., Nyberg, L., & Park, D. (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 132154). New York: Oxford University Press.Google Scholar
Salami, A., Eriksson, J., & Nyberg, L. (2012). Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. Journal of Neuroscience, 32(31), 1074910757. doi: 10.1523/JNEUROSCI.0278-12.2012Google Scholar
Salthouse, T. A. (2014). Why are there different age relations in cross-sectional and longitudinal comparisons of cognitive functioning? Current Directions in Psychological Science, 23(4), 252256. doi: 10.1177/0963721414535212Google Scholar
Schacter, D. L., Koutstaal, W., & Norman, K. A. (1997). False memories and aging. Trends in Cognitive Sciences, 1(6), 229236. doi: 10.1016/S1364-6613(97)01068-1Google Scholar
Sestieri, C., Shulman, G. L., & Corbetta, M. (2017). The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 18(3), 183192. doi: 10.1038/nrn.2017.6Google Scholar
Siman-Tov, T., Bosak, N., Sprecher, E., et al. (2016). Early age-related functional connectivity decline in high-order cognitive networks. Frontiers in Aging Neuroscience, 8, 330. doi: 10.3389/fnagi.2016.00330Google Scholar
Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637648. doi: 10.1038/nrn1178Google Scholar
Spalding, K. N., Schlichting, M. L., Zeithamova, D., et al. (2018). Ventromedial prefrontal cortex is necessary for normal associative inference and memory integration. Journal of Neuroscience, 38(15), 37673775. doi: 10.1523/JNEUROSCI.2501-17.2018Google Scholar
Spaniol, J., & Grady, C. (2012). Aging and the neural correlates of source memory: Over-recruitment and functional reorganization. Neurobiology of Aging, 33(2), 425 e38. doi: 10.1016/j.neurobiolaging.2010.10.005Google Scholar
Staresina, B. P., Henson, R. N., Kriegeskorte, N., & Alink, A. (2012). Episodic reinstatement in the medial temporal lobe. Journal of Neuroscience, 32(50), 1815018156. doi: 10.1523/JNEUROSCI.4156-12.2012Google Scholar
Stevens, W. D., Hasher, L., Chiew, K. S., & Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. Journal of Neuroscience, 28(48), 1282012824. doi: 10.1523/JNEUROSCI.2622-08.2008Google Scholar
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: A field experiment. Psychology and Aging, 23(4), 778786. doi: 10.1037/a0014341Google Scholar
Stine-Morrow, E. A., Payne, B. R., Roberts, B. W., et al. (2014). Training versus engagement as paths to cognitive enrichment with aging. Psychology and Aging, 29(4), 891906. doi: 10.1037/a0038244Google Scholar
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26(1), 112. doi: 10.1037/h0080017Google Scholar
Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory, 91(2), 139154. doi: 10.1016/j.nlm.2008.10.011Google Scholar
Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia, 46(7), 17871799. doi: 10.1016/j.neuropsychologia.2008.01.004Google Scholar
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445453. doi: 10.1016/j.tics.2005.07.001Google Scholar
Wang, T. H., Johnson, J. D., de Chastelaine, M., Donley, B. E., & Rugg, M. D. (2016). The effects of age on the neural correlates of recollection success, recollection-related cortical reinstatement, and post-retrieval monitoring. Cerebral Cortex, 26(4), 16981714. doi: 10.1093/cercor/bhu333Google Scholar
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272292. doi: 10.1037/0033-2909.120.2.272Google Scholar
Wong, C. N., Chaddock-Heyman, L., Voss, M. W., et al. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, p. 154. doi: 10.3389/fnagi.2015.00154Google Scholar
Xiao, X., Dong, Q., Gao, J., et al. (2017). Transformed neural pattern reinstatement during episodic memory retrieval. Journal of Neuroscience, 37(11), 29862998. doi: 10.1523/JNEUROSCI.2324-16.2017Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. doi: 10.1016/j.actpsy.2006.06.002Google Scholar
Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 4, CD005381. doi: 10.1002/14651858.CD005381.pub4Google Scholar

References

Agarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2009). The age of reason: Financial decisions over the life cycle and implications for regulation. Brookings Papers on Economic Activity, 2, 51117. http://dx.doi.org/10.2139/ssrn.973790Google Scholar
Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life-span theory in developmental psychology. In Lerner, R. M. & Damon, W. (Eds.), Handbook of child psychology: Theoretical models of human development (pp. 569664). Hoboken, NJ: John Wiley & Sons.Google Scholar
Bangma, D. F., Fuermaier, A. B. M., Tucha, L., Tucha, O., & Koerts, J. (2017). The effects of normal aging on multiple aspects of financial decision-making. PLoS One, 12(8), e0182620. https://doi.org/10.1371/journal.pone.0182620Google Scholar
Bauer, A. S., Timpe, J. C., Edmonds, E. C., et al. (2013). Myopia for the future or hypersensitivity to reward? Age-related changes in decision making on the Iowa Gambling Task. Emotion, 13, 1924. doi: 10.1037/a0029970Google Scholar
Besedeš, T., Deck, C., Sarangi, S., & Shor, M. (2012). Age effects and heuristics in decision making. Review of Economics and Statistics, 94, 580595. http://doi.org/10.1162/REST_a_00174Google Scholar
Best, R., & Charness, N. (2015). Age differences in the effect of framing on risky choice: A meta-analysis. Psychology and Aging, 30, 688698. doi: 10.1037/a0039447Google Scholar
Bloom, D. E., Chatterji, S., Kowal, P., et al. (2015). Macroeconomic implications of population ageing and selected policy responses. Lancet, 385, 649657. https://doi.org/10.1016/S0140-6736(14)61464-1Google Scholar
Boyle, P. A., Yu, L., Wilson, R. S., et al. (2012). Poor decision making is a consequence of cognitive decline among older persons without Alzheimer’s disease or mild cognitive impairment. PLoS One, 7(8), e43647. doi: 10.1371/journal.pone.0043647Google Scholar
Bruine de Bruin, W. (2017). Ageing and economic decision-making. In Ranyard, R. (Ed.), Economic psychology (pp. 371386). Hoboken, NJ: John Wiley & Sons.Google Scholar
Bruine de Bruin, W., & Bostrom, A. (2013). Assessing what to address in science communication. Proceedings of the National Academy of Sciences USA, 110(Suppl. 3), 1406214068. https://doi.org/10.1073/pnas.1212729110CrossRefGoogle ScholarPubMed
Bruine de Bruin, W., McNair, S. J., Taylor, A. L., Summers, B., & Strough, J. (2015). Thinking about numbers is not my idea of fun: Need for cognition mediates age differences in numeracy performance. Medical Decision Making, 35, 2226. doi: 10.1177/0272989X14542485Google Scholar
Bruine de Bruin, W., Parker, A., & Fischhoff, B. (2007). Individual differences in adult decision-making competence. Journal of Personality and Social Psychology, 92(5), 938956. http://dx.doi.org/10.1037/0022-3514.92.5.938Google Scholar
Bruine de Bruin, W., Parker, A., & Fischhoff, B. (2012). Explaining adult age differences in decision-making competence. Journal of Behavioral Decision Making, 25, 352360. doi: 10.1002/bdm.712Google Scholar
Bruine de Bruin, W., Parker, A., & Strough, J. (2016). Choosing to be happy? Age differences in “maximizing” decision strategies and experienced emotional well-being. Psychology and Aging, 31, 295300. doi: 10.1037/pag0000073Google Scholar
Bruine de Bruin, W., Strough, J., & Parker, A. M. (2014). Getting older isn’t all that bad: Better decisions and coping when facing “sunk costs.Psychology and Aging, 29, 642649. doi: 10.1037/a0036308Google Scholar
Bruine de Bruin, W., Van Putten, M., Van Emden, R., & Strough, J. (2018). Age differences in emotional responses to monetary losses and gains. Psychology and Aging, 33, 413418. doi: 10.1037/pag0000219Google Scholar
Carpenter, S. M., Peters, E., Västfjäll, D., & Isen, A. M. (2013). Positive feelings facilitate working memory and complex decision making among older adults. Cognition and Emotion, 27, 184192. doi: 10.1080/02699931.2012.698251Google Scholar
Carstensen, L. L. (2006). The influence of a sense of time on human development. Science, 312, 19131915. doi: 10.1126/science.1127488Google Scholar
Carstensen, L. L., & DeLiema, M. (2018). The positivity effect: A negativity bias in youth fades with age. Current Opinion in Behavioral Sciences, 19, 712. https://doi.org/10.1016/j.cobeha.2017.07.009CrossRefGoogle ScholarPubMed
