Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T12:56:49.337Z Has data issue: false hasContentIssue false

1 - Evaluation of cognitive and behavioral disorders in the stroke unit

Published online by Cambridge University Press:  10 October 2009

Asaid Khateb
Affiliation:
Geneva University Hospitals, Geneva, Switzerland
Jean-Marie Annoni
Affiliation:
Geneva University Hospitals, Geneva, Switzerland
Ursula Lopez
Affiliation:
Geneva University Hospitals, Geneva, Switzerland
Françoise Bernasconi
Affiliation:
Geneva University Hospitals, Geneva, Switzerland
Laurent Lavanchy
Affiliation:
Geneva University Hospitals, Geneva, Switzerland
Julien Bogousslavsky
Affiliation:
Swiss Medical Network, Montreux, Switzerland
Olivier Godefroy
Affiliation:
Université de Picardie Jules Verne, Amiens
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Get access

Summary

Introduction

The general aim of a clinical neuropsychological examination is to assess language, memory, attention, adaptive behavior, motivation, and emotion impairments that result from a brain dysfunction. This behavioral and cognitive evaluation can be performed during the first hours following cerebral damage either in a classical bedside approach or by means of standardized tests and may thus help establish a precise diagnostic. In the hyperacute or acute phase of stroke, neuropsychological intervention may also be necessary to establish communication with the patient (e.g. in the case of aphasia) or to set up adequate strategies to be used by healthcare providers (e.g. in the case of spatial neglect). In this context, the patient is most often tested while lying in bed and in the presence of other patients in the same room. Due to this context, as well as other disturbing factors, the evaluation of cognitive–behavioral deficits in the stroke unit is generally difficult, of relatively short duration, and must thus be repeated in order to correctly track the clinical evolution and to advise when the symptoms become more stable. Moreover, effective rehabilitation of cognitive deficits often relies on modular neuropsychological models (e.g. Pilgrim and Humphreys, 1994), which are often incompatible with clinical fluctuations and global dysfunction such as confusional states, frequently found in the acute phase. So, actual neuropsychological rehabilitation does not rely on acute evaluation.

