Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T13:35:25.933Z Has data issue: false hasContentIssue false

Part II - Species Accounts

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access
Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 63 - 212
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aitken-Palmer, C., Hou, R., Burrell, C., et al. (2012). Protracted reproductive seasonality in the male giant panda (Ailuropoda melanoleuca) reflected by patterns in androgen profiles, ejaculate characteristics, and selected behaviors. Biology of Reproduction 86(6): 195.Google Scholar
Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. (2017). Why is the giant panda black and white? Behavioral Ecology 28(3): 657667.CrossRefGoogle Scholar
Charlton, B. D., Huang, Y. & Swaisgood, R. R. (2009). Vocal discrimination of potential mates by female giant pandas (Ailuropoda melanoleuca). Biology Letters 5: 597599.CrossRefGoogle ScholarPubMed
Charlton, B. D., Keating, J. L., Li, R., Huang, Y. & Swaisgood, R. R. (2010). Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller’s fertile phase. Proceedings of the Royal Society B 277: 11011106.CrossRefGoogle ScholarPubMed
Charlton, B. D., Keating, J. L., Kersey, D., et al. (2011). Vocal cues to male androgen levels in giant pandas. Biology Letters 7: 7174.CrossRefGoogle ScholarPubMed
Charlton, B. D., Martin-Wintle, M. S., Owen, M. A., Zhang, H. & Swaisgood, R. R. (2018a). Vocal behaviour predicts mating success in giant pandas. Royal Society Open Science 5(10): 181323.CrossRefGoogle ScholarPubMed
Charlton, B. D., Owen, M. A., Keating, J. L., et al. (2018b). Sound transmission in a bamboo forest and its implications for information transfer in giant panda (Ailuropoda melanoleuca) bleats. Scientific Reports 8(1): 12754.CrossRefGoogle Scholar
Cheng, W. Y., Zhao, G. H., Jia, Y. Q., et al. (2013). Characterization of Haemaphysalis flava (Acari: Ixodidae) from Qingling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis) in Qinling Mountains (Central China) by morphology and molecular markers. PLoS ONE 8(7): e69793.CrossRefGoogle ScholarPubMed
Connor, T., Hull, V. & Liu, J. (2016). Telemetry research on elusive wildlife: a synthesis of studies on giant pandas. Integrative Zoology 11(4): 295307.Google Scholar
Han, H., Wei, W., Hu, Y., et al. (2019). Diet evolution and habitat contraction of giant pandas via stable isotope analysis. Current Biology 29(4): 664669.e662.Google Scholar
Hoffmann, M., Hilton-Taylor, C., Angulo, A., et al. (2010). The impact of conservation on the status of the world’s vertebrates. Science 330: 15031509.CrossRefGoogle ScholarPubMed
Huang, W. (1993). The skull, mandible and dentition of giant pandas (Ailuropoda): morphological characters and their evolutionary implications. Vertebrata Palasiatica 31: 191207.Google Scholar
Hull, V., Roloff, G., Zhang, J., et al. (2014). A synthesis of giant panda habitat selection. Ursus 25(2): 148162.CrossRefGoogle Scholar
Hull, V., Zhang, J., Zhou, S., et al. (2015). Space use by endangered giant pandas. Journal of Mammalogy 96(1): 230236.Google Scholar
Hull, V., Zhang, J., Huang, J., et al. (2016). Habitat use and selection by giant pandas. PLoS ONE 11(9): e0162266.CrossRefGoogle ScholarPubMed
Kang, D. & Li, J. (2016). Premature downgrade of panda’s status. Science 354: 295.Google Scholar
Keller, A. S., Snyder, R. J., Marr, M. J., et al. (2006). Color vision in the giant panda (Ailuropoda melanoleuca). Learning and Behavior 3: 154161.Google Scholar
Kersey, D. C., Wildt, D. E., Brown, J. L., et al. (2010). Unique biphasic progestagen profile in parturient and non-parturient giant pandas (Ailuropoda melanoleuca) as determined by faecal hormone monitoring. Reproduction 140: 183193.CrossRefGoogle ScholarPubMed
Kersey, D. C., Wildt, D. E., Brown, J. L., et al. (2011). Rising fecal glucocorticoid concentrations track reproductive activity in the female giant panda (Ailuropoda melanoleuca). General and Comparative Endocrinology 173(2): 364370.Google Scholar
Li, B. V. & Pimm, S. L. (2016). China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology 30(2): 329339.CrossRefGoogle ScholarPubMed
Li, B. V., Pimm, S. L., Li, S., Zhao, L. & Luo, C. (2017a). Free-ranging livestock threaten the long-term survival of giant pandas. Biological Conservation 216: 1825.Google Scholar
Li, D., Wintle, N. J. P., Zhang, G., et al. (2017b). Analyzing the past to understand the future: natural mating yields better reproductive rates than artificial insemination in the giant panda. Biological Conservation 216: 1017.CrossRefGoogle Scholar
Li, R., Fan, W., Tian, G., et al. (2010). The sequence and de nova assembly of the giant panda genome. Nature 463: 311317.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015a). Climate change threatens giant panda protection in the 21st century. Biological Conservation 182: 93101.Google Scholar
Li, X., Jiang, G., Tian, H., et al. (2015b). Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography 38(1): 7482.Google Scholar
Li, Y., Swaisgood, R. R., Wei, W., et al. (2017c). Withered on the stem: is bamboo a seasonally limiting resource for giant pandas? Environmental Science and Pollution Research 24(11): 10,53710,546.Google Scholar
Linderman, M., Bearer, S., An, L., et al. (2005). The effects of understory bamboo on broad-scale estimates of giant panda habitat. Biological Conservation 121: 383390.Google Scholar
Liu, J., Hull, V., Yang, W., et al. (2016). Pandas and people: Coupling human and natural systems for sustainability. Oxford: Oxford University Press.Google Scholar
Ma, H., Wang, Z., Wang, C., et al. (2015). Fatal Toxoplasma gondii infection in the giant panda. Parasite 22: 3030.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2015). Free mate choice enhances conservation breeding in the endangered giant panda. Nature Communications 6: 10125.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2017). Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biological Conservation 207: 2737.Google Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., et al. (2012a). Giant panda scent-marking strategies in the wild: role of season, sex and marking surface. Animal Behaviour 84(1): 3944.CrossRefGoogle Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. (2012b). Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66(5): 721730.Google Scholar
Nie, Y.-G., Zhang, Z.-J., Swaisgood, R. R. & Wei, F.-W. (2012c). Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58(1): 235241.CrossRefGoogle Scholar
Nie, Y., Speakman, J. R., Wu, Q., et al. (2015a). Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349(6244): 171174.CrossRefGoogle ScholarPubMed
Nie, Y., Zhang, Z., Raubenheimer, D., et al. (2015b). Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology 29(1): 2634.CrossRefGoogle Scholar
O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E. & Benveniste, R. E. (1985). A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317(6033): 140144.Google Scholar
Owen, M. A., Keating, J. L., Denes, S. K., et al. (2016). Hearing sensitivity in context: conservation implications for a highly vocal endangered species. Global Ecology and Conservation 6: 121131.Google Scholar
Owen, M. A., Swaisgood, R. R. & Blumstein, D. T. (2016). Signalling behaviour is influenced by transient social context in a spontaneously ovulating mammal. Animal Behaviour 111: 157165.Google Scholar
Pan, W. (2014). A chance for lasting survival: Ecology and behavior of wild giant pandas. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Roberts, B. M., Brown, J. L., Kersey, D. C., et al. (2018). Use of urinary 13,14, dihydro-15-keto-prostaglandin F2α (PGFM) concentrations to diagnose pregnancy and predict parturition in the giant panda (Ailuropoda melanolecua). PLoS ONE 13(5): e0195599.CrossRefGoogle ScholarPubMed
Schaller, G. B., Hu, J., Pan, W. & Zhu, J. (1985). The giant pandas of Wolong. Chicago, IL: University of Chicago Press.Google Scholar
SFA. (2015). Report of the Fourth National Giant Panda Survey. Beijing: Science Publishing House.Google Scholar
Snyder, R. J., Zhang, A. J., Zhang, Z. H., et al. (2003). Behavioral and developmental consequences of early rearing experience for captive giant pandas (Ailuropoda melanoleuca). Journal of Comparative Psychology 117: 235245.Google Scholar
Snyder, R. J., Perdue, B. M., Zhang, Z., Maple, T. L. & Charlton, B. D. (2016). Giant panda maternal care: a test of the experience constraint hypothesis. Scientific Reports 6: 27509.CrossRefGoogle Scholar