Carstensen, L. L., Turan, B., Scheibe, S., et al. (2011). Emotional experience improves with age: Evidence based on over 10 years of experience sampling. Psychology and Aging, 26, 2133. doi: 10.1037/a0021285Google Scholar
Charles, S., & Carstensen, L. (2010). Social and emotional aging. Annual Review of Psychology, 61, 383409. doi: 10.1146/annurev.psych.093008.100448Google Scholar
Cooper, J. A., Blanco, N. J., & Maddox, W. T. (2017). Framing matters: Effects of framing on older adults’ exploratory decision-making. Psychology and Aging, 32, 6068. doi: 10.1037/pag0000146CrossRefGoogle ScholarPubMed
Del Missier, F., Hansson, P., Parker, A. M., et al. (2017). Unraveling the aging skein: Disentangling sensory and cognitive predictors of age‐related differences in decision making. Journal of Behavioral Decision Making, 30, 123139. doi: 10.1002/bdm.1926Google Scholar
Del Missier, F., Mäntylä, T., & Bruine de Bruin, W.(2012). Decision‐making competence, executive functioning, and general cognitive abilities. Journal of Behavioral Decision Making, 25, 331351. https://doi.org/10.1002/bdm.731Google Scholar
Del Missier, F., Mäntylä, T., Hansson, P., et al. (2013). The multifold relationship between memory and decision making: An individual-differences study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 13441364. doi: 10.1037/a0032379Google Scholar
Delaney, R., Strough, J., Bruine de Bruin, W., & Parker, A. (2015). Variations in decision-making profiles by age and gender: A cluster-analytic approach. Personality and Individual Differences, 85, 1924. doi: 10.1016/j.paid.2015.04.034Google Scholar
Delaney, R. K., Turiano, N. A., & Strough, J. (2018). Living longer with help from others: Seeking advice lowers mortality risk. Journal of Health Psychology, 23(12), 15901597. https://doi.org/10.1177/1359105316664133Google Scholar
Depping, M. K., & Freund, A. M. (2013). When choice matters: Task-dependent memory effects in older adulthood. Psychology and Aging, 28, 923936. doi: 10.1037/a0034520Google Scholar
Eberhardt, W., Bruine de Bruin, W., & Strough, J. (2018). Age differences in financial decision making: The benefits of more experience and less negative emotions. Journal of Behavioral Decision Making, 32, 7993. https://doi.org/10.1002/bdm.2097CrossRefGoogle Scholar
Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51, 380417. doi: 10.1037/h0053870Google Scholar
English, T., & Carstensen, L. L. (2015). Does positivity operate when the stakes are high? Health status and decision making among older adults. Psychology and Aging, 30, 348355. doi: 10.1037/a0039121Google Scholar
Ennis, G. E., Hess, T. M., & Smith, B. T. (2013). The impact of age and motivation on cognitive effort: Implications for cognitive engagement in older adulthood. Psychology and Aging, 28, 495504. doi: 10.1037/a0031255Google Scholar
Evans, J. St. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278. doi: 10.1146/annurev.psych.59.103006.093629Google Scholar
Finucane, M. L., & Gullion, C. M. (2010). Developing a tool for measuring the decision-making competence of older adults. Psychology and Aging, 25, 271288. doi: 10.1037/a0019106Google Scholar
Finucane, M. L., Mertz, C. K., Slovic, P., & Schmidt, E. (2005). Task complexity and older adults’ decision-making competence. Psychology and Aging, 20, 7184. doi: 10.1037/0882-7974.20.1.71Google Scholar
Frey, R., Mata, R., & Hertwig, R. (2015). The role of cognitive abilities in decisions from experience: Age differences emerge as a function of choice set size. Cognition, 14, 260280. doi: 10.1016/j.cognition.2015.05.004Google Scholar
Gerrans, P., & Hershey, D. A. (2017). Financial adviser anxiety, financial literacy, and financial advice seeking. Journal of Consumer Affairs, 51, 5490. https://doi.org/10.1111/joca.12120Google Scholar
Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 3, 2029. https://doi.org/10.1111/j.1745-6916.2008.00058.xGoogle Scholar
Green, M. J., & Levi, B. H. (2008). Development of an interactive computer program for advance care planning. Health Expectations, 12, 6069. doi: 10.1111/j.1369-7625.2008.00517.x.Google Scholar
