Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-5hmnr Total loading time: 0.38 Render date: 2022-10-07T16:46:32.297Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Chapter 4 - Operads

from Part I - Species and operads

Published online by Cambridge University Press:  28 February 2020

Marcelo Aguiar
Affiliation:
Cornell University, Ithaca
Swapneel Mahajan
Affiliation:
Indian Institute of Technology, Mumbai
Get access

Summary

We introduce the notion of dispecies relative to a fixed hyperplane arrangement. The category of dispecies carries a monoidal structure which we call the substitution product. Operads are monoids in this monoidal category. We describe the free operad on a dispecies, and then proceed to operad presentations with an emphasis on binary quadratic operads. Apart from the substitution product, the category of dispecies also carries the Hadamard product which turns it into a 2-monoidal category. Hopf operads are bimonoids in this 2-monoidal category. We use these ideas to construct the black and white circle products on binary quadratic operads. We discuss three main examples of operads, namely, commutative, associative, Lie. These are all binary quadratic. Further, under a suitable notion of quadratic duality, the commutative and Lie operads are duals of each other, while the associative operad is self-dual. These can be viewed as extensions of well-known facts from the classical theory of May operads. The category of species is a left module category over the monoidal category of dispecies (under the substitution product). Hence, to each operad, one can associate the category of its left modules. A left module over the associative operad is the same as a monoid in species, over the commutative operad is the same as a commutative monoid in species, over the Lie operad is the same as a Lie monoid in species. To every operad, one can attach an (associative) algebra called its incidence algebra. The incidence algebra of the commutative operad is the flat-incidence algebra, of the associative operad is the lune-incidence algebra, and of the Lie operad is the Tits algebra. The incidence algebra of any connected quadratic operad is elementary and its quiver can be explicitly described. Operads can also be defined in the more general setting of left regular bands. Interestingly, the commutative, associative, Lie operads extend to this setting.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×