Steinman, K. J., Monfort, S. L., McGeehan, L., et al. (2006). Endocrinology of the giant panda and application of hormone techology to species management. In: Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (Eds.), Giant pandas: Biology, veterinary medicine and management (pp. 198230). Cambridge: Cambridge University Press.Google Scholar
Swaisgood, R. R., Zhou, X., Zhang, G., Lindburg, D. G. & Zhang, H. (2003). Application of behavioral knowledge to giant panda conservation. International Journal of Comparative Psychology 16: 6584.Google Scholar
Swaisgood, R. R., Lindburg, D., White, A. M., Zhang, H. & Zhou, X. (2004). Chemical communication in giant pandas: experimentation and application. In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas: Biology and conservation (pp. 106120). Berkeley, CA: University of California Press.Google Scholar
Swaisgood, R. R., Zhang, G., Zhou, X. & Zhang, H. (2006). The science of behavioural management: creating biologically relevant living environments in captivity. In: Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (Eds.), Giant pandas: Biology, veterinary medicine and management (pp. 274298). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2016). Ailuropoda melanoleuca. IUCN Red List of Threatened Species. www.iucnredlist.org/details/712/0.Google Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2017). Panda downlisted but not out of the woods. Conservation Letters 11: e12355.Google Scholar
Swaisgood, R. R., Martin-Wintle, M. S., Owen, M. A., Zhou, X. & Zhang, H. (2018). Developmental stability of foraging behavior: evaluating suitability of captive giant pandas for translocation. Animal Conservation 21: 474482.CrossRefGoogle Scholar
Tuanmu, M.-N., Viña, A., Winkler, J. A., et al. (2013). Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nature Climate Change 3(3): 249253.Google Scholar
Vina, A., Bearer, S., Chen, X., et al. (2007). Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China. Ecological Applications 17(4): 10191030.Google Scholar
Wang, F., McShea, W. J., Wang, D., et al. (2014). Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE 9(8): e105086.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation 186: 319325.CrossRefGoogle Scholar
Wang, F., Zhao, Q., McShea, W. J., et al. (2018). Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conservation Letters 11(6): e12592.CrossRefGoogle Scholar
Wang, N., Li, D.-S., Zhou, X., et al. (2013). A sensitive and specific PCR assay for the detection of Baylisascaris schroederi eggs in giant panda feces. Parasitology International 62(5): 435436.Google Scholar
Wang, S., Gu, X., Fu, Y., et al. (2012). Molecular taxonomic relationships of Psoroptes and Chorioptes mites from China based on COI and 18S rDNA gene sequences. Veterinary Parasitology 184(2): 392397.Google Scholar
Wei, F. & Zhang, Z. (2009). Family Ailuridae (red panda). In: Wilson, D. E. & Mittermeier, R.A. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 498503). Barcelona: Lynx Edicions.Google Scholar
Wei, F., Hu, Y., Zhu, L., et al. (2012). Black and white and read all over: the past, present and future of giant panda genetics. Molecular Ecology 21(23): 56605674.Google Scholar
Wei, F., Hu, Y., Yan, L., et al. (2015a). Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research. Molecular Biology and Evolution 32(1): 412.Google Scholar
Wei, F., Swaisgood, R., Hu, Y., et al. (2015b). Progress in the ecology and conservation of giant pandas. Conservation Biology 29: 14971507.CrossRefGoogle ScholarPubMed
Wei, F., Costanza, R., Dai, Q., et al. (2018). The value of ecosystem services from giant panda reserves. Current Biology 28: 21742180.Google Scholar
Wei, W., Nie, Y., Zhang, Z., et al. (2015). Hunting bamboo: foraging patch selection and utilization by giant pandas and implications for conservation. Biological Conservation 186: 260267.Google Scholar
Wei, W., Swaisgood, R. R., Dai, Q., et al. (2018). Giant panda distributional and habitat‐use shifts in a changing landscape. Conservation Letters 11: e12575.Google Scholar
Wei, W., Swaisgood, R. R., Owen, M. A., et al. (2019). The role of den quality in giant panda conservation. Biological Conservation 231: 189196.Google Scholar
White, A. M., Swaisgood, R. R. & Zhang, H. (2002). The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): effect of scent deposition height on signal discrimination. Behavioral Ecology and Sociobiology 51: 519529.Google Scholar
Wildt, D. E., Zhang, A. J., Zhang, H., Janssen, D. & Ellis, S. (2006). Giant pandas: Biology, veterinary medicine and management. Cambridge: Cambridge University Press.Google Scholar
Willis, E. L., Kersey, D. C., Durrant, B. S. & Kouba, A. J. (2011). The acute phase protein ceruloplasmin as a non-invasive marker of pseudopregnancy, pregnancy, and pregnancy loss in the giant panda. PLoS ONE 6(7): e21159.Google Scholar
Xu, W., Viña, A., Kong, L., et al. (2017). Reassessing the conservation status of the giant panda using remote sensing. Nature Ecology & Evolution 1: 16351638.Google Scholar
Yang, B., Busch, J., Zhang, L., et al. (2015). China’s collective forest tenure reform and the future of the giant panda. Conservation Letters 8(4): 251261.Google Scholar
Yang, H., Viña, A., Tang, Y., et al. (2017). Range-wide evaluation of wildlife habitat change: a demonstration using giant pandas. Biological Conservation 213: 203209.CrossRefGoogle Scholar
Yuan, H., Liu, D., Sun, L., et al. (2004). Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Canadian Journal of Zoology 82(10): 15961604.Google Scholar
Zhan, X., Li, M., Zhang, Z., et al. (2006). Molecular censusing doubles giant panda population estimate in a key nature reserve. Current Biology 16(12): 451452.Google Scholar
Zhan, X., Zhang, Z., Wu, H., et al. (2007). Molecular analysis of dispersal in giant pandas. Molecular Ecology 16(18): 37923800.Google Scholar
Zhang, J., Hull, V., Huang, J., et al. (2015). Activity patterns of the giant panda (Ailuropoda melanoleuca). Journal of Mammalogy 96(6): 11161127.Google Scholar
Zhang, J., Hull, V., Ouyang, Z., et al. (2017a). Modeling activity patterns of wildlife using time-series analysis. Ecology and Evolution 7(8): 25752584.Google Scholar
Zhang, J.-S., Daszak, P., Huang, H.-L., et al. (2008). Parasite threat to panda conservation. Ecohealth 5(1): 69.Google Scholar
Zhang, L., Luo, Z., Mallon, D., Li, C. & Jiang, Z. (2017b). Biodiversity conservation status in China’s growing protected areas. Biological Conservation 210: 89100.Google Scholar
Zhang, Z., Swaisgood, R. R., Wu, H., et al. (2007). Factors predictiing den use by maternal giant pandas. Journal of Wildlife Management 71: 26942698.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters 7: 403406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9(1): 4660.CrossRefGoogle ScholarPubMed
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45(1): 6771.Google Scholar
Zheng, X., Owen, M. A., Nie, Y., et al. (2016). Individual identification of wild giant pandas from camera trap photos – a systematic and hierarchical approach. Journal of Zoology 300(4): 247256.Google Scholar
Zhou, W., Nie, Y., Hu, Y., et al. (2019). Seasonal and reproductive variation in chemical constituents of scent signals in wild giant pandas. Science China Life Sciences 62: 648660.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences 108(43): 17,71417,719.Google Scholar
Zhu, L., Hu, Y., Qi, D., et al. (2013). Genetic consequences of historical anthropogenic and ecological events on giant pandas. Ecology 94(10): 23462357.CrossRefGoogle ScholarPubMed
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas: infant growth and development and mother–infant relationships. Journal of Zoology, London 253: 141155.Google Scholar

References

Anonymous. (2009). Tremarctos ornatus. UNEP-WCMC Species Database: CITES-Listed Species. www.unep-wcmc-apps.org/isdb/CITES/Taxonomy/tax-common-result.cfm?source=animals anddisplaylanguage=engandCommon=25966Google Scholar
Appleton, R., Tobler, M. & Van Horn, R. (2013). A comparison of Andean bear (Tremarctos ornatus) densities using camera traps at waterholes and bear trails in the tropical dry forest of Northwestern Peru. Provo, UT: International Association for Bear Research and Management.Google Scholar
Beaumont, L. J., Pitman, A., Perkins, S., et al. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences 108(6): 23062311.Google Scholar
Cardozo-de-Almeida, M., Linardi, P. M. & Costa, J. (2003). The type specimens of chewing lice (Insecta, Mallophaga) deposited in the entomological collection of Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil. Memórias do Instituto Oswaldo Cruz 98(2): 233240.Google Scholar