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2, 271299. http://dx.doi.org/10.1037/1089-2680.2.3.271Google Scholar
Hamilton, J. G., Lillie, S. E., Alden, D. L., et al. (2017). What is a good medical decision? A research agenda guided by perspectives from multiple stakeholders. Journal of Behavioral Medicine, 40, 5268. doi: 10.1007/s10865-016-9785-zGoogle Scholar
Hanoch, Y., Wood, S., Barnes, A., Liu, P., & Rice, T. (2011). Choosing the right Medicare prescription drug plan: The effect of age, strategy selection, and choice set size. Health Psychology, 30, 719727. doi: 10.1037/a0023951Google Scholar
Hershey, D., Austin, J. T., & Gutierrez, H. C. (2015). Financial decision making across the adult life span: Dynamic cognitive capacities and real-world competence. In Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 329–349). Waltham, MA: Elsevier Inc.Google Scholar
Hess, T. M. (2015). A prospect theory-based evaluation of dual-process influences on aging and decision making: Support for a contextual perspective. In Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 190209). Waltham, MA: Elsevier Inc.Google Scholar
Hess, T. M., & Queen, T. L. (2014). Aging influences on judgment and decision processes: Interactions between ability and experience. In Verhaeghen, P. & Hertzog, C. (Eds.), Emotion, social cognition, and everyday problem solving during adulthood (pp. 238255). New York: Oxford University Press.Google Scholar
Hess, T. M., Queen, T. L., & Ennis, G. E. (2012a). Age and self-relevance effects on information search during decision making. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 68, 703711. doi: 10.1093/geronb/gbs108Google Scholar
Hess, T. M., Queen, T. L., & Patterson, T. R. (2012b). To deliberate or not to deliberate: Interactions between age, task characteristics, and cognitive activity on decision making. Journal of Behavioral Decision Making, 25, 2940. https://doi.org/10.1002/bdm.711Google Scholar
Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.) (2015). Aging and decision making: Empirical and applied perspectives. Waltham, MA: Elsevier Inc.Google Scholar
Jiang, D., Fung, H. H., Sims, T., Tsai, J. L., & Zhang, F. (2016). Limited time perspective increases the value of calm. Emotion, 16(1), 5262. doi: 10.1037/emo0000094Google Scholar
Josef, A. K., Richter, D., Samanez-Larkin, G. R., et al. (2016). Stability and change in risk-taking propensity across the adult life span. Journal of Personality and Social Psychology, 111, 430450. http://dx.doi.org/10.1037/pspp0000090Google Scholar
Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58, 697720. doi: 10.1037/0003-066X.58.9.697Google Scholar
Kim, S., Healey, M. K., Goldstein, D., Hasher, L., & Wiprzycka, U. J. (2008). Age differences in choice satisfaction: A positivity effect in decision making. Psychology and Aging, 23, 3338. doi: 10.1037/0882-7974.23.1.33Google Scholar
Kircanski, K., Notthoff, N., DeLiema, M., et al. (2018). Emotional arousal may increase susceptibility to fraud in older and younger adults. Psychology and Aging, 33, 325337. doi: 10.1037/pag0000228Google Scholar
Kobayashi, L. C., Wardle, J., Wolf, M. S., & von Wagner, C. (2016). Aging and functional health literacy: A systematic review and meta-analysis. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 71, 445457. doi: 10.1093/geronb/gbu161Google Scholar
Leventhal, H., Herold, J., Leventhal, E. A., Burns, E., & Diefenbach, M. A. (2015). Decisions and actions for life patterns and health practices as we age: A bottom-up approach. In Hess, T. M., Strough, J., & Lockenhoff, C. E. (Eds.) Aging and decision making: Empirical and applied perspectives (pp. 283308). Waltham, MA: Elsevier Inc.Google Scholar
Li, Y., Baldassi, M., Johnson, E. J., & Weber, E. U. (2013). Complementary cognitive capabilities, economic decision making, and aging. Psychology and Aging, 28, 595613. doi: 10.1037/a0034172Google Scholar