In this chapter, we will first emphasize the difficulties in undertaking systematic neurocognitive evaluations in the stroke unit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aichner, F., Adelwohrer, C. and Haring, H. P. (2002). Rehabilitation approaches to stroke. J. Neural Transm. Suppl., 59–73.Google Scholar
Aldrich, M. S., Alessi, A. G., Beck, R. W. and Gilman, S. (1987). Cortical blindness: etiology, diagnosis, and prognosis. Ann. Neurol., 21, 149–58.CrossRefGoogle ScholarPubMed
Argenta, P. A. and Morgan, M. A. (1998). Cortical blindness and Anton syndrome in a patient with obstetric hemorrhage. Obstet. Gynecol., 91, 810–12.Google Scholar
Auchus, A. P., Chen, C. P., Sodagar, S. N., Thong, M. and Sng, E. C. (2002). Single stroke dementia: insights from 12 cases in Singapore. J. Neurol. Sci., 203/204, 85–9.CrossRefGoogle Scholar
Azouvi, P., Samuel, C., Louis-Dreyfus, A., et al. (2002). Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. J. Neurol. Neurosurg. Psychiatry, 73, 160–6.CrossRefGoogle ScholarPubMed
Basso, A. (1992). Prognostic factors in aphasia. Aphasiology, 6, 337–48.CrossRefGoogle Scholar
Bisiach, E. and Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129–33.CrossRefGoogle ScholarPubMed
Blanke, O., Landis, T., Mermoud, C., Spinelli, L. and Safran, A. B. (2003). Direction-selective motion blindness after unilateral posterior brain damage. Eur. J. Neurosci., 18, 709–22.CrossRefGoogle ScholarPubMed
Bogousslavsky, J. (2003). William Feinberg lecture 2002: emotions, mood, and behavior after stroke. Stroke, 34, 1046–50.CrossRefGoogle Scholar
Bowen, A., Lincoln, N. B. and Dewey, M. E. (2002). Spatial neglect: is rehabilitation effective?Stroke, 33, 2728–9.CrossRefGoogle ScholarPubMed
Brown, A. W., Bjelke, B. and Fuxe, K. (2004). Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp. Neurol., 190, 102–8.CrossRefGoogle Scholar
Burns, M. S. (2004). Clinical management of agnosia. Top Stroke Rehabil., 11, 1–9.CrossRefGoogle ScholarPubMed
Caeiro, L., Ferro, J. M., Albuquerque, R. and Figueira, M. L. (2004). Delirium in the first days of acute stroke. J. Neurol., 251, 171–8.CrossRefGoogle ScholarPubMed
Cals, N., Devuyst, G., Afsar, N., Karapanayiotides, T. and Bogousslavsky, J. (2002). Pure superficial posterior cerebral artery territory infarction in the Lausanne Stroke Registry. J. Neurol., 249, 855–61.CrossRefGoogle ScholarPubMed
Cappa, S. F., Perani, D., Grassi, F., et al. (1997). A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang., 56, 55–67.CrossRefGoogle ScholarPubMed
Carota, A., Rossetti, A. O., Karapanayiotides, T. and Bogousslavsky, J. (2001). Catastrophic reaction in acute stroke: a reflex behavior in aphasic patients. Neurology, 57, 1902–5.CrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Naccache, L., et al. (2000). The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123, 291–307.CrossRefGoogle ScholarPubMed
Crisostomo, E. A., Duncan, P. W., Propst, M., Dawson, D. V. and Davis, J. N. (1988). Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann. Neurol., 23, 94–7.CrossRefGoogle ScholarPubMed
Croquelois, A. and Bogousslavsky, J. (2004). Cognitive deficits in hyperacute stroke. Stroke, 35, 25.CrossRefGoogle ScholarPubMed
Croquelois, A., Wintermark, M., Reichhart, M., Meuli, R. and Bogousslavsky, J. (2003). Aphasia in hyperacute stroke: language follows brain penumbra dynamics. Ann. Neurol., 54, 321–9.CrossRefGoogle ScholarPubMed
Renzi, E., Gentilini, M. and Barbieri, C. (1989). Auditory neglect. J. Neurol. Neurosurg. Psychiatry, 52, 613–17.CrossRefGoogle ScholarPubMed
Déjerine, J. (1892). Contribution à l'étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Mémoires de la Société de Biologie, 4, 61–90.Google Scholar
Engelter, S., Gostynski, M., Papa, S., et al. (2004). Prevalence and severity of aphasia due to first ischemic stroke: a prospective population based study. European Stroke Conference. Mannheim-Heidelberg.Google Scholar
Ferro, J. M. (2001). Hyperacute cognitive stroke syndromes. J. Neurol., 248, 841–9.CrossRefGoogle ScholarPubMed
Ghika, J., Bogousslavsky, J. and Regli, F. (1995). “Hyperneglect,” a sequential hemispheric stroke syndrome. J. Neurol. Sci., 132, 233–8.CrossRefGoogle ScholarPubMed
Ghika-Schmid, F., Melle, G., Guex, P. and Bogousslavsky, J. (1999). Subjective experience and behavior in acute stroke: the Lausanne Emotion in Acute Stroke Study. Neurology, 52, 22–8.CrossRefGoogle ScholarPubMed
Gil, R. (1996). Abrégé de Neuropsychologie, Paris: Masson.Google Scholar
Godefroy, O., Dubois, C., Debachy, B., Leclerc, M. and Kreisler, A. (2002). Vascular aphasias: main characteristics of patients hospitalized in acute stroke units. Stroke, 33, 702–5.CrossRefGoogle ScholarPubMed
Grossman, M., Galetta, S. and D'Esposito, M. (1997). Object recognition difficulty in visual apperceptive agnosia. Brain Cogn., 33, 306–42.CrossRefGoogle ScholarPubMed
Grotta, J. and Bratina, P. (1995). Subjective experiences of 24 patients dramatically recovering from stroke. Stroke, 26, 1285–8.CrossRefGoogle Scholar
Grüsser, O.-J. and Landis, T. (1991). Lost letters: pure alexia. In Cronly-Dillon, J. R., ed., Visual Agnosias and Other Disturbances of Visual Perception and Cognition. Vol 12. London: Macmillan Press, pp. 333–56.Google Scholar
Hacke, W., Kaste, M., Skyhoj Olsen, T., Orgogozo, J. M. and Bogousslavsky, J. (2000). European Stroke Initiative (EUSI) recommendations for stroke management. The European Stroke Initiative Writing Committee. Eur. J. Neurol., 7, 607–23.CrossRefGoogle ScholarPubMed