Castellanos, A. (2005). Preliminary results of the three-year telemetry study of Andean bear in the Intag Region, Ecuador. In 16th International Conference on Bear Research and Management. Trentino, Italy: International Association for Bear Research and Management.Google Scholar
Castellanos, A. (2008). Guía para la rehabilitación, liberación y seguimiento de oso andino, Tremarctos ornatus, en Ecuador. Quito, Ecuador: Fundación Espíritu del Bosque.Google Scholar
Castellanos, A. (2011). Home ranges of Andean bears in Intag region, Ecuador. Ursus 22: 6573.CrossRefGoogle Scholar
Castellanos, A. (2014). Co-occurrence of Andean bear and mountain tapir in the Papallacta region, Cayambe Coca National Park, Ecuador: A brief description. International Bear News Summer 23(2).Google Scholar
Castellanos, A. (2015). Maternal behaviour of a female Andean bear in the paramo of Cayambe Coca National Park, Ecuador. 10.13140/RG.2.1.4185.0405.Google Scholar
Castellanos, A. & Jackson, D. (2018). Biological Research: Does Rebecca, a seasoned Andean bear mother, show seasonal birthing patterns? International Bear News Fall 27(3).Google Scholar
Castellanos, A., Altamirano, M. & Tapia, G. (2001). Ecology and behaviour of reintroduced Andean bears in the Biological Reserve Maquipucuna, Ecuador: implications in conservation. Ukuku, Boletín Informativo sobre la Conservación del Oso Andino 3: 2326.Google Scholar
Castellanos, A., Arias, L., Jackson, D. & Castellanos, R. (2010). Hematological and serum biochemical values of Andean bears in Ecuador. Ursus 21: 115120.Google Scholar
Castellanos, A., Jackson, D. & Arias, L. (2016). Guidelines for the rescue, rehabilitation, release and post-release monitoring of Andean bears. Quito, Ecudador: Andean Bear Foundation.Google Scholar
Castellanos, A., Jackson, D. & Ascanta, M. (2019). Are reports of cub abandonment in Andean bears a result of increasing human encroachment? International Bear News Spring 28(1): 1415.Google Scholar
Christiansen, P. (2007). Evolutionary implications of bite mechanics and feeding ecology in bears. Journal of Zoology 272: 423443.Google Scholar
Christiansen, P. & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88: 347358.Google Scholar
Claro-Hergueta, F., Dollinger, P., Göltenboth, R., et al. (2007) EAZA Ursid husbandry guidelines. Köln, Germany: Kölner Zoo.Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322(5899): 258261.Google Scholar
Cosse, M., Fernando Del Moral Sachetti, J., Mannise, N. & Acosta, M. (2014). Genetic evidence confirms presence of Andean bears in Argentina. Ursus 25(2): 163172.Google Scholar
Cuesta, F. & Suárez, L. (2001). Oso de anteojos (Tremarctos ornatus). Quito, Ecuador: SIMBIO/EcoCiencia/Ministerio del Ambiente/IUCN.Google Scholar
Cuvier, F. (1825). Ours des cordilières du chili. En: Histoire Naturelle des Mammifères, Tomo V (Geoffroy-Saint-Hilaire, E. & Cuvier, F.G.). Paris: Belin Éditeur.Google Scholar
Drake, G. J., Nuttall, T., López, J., et al. (2017). Treatment success in three Andean bears (Tremarctos ornatus) with alopecia syndrome using oclacitinib maleate (Apoquel®). Journal of Zoo and Wildlife Medicine 48(3): 818828.Google Scholar
Domico, T. & Newman, M. (1988). Bears of the world. New York, NY: Facts on File.Google Scholar
Emmons, L. & Feer, F. (1997). Neotropical rainforest mammals: A field guide. Chicago, IL: University of Chicago Press.Google Scholar
Enciso, M. A. & Guimarães, M. A. B. V. (2013). Knowing the reproductive endocrinology in the female Andean bear through non-invasive methods. International Bear News 22: 3334.Google Scholar
Espinosa, S. & Jacobson, S. K. (2012). Human–wildlife conflict and environmental education: evaluating a community program to protect the Andean bear in Ecuador. The Journal of Environmental Education 43: 155165.Google Scholar
Figueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus 26: 2127.Google Scholar
Figueroa, J. & Stucchi, M. (2009). El oso andino: alcance sobre su historia natural. Lima, Peru: Asociación para la Investigación y Conservación de la Biodiversidad.Google Scholar
García-Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42(2): 85119.Google Scholar
Garshelis, D. L. (2004). Variation in ursid life histories: is there an outlier? In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas. Biology and conservation (pp. 5373). Berkeley, CA: University of California Press.Google Scholar
Garshelis, D. L. (2009). Family Ursidae. In: Wilson, D. E. & Mittermeier, R. A. (Eds.), Handbook of the mammals of the world: Volume 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Goldstein, I. (1989). Distribution, habitat use, and diet of spectacled bears (Tremarctos ornatus) in Venezuela. In Rosenthal, M. A. (Ed.), Proceedings of the First International Symposium on the Spectacled Bear. Chicago, IL: Lincoln Park Zoological Gardens.Google Scholar
Goldstein, I. (1991). Spectacled bear predation and feeding behaviour on livestock in Venezuela. Studies on Neotropical Fauna and Environment 26: 231235.Google Scholar
Goldstein, I. & Salas, L. (1993). Foraging pattern on Puya sp. (Bromeliaceae) by Tremarctos ornatus (Ursidae) at Páramo El Tambor, Venezuela. Ecotrópicos 6: 2429.Google Scholar
Goldstein, I., Guerrero, V. & Moreno, R. (2008). Are there Andean bears in Panamá? Ursus 19: 185189.Google Scholar
Hall, A. L. (2017). Spectacled bear studbook, Tremarctos ornatus. St Helier, Jersey: Durrell Wildlife Conservation Trust.Google Scholar
Hershkovitz, P. (1957). On the possible occurrence of the spectacled bear Tremarctos ornatus (F. Cuvier, 1825) in Panama. Säugetierkundliche Mitteilungen 5: 122123.Google Scholar
Hoffman, D., Oetting, I., Arnillas, C. A. & Ulloa, R. (2011). Cambio climático y áreas protegidas en los Andes Tropicales. In: Herzog, S. K., Martínez, R., Jørgensen, P. M. & Tiessen, H. (Eds.), Climate change and biodiversity in the Tropical Andes. Säo José dos Campos: Inter-American Institute for Global Change Research (IAI) and Paris, France: Scientific Committee on Problems of the Environment (SCOPE).Google Scholar
IPCC. (2013). Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.Google Scholar
Jackson, D., Castellanos, A. & Vasquez, D. (2017). Kinship relations in a multi-generational Andean bear (Tremarctos ornatus) family in north Ecuador. International Bear News Spring 26(1): 24.Google Scholar
Kattan, G., Hernandez, O. L., Goldstein, I., et al. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38: 155163.Google Scholar
Kurten, B. (1966). Pleistocene bears of North America. 1. Genus Tremarctos, spectacled bear. Acta Zoologica Fennica 115: 1120.Google Scholar
Laguna, A. (2013). Estudio del conflicto hombre-oso en el norte de Ecuador. Actas del I Simposio Latinoamericano de Tapires & II Congreso Ecuatoriano de Mastozoología, Puyo, Ecuador.Google Scholar
Laguna, A. & Jurrius, I. (2018). Manual de Atención y Prevención de Ataques por Oso Andino (Tremarctos ornatus) al Ganado en Ecuador. Quito, Ecuador: Ministerio del Ambiente.Google Scholar
Macdonald, D. (2001). The new encyclopedia of mammals. Oxford, UK: Oxford University Press.Google Scholar
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20: 538548.Google Scholar
Mitchell, K. J., Bray, S. C., Bover, P., et al. (2016). Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biology Letters 12: 14.Google Scholar
Mondolfi, E. (1989). Notes on the distribution, habitat, food habits, status and conservation of the spectacled bear (Tremarctos ornatus) in Venezuela. Mammalia 53: 525544.Google Scholar
Morales-Vargas, A. M. (2003). Evaluación de Daños Causados por Vertebrados Silvestres en Maizales de Pajan, K’Apna y Wayrapata (ANMIN Apolobamba, La Paz – Bolivia). BSc dissertation, Universidad Mayor de San Andrés, La Paz, Bolivia.Google Scholar
Moritz, C. (1994). Defining “evolutionarily significant units” for conservation. Trends in Ecology and Evolution 9: 373375.Google Scholar
Paisley, S. (2001). Andean bear and people in Apolobamba, Bolivia: culture, conflict and conservation. PhD thesis, University of Kent, Kent, UK.Google Scholar
Paisley, S. & Garshelis, D. L. (2006). Activity patterns and time budgets of Andean bears (Tremarctos ornatus) in the Apolobamba Range of Bolivia. Journal of Zoology (London) 268: 2534.Google Scholar
Peyton, B. (1986). A method for determining habitat components of the spectacled bear (Tremarctos ornatus). Vida Silvestre Neotropical 1: 6878.Google Scholar