Li, Y., Gao, J., Enkavi, A. Z., et al. (2015). Sound credit scores and financial decisions despite cognitive aging. Proceedings of the National Academy of Sciences USA, 112, 6569. https://doi.org/10.1073/pnas.1413570112Google Scholar
Lindenberger, U., Von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: What’s change got to do with it? Psychology and Aging, 26, 3447. doi: 10.1037/a0020525Google Scholar
Liu, P. J., Wood, S., & Hanoch, Y. (2015). Choice and aging: Less is more. In Hess, T. M., Strough, J., & Lockenhoff, C. E. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 309327). Waltham, MA: Elsevier Inc.Google Scholar
Löckenhoff, C. E., & Carstensen, L. L. (2007). Aging, emotion, and health-related decision strategies: Motivational manipulations can reduce age differences. Psychology and Aging, 22, 134146. doi: 10.1037/0882-7974.22.1.134Google Scholar
Löckenhoff, C. E., O’Donoghue, T., & Dunning, D. (2011). Age differences in temporal discounting: The role of dispositional affect and anticipated emotions. Psychology and Aging, 26, 274284. doi: 10.1037/a0023280Google Scholar
Löckenhoff, C. E., Rutt, J. L., Samanez-Larkin, G. R., O’Donoghue, T., & Reyna, V. F. (2017). Preferences for temporal sequences of real outcomes differ across domains but do not vary by age. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 74(3), 430439. https://doi.org/10.1093/geronb/gbx094Google Scholar
Löckenhoff, C. E., Rutt, J. L., Samanez-Larkin, G. R., et al. (2016). Dread sensitivity in decisions about real and imagined electrical shocks does not vary by age. Psychology and Aging, 31, 890901. http://dx.doi.org/10.1037/pag0000136Google Scholar
Loewenstein, G., & Sicherman, N. (1991). Do workers prefer increasing wage profiles? Journal of Labor Economics, 9, 6784. https://doi.org/10.1086/298259Google Scholar
Lusardi, A., & Mitchell, O. S. (2011). Financial literacy around the world: An overview. Journal of Pension Economics and Finance, 10, 497508. https://doi.org/10.1017/S1474747211000448CrossRefGoogle ScholarPubMed
Mata, R., Josef, A. K., & Hertwig, R. (2016). Propensity for risk taking across the life span and around the globe. Psychological Science, 27, 231243. doi: 10.1177/0956797615617811Google Scholar
Mata, R., & Nunes, L. (2010). When less is enough: Cognitive aging, information search, and decision quality in consumer choice. Psychology and Aging, 25, 289298. doi: 10.1037/a0017927Google Scholar
Mata, R., Pachur, T., von Helversen, B., et al. (2012). Ecological rationality: Framework for understanding and aiding the aging decision maker. Frontiers in Neuroscience, 6, 19. doi: 10.3389/fnins.2012.00019Google Scholar
Mather, M., Mazar, N., Gorlick, M. A., et al. (2012). Risk preferences and aging: The “certainty effect” in older adults’ decision making. Psychology and Aging, 27(4), 801816. http://dx.doi.org/10.1037/a0030174Google Scholar
Mikels, J. A., Cheung, E., Cone, J., & Gilovich, T. (2013). The dark side of intuition: Aging and increases in nonoptimal intuitive decisions. Emotion, 13, 189195. doi: 10.1037/a0030441Google Scholar
Mikels, J. A., Löckenhoff, C. E., Maglio, S. J., et al. (2010). Following your heart or your head: Focusing on emotions versus information differentially influences the decisions of younger and older adults. Journal of Experimental Psychology: Applied, 16, 8795. doi: 10.1037/a0018500Google Scholar
Mikels, J. A., Shuster, M. M., & Thai, S. T. (2015). Aging, emotion, and decision making. In Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 169188). Waltham, MA: Elsevier Inc.Google Scholar
Mikels, J. A., Shuster, M. M., Thai, S. T., et al. (2016). Messages that matter: Age differences in affective responses to framed health messages. Psychology and Aging, 31, 409414. doi: 10.1037/pag0000040Google Scholar
Nielsen, L. G. (2015). Preface. In Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. xxvxxvii). Waltham, MA: Elsevier Inc.Google Scholar
Notthoff, N., & Carstensen, L. L. (2014). Positive messaging promotes walking in older adults. Psychology and Aging, 29, 329341. doi: 10.1037/a0036748Google Scholar
Osman, M. (2004). An evaluation of dual-process theories of reasoning. Psychonomic Bulletin and Review, 11, 9881010. https://doi.org/10.3758/BF03196730Google Scholar