Halligan, P., Wilson, B. and Cockburn, J. (1990). A short screening test for visual neglect in stroke patients. Int. Disabil. Stud., 12, 95–9.CrossRefGoogle Scholar
Halligan, P. W., Cockburn, J. and Wilson, B. A. (1991). The behavioural assessment of visual neglect. Neuropsychol. Rehab., 1, 5–32.CrossRefGoogle Scholar
Heinsius, T., Bogousslavsky, J. and Melle, G. (1998). Large infarcts in the middle cerebral artery territory: etiology and outcome patterns. Neurology, 50, 341–50.CrossRefGoogle ScholarPubMed
Hillis, A. E., Wityk, R. J., Barker, P. B., Ulatowski, J. A. and Jacobs, M. A. (2003). Change in perfusion in acute nondominant hemisphere stroke may be better estimated by tests of hemispatial neglect than by the National Institutes of Health Stroke Scale. Stroke, 34, 2392–6.CrossRefGoogle ScholarPubMed
Hillis, A. E., Newhart, M., Heidler, J., et al. (2005). Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J. Neurosci., 25, 3161–7.CrossRefGoogle ScholarPubMed
Husain, M. and Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nat. Rev. Neurosci., 4, 26–36.CrossRefGoogle ScholarPubMed
Kalra, L., Perez, I., Gupta, S. and Wittink, M. (1997). The influence of visual neglect on stroke rehabilitation. Stroke, 28, 1386–91.CrossRefGoogle ScholarPubMed
Kerkhoff, G. (2001). Spatial hemineglect in humans. Prog. Neurobiol., 63, 1–27.CrossRefGoogle ScholarPubMed
Kertesz, A. (1988). What do we learn from recovery from aphasia?Adv. Neurol., 47, 277–92.Google ScholarPubMed
Landis, T., Graves, R., Benson, D. F. and Hebben, N. (1982). Visual recognition through kinaesthetic mediation. Psychol. Med., 12, 515–31.CrossRefGoogle ScholarPubMed
Meijer, R., Ihnenfeldt, D. S., Limbeek, J., Vermeulen, M. and Haan, R. J. (2003). Prognostic factors in the subacute phase after stroke for the future residence after six months to one year, a systematic review of the literature. Clin. Rehabil., 17, 512–20.CrossRefGoogle ScholarPubMed
Merino, J. G. and Heilman, K. M. (2003). Editorial comment: Measurement of cognitive deficits in acute stroke. Stroke, 34, 2396–8.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1999). Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 354, 1325–46.CrossRefGoogle ScholarPubMed
Miozzo, M. and Caramazza, A. (1998). Varieties of pure alexia: the case of failure to access graphemic representations. Cogn. Neuropsych., 15.CrossRefGoogle ScholarPubMed
Motomura, N., Sawada, T., Inoue, N., Asaba, H. and Sakai, T. (1988). Neuropsychological and neuropsychiatric findings in right hemisphere damaged patients. Jpn. J. Psychiatry Neurol., 42, 747–52.Google ScholarPubMed
Ortigue, S., Viaud-Delmon, I., Michel, C. M., et al. (2003). Pure imagery hemineglect of far space. Neurology, 60, 2000–2.CrossRefGoogle Scholar
Paolucci, S., Antonucci, G., Gialloreti, L. E., et al. (1996). Predicting stroke inpatient rehabilitation outcome: the prominent role of neuropsychological disorders. Eur. Neurol., 36, 385–90.CrossRefGoogle ScholarPubMed
Parton, A., Malhotra, P. and Husain, M. (2004). Hemispatial neglect. J. Neurol. Neurosurg. Psychiatry, 75, 13–21.Google ScholarPubMed
Pashek, G. V. and Holland, A. L. (1988). Evolution of aphasia in the first year post-onset. Cortex, 24, 411–23.CrossRefGoogle ScholarPubMed
Pedersen, P. M., Jorgensen, H. S., Nakayama, H., Raaschou, H. O. and Olsen, T. S. (1995). Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol., 38, 659–66.CrossRefGoogle ScholarPubMed
Pegna, A. J., Khateb, A., Lazeyras, F. and Seghier, M. L. (2005). Discriminating emotional faces without primary visual cortices involves the right amygdala. Nat. Neurosci., 8, 24–5.CrossRefGoogle ScholarPubMed
Pierce, S. R. and Buxbaum, L. J. (2002). Treatments of unilateral neglect: a review. Arch. Phys. Med. Rehabil., 83, 256–68.CrossRefGoogle ScholarPubMed
Pilgrim, E. and Humphreys, G. W. (1994). Rehabilitation of a case of ideomotor apraxia. In Riddoch, M. J. and Humphreys, G. W., eds., Cognitive Neuropsychology and Cognitive Rehabilitation. Hove, Hillsdale: Lawrence Erlbaum Associates, pp. 271–85.Google Scholar
Pohjasvaara, T., Erkinjuntti, T., Ylikoski, R., et al. (1998). Clinical determinants of poststroke dementia. Stroke, 29, 75–81.CrossRefGoogle ScholarPubMed
Rentschler, I., Treutwein, B. and Landis, T. (1994). Dissociation of local and global processing in visual agnosia. Vision Res., 34, 963–71.CrossRefGoogle ScholarPubMed
Robertson, I. H. and Halligan, P. W. (1998). Spatial Neglect: A Clinical Handbook for Diagnosis and Treatment, East Sussex, UK: Psychology Press.Google Scholar
Stone, S. P., Wilson, B., Wroot, A., et al. (1991). The assessment of visuo-spatial neglect after acute stroke. J. Neurol. Neurosurg. Psychiatry, 54, 345–50.CrossRefGoogle ScholarPubMed
Trapl, M., Eckhardt, R., Bosak, P. and Brainin, M. (2004). Early recognition of speech and speech-associated disorders after acute stroke. Wien. Med. Wochenschr., 154, 571–6.CrossRefGoogle ScholarPubMed
Vuilleumier, P. (2004). Anosognosia: the neurology of beliefs and uncertainties. Cortex, 40, 9–17.CrossRefGoogle ScholarPubMed
Wade, D. T., Hewer, R. L., David, R. M. and Enderby, P. M. (1986). Aphasia after stroke: natural history and associated deficits. J. Neurol. Neurosurg. Psychiatry, 49, 11–16.CrossRefGoogle ScholarPubMed
Warrington, E. K. and Shallice, T. (1980). Word-form dyslexia. Brain, 103, 99–11.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×