Peyton, B. (1999). Spectacled bear conservation action plan. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 157198). Gland, Switzerland: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Rodríguez-Clark, K. M. & Sánchez-Mercado, A. (2006). Population management of threatened taxa in captivity within their natural ranges: lessons from Andean bears (Tremarctos ornatus) in Venezuela. Biological Conservation 129: 134148.Google Scholar
Ruiz-García, M. (2003). Molecular population genetic analysis of the spectacled bear (Tremarctos ornatus) in the northern Andean area. Hereditas 138: 8193.Google Scholar
Ruiz-García, M., Arias, J. Y., Castellanos, A., Kolter, L. & Shostell, J. M. (2018). Molecular evolution (mitochondrial and nuclear microsatellites markers) in the Andean bear (Tremarctos ornatus; Ursidae, Carnivora): How many ESUs are there? In: Ortega, J. & Maldonado, J. E. (Eds.), Conservation genetics in mammals. Cham: Springer-Verlag.Google Scholar
Ruiz-García, M., Arias, J. Y., Restrepo, H., Cáceres-Martínez, C. & Shostell, J. M. (2019a). The genetic structure of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Colombia by means of mitochondrial and microsatellite markers. Journal of Mammalogy (in press).CrossRefGoogle Scholar
Ruiz-García, M., Castellanos, A., Arias, J.Y., Shostell, J.M. (2019b). Genetics of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Ecuador: when the Andean Cordilleras are not an obstacle. Mammalian Biology (in press).Google Scholar
Rumiz, D. I., Brown, A. D., Perovic, P. G., et al. (2012). El Ucumar (Tremarctos ornatus), mito y realidad de su presencia en la Argentina. Mastozoología neotropical 19(2).Google Scholar
Sacco, T. & Van Valkenburgh, B. (2004). Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology 263: 4154.Google Scholar
Salesa, M. J., Siliceo, G., Antón, M., et al. (2006). Anatomy of the ‘false thumb’ of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geológicos 62: 389394.Google Scholar
Schaul, J. C. (2006). Baylisascaris transfuga in captive and free-ranging populations of bears (Family: Ursidae). Dissertation, The Ohio State University, Ohio, USA.Google Scholar
Servheen, C., Herrero, H. & Peyton, B. (1999). Bears: Status survey and conservation action plan. Gland, Switzerland: IUCN.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 42: 84119.Google Scholar
Stirling, I. & Derocher, A. E. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. In: Bears: Their biology and management (pp. 189204). Missoula, MT: International Association for Bear Research and Management.Google Scholar
Surkin, J., Flores, M., Ledezma, J. C., et al. (2010). Integrating protected areas and landscapes: Lessons from the Vilcabamba–Amboró conservation corridor (Bolivia–Perú). In: Worboys, G. L., Francis, W. & Lockwood, M. (Eds.), Connectivity conservation management: A global guide (pp. 199211). London, UK: Earthscan.Google Scholar
Thenius, E. (1976). Zur stammesgeschichtlichen Herkunft von Tremarctos (Ursidae, Mammalia). Z. Säugetierk 41: 109114.Google Scholar
Torres, D. (2008). Caracterización de conflictos socio-espaciales entre la ganadería y los grandes mamíferos en el sector cuenca del río Nuestra Señora. Parque Nacional Sierra Nevada, Venezuela. Universidad de Los Andes, Mérida, Venezuela.Google Scholar
Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. (2013). Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 8(5).Google Scholar
Van Horn, R. C., Zug, B., Appleton, R. D., et al. (2015). Photos provide information on age, but not kinship, of Andean bear. PeerJ 3: e1042.Google Scholar
Velez, X. (1999). Caracterización y uso de hábitat por el oso Andino en la cuenca alta del Río San Jacinto, Cochabamba. Thesis, Universidad de San Simón.Google Scholar
Velez-Liendo, X. (2010). Conservation of Andean bears (Tremarctos ornatus) in a fragmented landscape – Habitat models, potential distribution and patch connectivity. Antwerp, Belgium: University of Antwerp.Google Scholar
Velez-Liendo, X. & García-Rangel, S. (2017). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017.Google Scholar
Viteri Espinel, M. P. (2007). Conservation genetics of Andean bears (Tremarctos ornatus) in northeastern Ecuador: molecular tools, genetic diversity and population size. MSc dissertation, University of Idaho, Moscow, ID, USA.Google Scholar
Wolff, P. (1989). Selected medical aspects of the spectacled bear. In: Rosenthal, M. A. (Ed.), Proceedings of the First International Symposium on the Spectacled Bear (pp. 313–318). Chicago, IL: Lincoln Park Zoological Garden.Google Scholar
Yerena, E. & García-Rangel, S. (2010). The implementation of an interconnected system of protected areas in the Venezuelan Andes. In: Worboys, G. L., Francis, W. & Lockwood, M. (Eds.), Connectivity conservation management: A global guide (pp. 233244). London: Earthscan.Google Scholar

References

Allen, G. M. (1938). The mammals of China and Mongolia. Natural history of central Asia. New York, NY: The American Museum of Natural History.Google Scholar
Animals Asia. (2011). Bear farming industry in China. Chengdu, China: Animals Asia Foundation.Google Scholar
Augeri, D. M. (2005). On the biogeographic ecology of the Malayan Sun Bear. Cambridge, UK: University of Cambridge.Google Scholar
BANCA. (2017). The bear trade and the bear farms in cross-border regions in eastern Myanmar. Yangon, Myanmar: Biodiversity and Nature Conservation Association.Google Scholar
Blake, C. N. & Collins, D. (2002). Captive ursids: results and selected findings of a multi-institutional study. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Milwaukee, Wisconsin, October 5–10 (pp. 2126). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Blanchard, B. M. & Knight, R .R. (1991). Movements of Yellowstone grizzly bears. Biological Conservation 58: 4167.Google Scholar
Bourne, D. C., Cracknell, J. M. & Bacon, H. J. (2010). Veterinary issues related to bears (Ursidae). International Zoo Yearbook 44: 1632.Google Scholar
Burgess, E. A., Stoner, S. S. & Foley, K. E. (2014). Brought to bear: An analysis of seizures across Asia (2000–2011). Petaling Jaya, Selangor, Malaysia: TRAFFIC Southeast Asia.Google Scholar
Canfield, P., Bellamy, T., Blyde, D., et al. (1990). Pancreatic lesions and hepatobiliary neoplasia in captive bears. Journal of Zoo and Wildlife Medicine 21: 471475.Google Scholar
Chakraborty, R. (2003). A catalogue of mammalian exhibits of zoological gallaries of the Indian Museum. Records of the Zoological Survey of India. Occasional Paper No. 219: 199.Google Scholar
Cheah, C. (2013). The ecology of Malayan sun bears (Helarctos malayanus) at the Krau Wildlife Reserve, Pahang, Malaysia and adjacent plantations. PhD dissertation, University Putra Malaysia, Malaysia.Google Scholar
Chien, Y. C., Lien, C. Y., Guo, J. C., et al. (2013). Meningothelial meningioma in a Malayan sun bear (Helarctos malayanus). Journal of Veterinary Diagnostic Investigation 25: 636640.Google Scholar
Crudge, B., Lees, C., Hunt, M., et al. (2019). Sun bears: Global status review & conservation action plan, 2019–2028. IUCN SSC Bear Specialist Group/IUCN SSC Conservation Planning Specialist Group/Free the Bears/TRAFFIC. Available from https://portals.iucn.org/library/sites/library/files/documents/2019-041-En.pdfGoogle Scholar
Dathe, H. (1962). Breeding the Malayan bear Helarctos malayanus. International Zoo Yearbook 3: 92.Google Scholar
Dathe, H. (1970). A second generation birth of captive sun bears: at East Berlin Zoo. International Zoo Yearbook 10: 7979.Google Scholar
Dathe, H. (1975). Malayan sun bears. In: Grzimek’s animal life encyclopedia (pp. 141142). New York, NY: Van Nostrand Reinhold Company.Google Scholar
Domico, T. (1988). Bears of the world, 3rd edn. New York, NY: Facts on File.Google Scholar
Dutton, A. J., Hepburn, C. & Macdonald, D. W. (2011). A stated preference investigation into the Chinese demand for farmed vs. wild bear bile. PLoS ONE 6: e21243.Google Scholar
Education for Nature. (2017). Progress tackling wildlife crime illuminates challenges ahead. Wildlife Crime 1: 4.Google Scholar
Erdbrink, D. P. (1953). A review of the fossil and recent bears of the Old World with remarks on their philogenese based upon their dentition. Deventer: Drukkerij Jan de Lange.Google Scholar
Fetherstonhaugh, A. H. (1940). Some notes on Malayan bears. The Malayan Nature Journal 1: 1519.Google Scholar
Fleming, M. & Burn, C. C. (2014). Behavioural assessment of dental pain in captive Malayan sun bears (Helarctos malayanus). Animal Welfare 23: 131140.Google Scholar
Foley, K. E., Stengel, C. J. & Shepherd, C. R. (2011). Pills, powders, vials and flakes: The bear bile trade in Asia. Petaling Jaya; Cambridge: Traffic Southeast Asia.Google Scholar