Pachur, T., Mata, R., & Hertwig, R. (2017). Who dares, who errs? Disentangling cognitive and motivational roots of age differences in decisions under risk. Psychological Science, 28, 504518. doi: 10.1177/0956797616687729Google Scholar
Park, D. C., Lautenschlager, G., Hedden, T., et al. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17, 299320. doi: 10.1037//0882-7974.17.2.299Google Scholar
Parker, A. M., & Fischhoff, B. (2005). Decision-making competence: External validation through an individual differences approach. Journal of Behavioral Decision Making, 18, 127. doi: 10.1002/bdm.481Google Scholar
Peters, E., Dieckmann, N. F., Västfjäll, D., et al. (2009). Bringing meaning to numbers: The impact of evaluative categories on decisions. Journal of Experimental Psychology: Applied, 15, 213227. doi: 10.1037/a0016978Google Scholar
Peters, E., Hess, T. M., Västfjäll, D., & Auman, C. (2007). Adult age differences in dual information processes: Implications for the role of affective and deliberative processes in older adults’ decision making. Perspectives on Psychological Sciences, 2, 123. doi: 10.1111/j.1745-6916.2007.00025.xGoogle Scholar
Peters, E., Västfjäll, D., Gärling, T., & Slovic, P. (2006). Affect and decision making: A “hot” topic. Journal of Behavioral Decision Making, 19, 7985. https://doi.org/10.1002/bdm.528Google Scholar
Queen, T. L., Berg, C. A., & Lowrance, W. (2015). A framework for decision making in couples across adulthood. In Hess, T. M., Strough, J., & Löckenhoff, C. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 371392). Waltham, MA: Elsevier Inc.Google Scholar
Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information. Psychology and Aging, 29, 115. doi: 10.1037/a0035194Google Scholar
Reed, A. E., Mikels, J. A., & Löckenhoff, C. E. (2013). Preferences for choice across adulthood: Age trajectories and potential mechanisms. Psychology and Aging, 28, 625632. doi: 10.1037/a0031399Google Scholar
Reyna, V. F. (2004). How people make decisions that involve risk: A dual-process approach. Current Directions in Psychological Science, 13, 6066. https://doi.org/10.1111/j.0963-7214.2004.00275.xGoogle Scholar
Reyna, V. F., Chick, C. F., Corbin, J. C., & Hsia, A. N. (2014). Developmental reversals in risky decision making: Intelligence agents show larger decision biases than college students. Psychological Science, 25, 7684. https://doi.org/10.1177/0956797613497022Google Scholar
Rolison, J. J., Hanoch, Y., Wood, S., & Liu, P. J. (2013). Risk-taking differences across the adult life span: A question of age and domain. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 69, 870880. doi: 10.1093/geronb/gbt081Google Scholar
Rosi, A., Bruine de Bruin, W., Del Missier, F., Cavallini, E., & Russo, R. (2019). Decision-making competence in older and younger adults: Which cognitive abilities contribute to the application of decision rules? Aging, Neuropsychology and Cognition, 26, 174189. doi: 10.1080/13825585.2017.1418283Google Scholar
Rydzewska, K., von Helversen, B., Kossowska, M., Magnuski, M., & Sedek, G. (2018). Age-related within-task adaptations in sequential decision making: Considering cognitive and motivational factors. Psychology and Aging, 33, 297314. doi: 10.1037/pag0000239Google Scholar
Salthouse, T. A. (2012). Adult cognition: An experimental psychology of human aging. New York: Springer Science & Business Media.Google Scholar
Schaie, K. W. (2012). Developmental influences on adult intelligence: The Seattle Longitudinal Study. New York: Oxford University Press.Google Scholar
Shamaskin, A. M., Mikels, J. A., & Reed, A. E. (2010). Getting the message across: Age differences in the positive and negative framing of health care messages. Psychology and Aging, 25, 746751. doi: 10.1037/a0018431Google Scholar
Slovic, P., Finucane, M., Peters, E., & MacGregor, D. G. (2002). Rational actors or rational fools: Implications of the affect heuristic for behavioral economics. Journal of Socio-Economics, 31, 329342. doi: 10.1016/S1053-5357(02)00174-9Google Scholar