Frederick, C. (2008). The reproductive biology and behavior of the sun bear (Ursus malayanus). Seattle, WA: University of Washington.Google Scholar
Frederick, C., Kyes, R., Hunt, K., et al. (2010). Methods of estrus detection and correlates of the reproductive cycle in the sun bear (Helarctos malayanus). Theriogenology 74: 11211135.Google Scholar
Frederick, C., Hunt, K. E., Kyes, R., Collins, D. & Wasser, S. K. (2012). Reproductive timing and aseasonality in the sun bear (Helarctos malayanus). Journal of Mammalogy 93: 522531.CrossRefGoogle Scholar
Frederick, C., Hunt, K., Kyes, R., et al. (2013). Social influences on the estrous cycle of the captive sun bear (Helarctos malayanus). Zoo Biology 32: 581591.Google Scholar
Fredriksson, G. (2005). Human–sun bear conflicts in East Kalimantan, Indonesian Borneo. Ursus 16: 130137.Google Scholar
Fredriksson, G. (2012). Effects of El Niño and large-scale forest fires on the ecology and conservation of Malayan sun bears (Helarctos malayanus) in East Kalimantan. Institute for Biodiversity and Ecosystem Dynamics. PhD dissertation, University of Amsterdam, Netherlands.Google Scholar
Fredriksson, G. M., Wich, S. A. & Trisno, . (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89: 489508.Google Scholar
Gai, J. J. & Marks, S. L. (2008). Salmon poisoning disease in two Malayan sun bears. Journal of the American Veterinary Medical Association 232: 586588.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19: 8586.Google Scholar
Garshelis, D. L. (2004). Variation in ursid life histories: is there an outlier? In: Lindburg, D. & Baragona, K. (Eds.), Giant pandas: Biology and conservation (pp. 5373). Los Angeles, CA: University of California Press.Google Scholar
Garshelis, D. & Steinmetz, R. (2016). Ursus thibetanus, Asiatic black bear. IUCN Red List of Threatened Species. www.iucnredlist.orgGoogle Scholar
Goodnight, A. L. & Emanuelson, K. (2012). Two cases of canine adenovirus type 1 infection in Malayan sunbears (Helarctos malayanus) at the Oakland Zoo, California. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Oakland, California, October 21–26 (p. 77). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Goeritz, F., Hermes, R., Jewgenow, K., et al. (2006). High incidence of cysts of the cervix uteri in captive Malayan sun bears. In: Proceedings from the Annual Conference of the American Association of Zoo Veterinarians, Tampa, Florida, September 19–24 (pp. 114115). Schaumberg, IL: American Association of Zoo Veterinarians.Google Scholar
Griffiths, M. & Schaik, C. P. (1993). The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife. Conservation Biology 7: 623626.Google Scholar
Groves, M. G. (1969). Griseofulvin treatment of Microsporum canis infection in Malayan sun bears (Helarctos malayanus). Journal of the American Veterinary Medical Association 155: 10901092.Google Scholar
Hall, S. S. & Swaisgood, R. R. (2009). Maternal care and cub development in the sun bear. Ursus 20: 143151.Google Scholar
Hesterman, H., Wasser, S. K. & Cockrem, J. F. (2005). Longitudinal monitoring of fecal testosterone in male Malayan sun bears (U. malayanus). Zoo Biology 24: 403417.Google Scholar
Higgins, J. C. (1932). The Malay bear. Journal of the Bombay Natural History Society 35: 673674.Google Scholar
Hughes, J. B., Round, P. D. & Woodruff, D. S. (2003). The Indochinese–Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal of Biogeography 30: 569580.Google Scholar
Hwang, M. H. & Garshelis, D. L. (2007). Activity patterns of Asiatic black bears (Ursus thibetanus) in the Central Mountains of Taiwan. Journal of Zoology 271: 203209.Google Scholar
IUCN. (2012). Resolutions and Recommendations World Conservation Congress. Jeju, Republic of Korea, September 6–15. Gland, Switzerland: IUCN.Google Scholar
IUCN. (2016). The IUCN Red List of Threatened Species. Gland, Switzerland: IUCN.Google Scholar
Jenantika, P. U., Fahrimal, Y. & Sayuti, A. (2019). Identifikasi parasit gastrointestinal pada beruang madu (Helarctos malayanus) di Taman Margasatwa medan [Identification of gastrointestinal parasites in sun bear (Helarctos malayanus) in Taman Margasatwa]. Jurnal Ilmiah Mahasiswa Veteriner 3: 142148.Google Scholar
Johnston, L. A., Donoghue, A. M., Igo, W., et al. (1994). Oocyte recovery and maturation in the American black bear (Ursus americanus): a model for endangered ursids. Journal of Experimental Zoology 269: 5361.Google Scholar
Kitchener, A. C. (2004). The problems of old bears in zoos. International Zoo News 51: 282293.Google Scholar
Kompanje, E. J. O., Klaver, P. S. J. & de Vries, G. Th. (2000). Spondyloarthropathy and osteoarthosis in three Indomalayan bears: Ursus ursinus Cuvier, 1823, Ursus thibetanus Raffles, 1821, and Ursus malayanus Shaw & Nodder, 1791 (Mammalia: Carnivora: Ursidae). Contributions to Zoology 69: 259269.Google Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8: 220. doi: 10.1186/1471-2148-8-220.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2017). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31: 20042017.Google Scholar
Lam, L., Garner, M. M., Miller, C. L., et al. (2013). A novel gammaherpesvirus found in oral squamous cell carcinomas in sun bears (Helarctos malayanus). Journal of Veterinary Diagnostic Investigation 25: 99106.Google Scholar
Lekagul, B. & McNeely, J. A. (1977). Mammals of Thailand. Bangkok, Thailand: Association for the Conservation of Wildlife.Google Scholar
Linkie, M., Dinata, Y., Nugroho, A. & Haidir, I.A. (2007). Estimating occupancy of a data deficient mammalian species living in tropical rainforests: sun bears in the Kerinci Seblat region, Sumatra. Biological Conservation 137: 2027.Google Scholar
Livingstone, E. & Shepherd, C. R. (2014). Bear farms in Lao PDR expand illegally and fail to conserve wild bears. Oryx 50: 19.Google Scholar
Livingstone, E., Gomez, L. & Bouhuys, J. (2018). A review of bear farming and bear trade in Lao People’s Democratic Republic. Global Ecology and Conservation 13: e00380.Google Scholar
Marti, K., Theis, M., Lindsey, S., et al. (2012). Mainland sun bear (Helarctos malayanus malayanus) and Bornean sun bear (Helarctos malayanus euryspilus). AZA Animal Program Population Viability Analysis Report. Chicago, IL: American Association of Zoo Veterinarians.Google Scholar
McConkey, K. & Galetti, M. (1999). Seed dispersal by the sun bear Helarctos malayanus in Central Borneo. Journal of Tropical Ecology 15: 237241.Google Scholar
McLellan, B. & Reiner, D. C. (1994). A Review of Bear Evolution. Bears: Their Biology and Management. Vol. 9, Part 1: A Selection of Papers from the Ninth International Conference on Bear Research and Management, Missoula, Montana, February 23–28 (pp. 8596). Anchorage, AK: International Association for Bear Research and Management.Google Scholar
McLellan, B. N., Proctor, M. F., Huber, D. & Michel, S. (2017). Ursus arctos, Brown bear. IUCN Red List of Threatened Species. www.iucnredlist.org.Google Scholar
Meijaard, E. (1999). Human-imposed threats to sun bears in Borneo. Ursus 11: 185192.Google Scholar
Meijaard, E. (2004). Craniometric differences among Malayan sun bears (Ursus malayanus); evolutionary and taxonomic implications. Raffles Bulletin of Zoology 52: 665672.Google Scholar
Miettinen, J., Shi, C. & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology 17: 22612270.Google Scholar
Montali, R. J., Hoopes, P. J. & Bush, M. (1981). Extrahepatic biliary carcinomas in Asiatic bears. Journal of the National Cancer Institute 66: 603608.Google Scholar
Mylniczenko, N. D., Manharth, A. L., Clayton, L. A., Feinmehl, R. & Robbins, M. (2005). Successful treatment of mandibular squamous cell carcinoma in a Malayan sun bear (Helarctos malayanus). Journal of Zoo and Wildlife Medicine 36: 346348.Google Scholar
Nooren, H. & Claridge, G. (2001). Wildlife trade in Laos: The end of the game. Netherlands: International Union for Conservation of Nature.Google Scholar
Normua, F., Higashi, S., Ambu, L. & Mohamed, M. (2004). Notes on oil palm plantation use and seasonal spatial relationships of sun bears in Sabah, Malaysia. Ursus 15: 227231.Google Scholar
Nowak, R. M. (1991). Walker’s mammals of the world. Choice Reviews Online. Fifth edition. Baltimore, MD: John Hopkins University Press.Google Scholar
Nunn, C. L., Rothschild, B. & Gittleman, J. L. (2007). Why are some species more commonly afflicted by arthritis than others? A comparative study of spondyloarthropathy in primates and carnivores. Journal of Evolutionary Biology 20: 460470.Google Scholar
Officer, K., Lan, N. T., Wicker, L., et al. (2014). Foot-and-mouth disease in Asiatic black bears (Ursus thibetanus). Journal of Veterinary Diagnostic Investigation 26: 705713.Google Scholar
Onuma, M., Suzuki, M. & Ohtaishi, N. (2001). Reproductive pattern of the sun bear (Helarctos malayanus) in Sarawak. Journal of Veterninary Medicine Science 63: 293297.Google Scholar
Owen, M. A., Hall, S., Bryant, L. & Swaisgood, R. R. (2014). The influence of ambient noise on maternal behavior in a Bornean sun bear (Helarctos malayanus euryspilus). Zoo Biology 33: 4953.Google Scholar
Payne, J., Francis, C. M. & Philipps, K. (1989). A field guide to the mammals of Borneo. Sabah, Malaysia: The Sabah Society with World Wildlife Fund Malaysia.Google Scholar
Pocock, R. (1917). A new genus of Ursidae. Annals and Magazine of Natural History 8: 128129.Google Scholar
Pocock, R. I. (1932). The black and brown bears of Europe and Asia. Part II. Journal of the Bombay Natural History Society 36: 101138.Google Scholar
Pocock, R. I. (1941). The fauna of British India, including Ceylon and Burma. Mammalia. London, UK: Taylor & Francis.Google Scholar
Poglayen-Neuwell, I. (1986). An unusual method of transport of young sun bears by their mothers. Der Zoologische Garten 56, 437438.Google Scholar
Rogers, L. L. & Rogers, S. M. (1976). Parasites of bears: a review. Proceedings of the Third International Conference on Bears Paper 42: 411–430.Google Scholar
Sasaki, M., Endo, H., Wiig, Ø., et al. (2005). Adaptation of the hindlimbs for climbing in bears. Annals of Anatomy 187: 153160.Google Scholar
Schwarzenberger, F., Schaller, K., Chaduc, Y., Pagan, O. & Kolter, L. (1998). Faecal steroid analysis for monitoring ovarian function and the effect of PZP (porcine zona pellucida protein) in the sun bear (Helarctos malayanus). Proceedings of the European Association of Zoo and Wildlife Veterinarians 2: 387395.Google Scholar
Schwarzenberger, F., Fredriksson, G., Schaller, K. & Kolter, L. (2004). Fecal steroid analysis for monitoring reproduction in the sun bear (Helarctos malayanus). Theriogenology 62: 16771692.Google Scholar
Scotson, L. (2019). Exploring potential range connectivity of sun bear (Carnivora: Ursidae: Ursinae). Raffles Bulletin of Zoology 67: 6776.Google Scholar
Scotson, L. & Brocklehurst, M. (2013). Bear poaching in Lao PDR is exposed as an increasing threat to wild populations. International Bear News 22: 2223.Google Scholar
Scotson, L., Vannachomchan, K. & Sharp, T. (2014). More valuable dead than deterred? Crop-raiding bears in Lao PDR. Wildlife Society Bulletin 38.Google Scholar
Scotson, L., Fredriksson, G., Augeri, D., et al. (2017a). Helarctos malayanus, sun bear. IUCN Red List of Threatened Species. www.iucnredlist.orgGoogle Scholar
Scotson, L., Fredriksson, G., Ngoprasert, D., Wong, W. M. & Fieberg, J. (2017b). Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE 12: doi: 10.1371/journal.pone.0185336.Google Scholar
Servheen, C., Herrero, S., Peyton, B., et al. (1999). Bears: Status survey and conservation action plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Goups.Google Scholar
Snyder, R. & Thompson, D. (2015). Bear TAG Regional Collection Plan, 4th edition. Maryland: Bear Taxon Advisory Group, Association of Zoos and Aquaria.Google Scholar
Sodhi, N. S., Posa, M. R. C., Lee, T. M., et al. (2010). The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation 19: 317328.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37: 2153.Google Scholar
Steinmetz, R. (2011). Ecology and distribution of sympatric Asiatic black bears and sun bears in the seasonally dry forests of Southeast Asia. The ecology and conservation of seasonally dry forests in Asia. Washington DC: Smithsonian Institution Scholarly Press.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 6: e14509.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94: 118.Google Scholar
Stirling, I. & Derocher, A. E. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. Bears: Their Biology and Management 8: 189204.Google Scholar
Tumbelaka, L. & Fredriksson, G. M. (2006). The status of sun bears in Indonesia. In: Understanding Asian bears to secure their future (pp. 7378). Ibaraki: Japan Bear Network.Google Scholar
Vang, S., Longley, K., Steer, C. J., et al. (2016). Assessing the illegal bear trade in Myanmar through conversations with poachers: topology, perceptions, and trade links to China. PLoS ONE 11: 14.Google Scholar
Weber, E. (1969). Notes on hand rearing a Malayan sun bear Helarctos malayanus at Melbourne Zoo. International Zoo Yearbook 9: 163163.Google Scholar
Wong, S. T., Servheen, C. W. & Ambu, L. (2004). Home range, movement and activity patterns, and bedding sites of Malayan sun bears Helarctos malayanus in the rainforest of Borneo. Biological Conservation 119: 169181.Google Scholar
Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21: 627639.Google Scholar
Wong, W. M., Leader-Williams, N. & Linkie, M. (2013). Quantifying changes in sun bear distribution and their forest habitat in Sumatra. Animal Conservation 16: 216223.Google Scholar
Wroughton, R. C. (1916). Bombay Natural History Society’s mammal survey of India, Burma and Ceylon. Journal of the Bombay Natural History Society 24: 773782.Google Scholar
Zhang, Y. P. & Ryder, O. A. (1994). Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 3: 351359.Google Scholar

References

Abella, J., Alba, D. M., Robles, J. M., et al. (2012). Kretzoiarctos gen. nov., the oldest member of the giant panda clade. PLoS ONE 7(11): e48985. doi:10.1371/journal.pone.0048985Google Scholar
Akhtar, N. (2004). Habitat use and ranging pattern of sloth bear (Melursus ursinus) in North Bilaspur Forest Division, Madhya Pradesh. Doctorate Degree at Saurastra University Rajkot, Gujarat.Google Scholar
Akhtar, N., Bargali, H. S. & Chauhan, N. P. S. (2004). Sloth bear habitat use in disturbed and unprotected areas of Madhya Pradesh, India. Ursus 15: 203211.Google Scholar
Akhtar, N., Bargali, H. S. & Chauhan, N. P. S. (2007). Characteristics of sloth bear day dens and use in disturbed and unprotected habitat of North Bilaspur Forest Division, Chhattisgarh, Central India. Ursus 18: 203208.Google Scholar
Anderson, K., Garner, M. M. & Dennis, P. M. (2018). Causes of mortality in sloth bears (Melursus ursinus) housed in U.S. zoos. The Journal of Zoo and Aquarium Research 6(1).Google Scholar
Anonymous. (2018a). Annual Inventory reports of zoo animals. http://cza.nic.in/page/en/inventory-of-animals-in-zoosGoogle Scholar
Anonymous. (2018b). International studbooks for rare species of wild animals in captivity. International Zoo Yearbook 52: 448478. DOI:10.1111/izy.12194.Google Scholar
Arun, A. S., Sharp, T., Pillai, H., et al. (2017). Sloth bear (Melursus ursinus) maternity denning at the Wildlife SOS Bannerghatta Bear Rescue Centre, India. International Zoo Yearbook 52: 110. DOI:10.1111/izy.12179.Google Scholar
Baneth, G., Aroch, I., Tai, N., et al. (1998). Hepatozoon species infection in domestic cats: a retrospective study. Veterinary Parasitology 79: 123133.Google Scholar
Bargali, H. S. (2012). Distribution of different species of bears and status of human–bear conflict in the State of Uttarakhand, India. Advances in Biological Research 6(3): 121127.Google Scholar
Bargali, H. S., Akhtar, N. & Chauhan, N. P. S. (2004). Feeding ecology of sloth bears (Melursus ursinus) in a disturbed area in central India. Ursus 15(2): 212217.Google Scholar
Bargali, H. S., Akhtar, N. & Chauhan, N. P. S. (2005). Characteristics of sloth bear attacks and human casualties in North Bilaspur Forest Division, Chhattisgarh, India. Ursus 16(2): 263267.Google Scholar
Baskaran, N. (1990). An ecological investigation on the dietary composition and habitat utilization of sloth bear (Melursus ursinus) at Mudumalai wildlife sanctuary, Tamil Nadu (South India). MPhil thesis, A.V.C. College, Mannambandal, Tamil Nadu, India.Google Scholar
Baskaran, N., Sivanagesan, N. & Krishnamoorthy, J. (1997). Food habits of the sloth bear at Mudumalai Wildlife Sanctuary, Tamil Nadu, South India. Journal of the Bombay Natural History Society 94: 19.Google Scholar
Baskaran, N., Sivanagesan, N., Krishnamoorthy, J., et al. (2015). On the behavioural ecology of sloth bear (Melursus ursinus Shaw 1791) in Mudumalai Wildlife Sanctuary, Western Ghats, India. In Gupta, V. K. & Verma, A. K. (Eds.), Animal diversity, natural history and conservation (Vol. 5, pp. 313333). New Delhi: Daya Publishing House.Google Scholar
Brander, A. A. D. (1982). Wild animals in central India. Dehradun: Natraj Publishers.Google Scholar