Sparrow, E. P., & Spaniol, J. (2018). Aging and altruism in intertemporal choice. Psychology and Aging, 33, 315324. http://dx.doi.org/10.1037/pag0000223Google Scholar
Stewart, C. C., Yu, L., Wilson, R. S., Bennett, D. A., & Boyle, P. A. (2018). Correlates of healthcare and financial decision making among older adults without dementia. Health Psychology, 37, 618626. doi: 10.1037/hea0000610Google Scholar
Strough, J., Bruine de Bruin, W., & Parker, A. M. (2018). Taking the biggest first: Age differences in preferences for monetary and hedonic sequences. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 74(6), 964974. https://doi.org/10.1093/geronb/gbx160Google Scholar
Strough, J., Bruine de Bruin, W., Parker, A. M., et al. (2016). What were they thinking? Reducing sunk-cost bias in a life-span sample. Psychology and Aging, 31, 724736. doi: 10.1037/pag0000130Google Scholar
Strough, J., Bruine de Bruin, W., & Peters, E. (2015a). New perspectives for motivating better decisions in older adults. Frontiers in Psychology, 6, p. 783. doi: 10.3389/fpsyg.2015.00783Google Scholar
Strough, J., Cheng, S., & Swenson, L. M. (2002). Preferences for collaborative and individual everyday problem solving in later adulthood. International Journal of Behavioral Development, 26, 2635. https://doi.org/10.1080/01650250143000337Google Scholar
Strough, J., Karns, T. E., & Schlosnagle, L. (2011a). Decision‐making heuristics and biases across the life span. Annals of the New York Academy of Sciences, 1235(1), 5774. doi: 10.1111/j.1749-6632.2011.06208.xGoogle Scholar
Strough, J., Mehta, C. M., McFall, J. P., & Schuller, K. L. (2008). Are older adults less subject to the sunk-cost fallacy than younger adults? Psychological Science, 19, 650652. https://doi.org/10.1111/j.1467-9280.2008.02138.xGoogle Scholar
Strough, J., Parker, A. M., & Bruine de Bruin, W. (2015b). Understanding life-span developmental changes in decision-making competence. In Hess, T. M., Strough, J., & Löckenhoff, C. E. (Eds.), Aging and decision making: Empirical and applied perspectives (pp. 235257). Waltham, MA: Elsevier Inc.Google Scholar
Strough, J., Parker, A., & Bruine de Bruin, W. (2019). Thinking about the future reduces failure to act after a missed opportunity. Psychology and Aging, 34(2), 311316. doi: 10.1037/pag000030Google Scholar
Strough, J., Schlosnagle, L., & DiDonato, L. (2011b). Understanding decisions about sunk costs from older and younger adults’ perspectives. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66, 681686. doi: 10.1093/geronb/gbr057Google Scholar
Tentori, K., Osherson, D., Hasher, L., & May, C. (2001). Wisdom and aging: Irrational preferences in college students but not older adults. Cognition, 81(3), B87B96. http://dx.doi.org/10.1016/S0010-0277(01)00137-8CrossRefGoogle Scholar
Thomas, A. K., & Millar, P. R. (2012). Reducing the framing effect in older and younger adults by encouraging analytic processing. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 67(2), 139149. doi: 10.1093/geronb/gbr076.Google Scholar
Wood, S., Busemeyer, J., Koling, A., Cox, C. R., & Davis, H. (2005). Older adults as adaptive decision makers: Evidence from the Iowa Gambling Task. Psychology and Aging, 20, 220225. doi: 10.1037/0882-7974.20.2.220Google Scholar
Woodhead, E. L., Lynch, E. B., & Edelstein, B. A. (2011). Decisional strategy determines whether frame influences treatment preferences for medical decisions. Psychology and Aging, 26, 285294. doi: 10.1037/a0021608Google Scholar
Worthy, D. A., Otto, A. R., Doll, B. B., Byrne, K. A., & Maddox, W. T. (2015). Older adults are highly responsive to recent events during decision-making. Decision, 2, 2738. doi: 10.1037/dec0000018Google Scholar
Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inference. American Psychologist, 35, 151175. http://dx.doi.org/10.1037/0003-066X.35.2.151Google Scholar

References

Alger, S. E., Kensinger, E. A., & Payne, J. D. (2018). Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiology of Aging, 68, 3447. doi: 10.1016/j.neurobiolaging.2018.03.030Google Scholar