Choudhury, A. U. (2011). Records of sloth bear and Malayan sun bear in North East India. Final report to International Association for Bear Research & Management (IBA). Guwahati, Assam, India: The Rhino Foundation for Nature in NE India.Google Scholar
Corbet, G. B. & Hill, J. E. (1992). The mammals of the Indomalayan region: A systematic review. London: Natural History Museum Publications, and Oxford: Oxford University Press.Google Scholar
Cowan, I. McT. (1972). The status and conservation of bears (Ursidae) of the world –1970. International Conference on Bear Research and Management 2: 343367.Google Scholar
D’Cruze, N., Sarma, U. K., Mookerjee, A., et al. (2011). Dancing bears in India: a sloth bear status report. Ursus 22(2): 99105.Google Scholar
Debata, S., Swain, K. K., Sahu, H. K., et al. (2017). Human–sloth bear conflict in a human-dominated landscape of northern Odisha, India. Ursus 27(2):9098.Google Scholar
Desai, A. A., Bhaskaran, N. & Ventaktesh, S. (1997). Behavioural ecology of the sloth bear in Mudumalai Wildlife Sanctuary and National Park. Tamil Nadu and Bombay Natural History Society collaborative project. Mumbai, India.Google Scholar
Dhamorikar, A. H., Mehta, P., Bargali, H., et al. (2017). Characteristics of human–sloth bear (Melursus ursinus) encounters and the resulting human casualties in the Kanha–Pench corridor, Madhya Pradesh, India. PLoS ONE 12(4): e0176612. https://doi.org/10.1371/journal.pone.0176612Google Scholar
Dharaiya, N., Bargali, H. S. & Sharp, T. (2016). Melursus ursinus. The IUCN Red List of Threatened Species 2016. e.T13143A45033815.http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T13143A45033815.enGoogle Scholar
Eisenberg, J. F. & Lockhart, M.C. (1972). An ecological reconnaissance of Wilpattu National Park, Ceylon. Smithsonian Contributions to Zoology 101: 1119.Google Scholar
Erdbrink, D. P. (1953). A review of fossil and recent bears of the Old World. Deventer: Drukkerij Jan de Lange.Google Scholar
Garcia, K. C., Joshi, H. M. & Dharaiya, N. (2016). Assessment of human–sloth bear conflicts in North Gujarat, India. Ursus 27(1): 510.Google Scholar
Garshelis, D. L., Joshi, A. R., Smith, J. L. D., et al. (1999a). Sloth bear conservation action plan. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.), Bears: Status survey and conservation action plan (pp. 225240). Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Garshelis, D., Joshi, A. & Smith, D. (1999b). Estimating density and relative abundance of sloth bears. Ursus 11: 8798.Google Scholar
Garshelis, D. L., Dhariaya, N. A., Sharp, T. R., et al. (2015). Sloth bears at the northern edge of their range: Status of the transboundary population linking northeastern India to Bhutan. Final report to International Association for Bear Research and Management.Google Scholar
Gopal, R. (1991). Ethological observations on the sloth bear (Melursus ursinus). Indian Forester 117: 915920.Google Scholar
Heath, D. C. & Mellen, J. D. (1983). Development of maternally reared sloth bear cubs in captivity. Unpublished Sixth International Conference on Bear Research and Management.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A., et al. (2013). Status of bears in Bangladesh: Going, going, gone? Ursus 24: 8390.Google Scholar
Jacobi, E. F. (1975). Breeding sloth bears in Amsterdam zoo. In: Martin, R. D. (Ed.), Breeding endangered species in captivity (pp. 351356). London: Academic Press.Google Scholar
Jhala, Y. V., Gopal, R. & Qureshi, Q. (Eds.). (2008). Status of tigers, co-predators and prey in India. Dehradun: National Tiger Conservation Authority, New Delhi, and Wildlife Institute of India.Google Scholar
Johnsingh, A. J. T. (2003). Bear conservation in India. The Journal of the Bombay Natural History Society 100: 190201.Google Scholar
Joshi, A. R., Garshelis, D. L. & Smith, J. L. D. (1995). Home ranges of sloth bears in Nepal: implications for conservation. Journal of Wildlife Management 59: 204213.Google Scholar
Joshi, A. R., Garshelis, D. L. & Smith, J. L. D. (1997). Seasonal and habitat-related diets of sloth bears in Nepal. Journal of Mammalogy 78: 584597.Google Scholar
Joshi, A. R., Smith, J. L. D. & Garshelis, D. L. (1999). Sociobiology of the myrmecophagous sloth bear in Nepal. Canadian Journal of Zoology 77: 16901704.Google Scholar
Kemf, E., Wilson, A. & Servheen, C. (1999). Bears in the Wild. 1999 WWF Species Status Report. Gland, Switzerland: World Wide Fund For Nature.Google Scholar
Kitchener, A. C. (2010). Taxonomic issues in bears: impacts on conservation in zoos and the wild, and gaps in current knowledge. International Zoo Yearbook, 44: 3346.Google Scholar
Klos, H‐G. & Lang, E. M. (1982). Handbook of Zoo Medicine. New York, NY: Van Nostrand Reinhold Co.Google Scholar
Krause, J., Unger, T., Nocon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8: 220. DOI:10.1186/1471-2148-8-220.Google Scholar
Krishnan, M. (1972). An ecological survey of the large mammals of peninsular India. The Journal of the Bombay Natural History Society 69: 4749.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487. DOI:10.1038/srep46487.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution, 31(8): 20042017. DOI:10.1093/molbev/msu186Google Scholar
Laurie, A. & Seidensticker, J. (1977). Behavioural ecology of the sloth bear (Melursus ursinus). Journal of Zoology, London 182: 187204.Google Scholar
Mardaraj, P. C. (2015). Identifying key issues for conservation of sloth bear (Melursus ursinus) in Rajnilgiri, Odisha, Eastern India. Report submitted to The Rufford Small Grant Foundation, United Kingdom.Google Scholar
Marti, K., Theis, M., Thompson, D., et al. (2012). Sloth bear (Melursus ursinus) AZA Animal Program Population Viability Analysis Report. Chicago, IL: Lincoln Park Zoo.Google Scholar
McNab, B. K. (1992). Rate of metabolism in the termite eating sloth bear (Ursus ursinus). Journal of Mammalogy 73: 168172.Google Scholar
Mewada, T. & Dharaiya, N. (2010). Seasonal dietary composition of sloth bear in the reserve forest of Vijaynagar forest, North Gujarat, India. Tigerpaper 37(2): 813.Google Scholar
Norris, T. (1969). Ceylon sloth bear. International Wildlife 12: 300303.Google Scholar
Pages, M., Calvignac, S., Klein, C., et al. (2008). Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Molecular Phylogenetics and Evolution 47(1): 7383. DOI:10.1016/j.ympev.2007.10.019.Google Scholar
Palita, S. K., Kar, T. & Debata, S. (2014). Human–sloth bear interactions: preliminary survey from Semiliguda range of Koraput Forest Division, Southern Odisha, India. Pranikee-Journal of Zoological Society of Orissa, XXVI: 1321.Google Scholar
Pawar, R. M., Poornachandar, A. & Arun, A.S. (2018). Molecular prevalence and characterization of infection in Indian sloth bears (Melursus ursinus). Wildlife SOS Compendium of Publications 1: 195.Google Scholar
Phillips, W. W. A. (1984). Manual of the mammals of Sri Lanka. Part III, 2nd edition. Bataramulla: Wildlife and Nature Protection Society of Sri Lanka.Google Scholar
Pocock, R. I. (1941a). The Fauna of British India, including Ceylon and Burma. Mammalia. Vol II: Carnivora (suborders Aeluroidae (part) and Arctoidae). London: Taylor and Francis.Google Scholar
Pocock, R. I. (1941b). The black and brown bears of Europe and Asia. Part II. The sloth bear (Melursus) and the Asian black bear (Selenarctos) and the Malayan sun bear (Helarctos). Journal of Bombay Natural History Society 36: 101138.Google Scholar
Prater, S. H. (1980). The book of Indian animals. Bombay: Bombay Natural History Society.Google Scholar
Puschmann, V. W., Schuppel, K. F. & Kronberger, H. (1977). Detection of blastocyst in uterine lumen of Indian bear (Melursus ursinus). In: Ippen, R. & Schrader, H. D. (Eds.), Sickness in zoos (pp. 389391). Berlin: Akademie Verlag [in German with English abstract].Google Scholar
Rajpurohit, K. S. & Chauhan, N. P. S. (1996). Study of animal damage problems in and around protected areas and managed forest in India. Phase I: Madhya Pradesh, Bihar and Orissa. Dehradun: Wildlife Institute of India.Google Scholar
Rajpurohit, K. S. & Krausman, P. R. (2000). Human–sloth-bear conflicts in Madhya Pradesh, India. Wildlife Society Bulletin 28: 393399.Google Scholar
Ramesh, T., Kalle, R., Sankar, K., et al. (2013). Activity pattern of sloth bear Melursusursinus (Mammalia: Ursidae) in Mudumalai Tiger Reserve, Western Ghats, India. Journal of Threatened Taxa 5(5): 39893992. DOI:10.11609/JoTT.o3071.3989-92.Google Scholar
Ratnayeke, S., Wijeyamohan, S. & Santiapillai, C. ( 2006). The status of sloth bears in Sri Lanka. In: Oi, T., Mano, T., Yamazaki, K., et al. (Eds.), Understanding Asian bears to secure their future (pp. 3540). Gifu: Japan Bear Network.Google Scholar
Ratnayeke, S., van Manen, F. T. & Padmalal, U. K. G. K. (2007). Landscape characteristics of sloth bear range in Sri Lanka. Ursus 18: 189202.Google Scholar
Ratnayeke, S., Van Manen, F. T., Pieris, R., et al. (2014). Challenges of large carnivore conservation: sloth bear attacks in Sri Lanka. Human Ecology 42: 467479.Google Scholar
Samad, K. S. A. & Hosetti, B. B. (2017). Sloth bear Melursus ursinus–human conflict: a case study of unprotected bear habitat in Kudligi taluk, Ballari district, Karnataka. International Journal of Zoology Studies 2(6): 255260.Google Scholar
Santiapillai, A. & Santiapillai, C. (1990). Status, distribution and conservation of the sloth bear (Melursus ursinus) in Sri Lanka. Tiger Paper 17(1): 1315.Google Scholar
Sathyakumar, S., Kaul, R., Ashraf, N. V. K., et al. (2012). National Bear Conservation and Welfare Action Plan. Ministry of Environment and Forests, Wildlife Institute of India, and Wildlife Trust of India.Google Scholar
Schaul, J. C. (2006). Baylisascaris transfuga in captive and free-ranging populations of bears (family: Ursidae). Dissertation, Ohio State University.Google Scholar
Servheen, C. (1990). The status and conservation of the bears of the world. Proceedings of the International Conference on Bear Research and Management, Monograph Series 2: 132.Google Scholar
Seshamani, G. & Satyanarayan, K. (1997). The dancing bears of India. London, UK: The World Society for the Protection of Animals.Google Scholar
Sreekumar, P. G. & Balakrishnan, M. (2002). Seed dispersal by the sloth bear (Melursus ursinus) in South India. Biotropica 34: 474477.Google Scholar
Sukhadiya, D., Joshi, J. V. & Dharaiya, N. (2013). Feeding ecology and habitat use of sloth bear in Jassore wildlife sanctuary, Gujarat, India. Indian Journal of Ecology 40(1): 1418.Google Scholar
Swaminathan, S., Arun, A. S., Sharp, T., et al. (2017). Sloth bear pede-marking caught on video. International Bear News 26(2): 2728.Google Scholar
Vineyard, T. (2013). North American regional studbook, sloth bear (Melursus ursinus). Cleveland Metroparks Zoo, Cleveland, OH, 1–20. https://issuu.com/vineyardt/docs/sloth_bear_studbook_2013Google Scholar
Ward, P. & Kynaston, S. (1995). Bears of the world. London, UK: Blandford.Google Scholar
Yoganand, K., Johnsingh, A. J. T. & Rice, C. G. (1999). Annual technical report (October 1998 to September 1999) of the project ‘Evaluating Panna National Park with special reference to the ecology of sloth bear’. Dehradun: Wildlife Institute of India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2005). Evaluating Panna National Park with special reference to the ecology of sloth bear. Final Project Report. Dehradun: Wildlife Institute of India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2006). Is the sloth bear in India secure? A preliminary report on distribution, threats and conservation requirements. Journal of the Bombay Natural History Society 103: 23.Google Scholar

References

Abbas, F., Bhatti, Z., Haider, J. & Mian, A. (2015). Bears in Pakistan: distribution, population biology and human conflicts. Journal of Bioresource Management 2(2): 113.Google Scholar
Ali, A., Waseem, M., Teng, M., et al. (2018). Human–Asiatic black bear (Ursus thibetanus) interactions in the Kaghan Valley, Pakistan. Ethology Ecology & Evolution 30(5): 399415.Google Scholar
Almasieh, K., Kaboli, M. & Beier, P. (2016). Identifying habitat cores and corridors for the Iranian black bear in Iran. Ursus 27(1): 1830.Google Scholar
Amano, M., Oi, T. & Hayano, A. (2004). Morphological differentiation between adjacent populations of Asiatic black bears, Ursus thibetanus japonicus, in northern Japan. Journal of Mammalogy 85(2): 311315.Google Scholar
Aramilev, V. V. (2006). The conservation status of Asiatic black bears in the Russian Far East. In: Understanding Asian bears to secure their future (pp. 8689). Ibaraki: Japan Bear Network.Google Scholar
Arimoto, I., Goto, Y., Nagai, C. & Furubayashi, K. (2011). Autumn food habits and home-range elevations of Japanese black bears in relation to hard mast production in the beech family in Toyama Prefecture. Mammal Study 36(4): 199208.Google Scholar
Baryshnikov, G. F. (2010). Middle Pleistocene Ursus thibetanus (Mammalia, Carnivora) from Kudaro caves in the Caucasus. Proceedings of the Zoological Institute RAS 314(1): 6779.Google Scholar
Baryshnikov, G. F. & Zakharov, D. S. (2013). Early Pliocene bear Ursus thibetanus (Mammalia, Carnivora) from Priozernoe locality in the Dniester basin (Moldova Republic). Proceedings of the Zoological Institute RAS 317(19): 310.Google Scholar
Bidon, T., Janke, A., Fain, S. R., et al. (2014). Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Molecular Biology and Evolution 31(6): 13531363.Google Scholar
Bista, R. & Aryal, A. (2013). Status of the Asiatic black bear Ursus thibetanus in the southeastern region of the Annapurna Conservation Area, Nepal. Zoology and Ecology 23(1): 8387.Google Scholar
Bista, M., Panthi, S. & Weiskopf, S. R. (2018). Habitat overlap between asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 13(9): 112.Google Scholar
Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. (2014). Resolving human–bear conflict: a global survey of countries, experts, and key factors. Conservation Letters 7(6): 501513.Google Scholar
Cantlay, J. C., Ingram, D. J. & Meredith, A. L. (2017). A review of zoonotic infection risks associated with the wild meat trade in Malaysia. EcoHealth 14(2): 361388.Google Scholar
Chang, G.-R., Yang, C.-C., Hsu, S.-H. et al. (2011). Fecal reproductive steroid profiles for monitoring reproductive patterns in female formosan black bears (Ursus thibetanus formosanus). Annales Zoologici Fennici 48(5): 275286.Google Scholar
Dasgupta, S., Choudhury, P., Ashraf, N. V. K., Bhattacharjee, P. C. & Kyarong, S. (2015). Food preference of rehabilitated Asiatic black bear cubs in lowland tropical forests of northeast India. Asian Journal of Conservation Biology 4(1): 2025.Google Scholar
Ejercito, C. L. A., Cai, L., Htwe, K. K. et al. (1993). Serological evidence of Coxiella burnetii infection in wild animals in Japan. Journal of Wildlife Diseases 29(3): 481484.Google Scholar
Escobar, L. E., Awan, M. N. & Qiao, H. (2015). Anthropogenic disturbance and habitat loss for the red-listed Asiatic black bear (Ursus thibetanus): using ecological niche modeling and nighttime light satellite imagery. Biological Conservation 191: 400407.Google Scholar
Fahimi, H., Yusefi, G. H., Madjdzadeh, S. M., et al. (2011). Camera traps reveal use of caves by Asiatic black bears (Ursus thibetanus gedrosianus) (Mammalia: Ursidae) in southeastern Iran. Journal of Natural History 45(37–38): 23632373.Google Scholar
Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. (2013). Direct observation of bear myrmecophagy: relationship between bears’ feeding habits and ant phenology. Mammalian Biology 78: 3440.Google Scholar
Furusaka, S., Kozakai, C., Nemoto, Y., et al. (2017). The selection by the Asiatic black bear (Ursus thibetanus) of spring plant food items according to their nutritional values. ZooKeys 2017(672). doi:10.3897/zookeys.672.10078Google Scholar
Galbreath, G. J., Hean, S. & Montgomery, S. M. (2001). A new color phase of Ursus thibetanus (Mammalia: Ursidae) from Southeast Asia. Natural History Bulletin of the Siam Society 49: 107111.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19(1): 8586.Google Scholar
Garshelis, D. L. (2009). Family Ursidae (bears). In: Wilson, D. & Mittermeier, R. (Eds.), Handbook of the mammals of the world. Vol. 1. Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. & Steinmetz, R. (2016). Ursus thibetanus (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T22824A114252336.Google Scholar
Ghadirian, T., Qashqaei, A. T., Soofi, M., Abolghasemi, H. & Ghoddousi, A. (2017). Diet of Asiatic black bear in its westernmost distribution range, southern Iran. Ursus 28(1): 1519.Google Scholar
Gray, T. N. E., Rattanak, O., Keavuth, H., Chanrattana, P. & Maxwell, A. L. (2012). The status of large mammals in eastern Cambodia: a review of camera trapping data 1999–2007. Cambodian Journal of Natural History 1: 4255.Google Scholar
Hashimoto, Y. & Yasutake, A. (1999). Seasonal changes in body weight of female Asiatic black bears under captivity. Mammal Study 24(1): 16.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2012). Are chest marks unique to Asiatic black bear individuals? Journal of Zoology, 288(3): 199206.Google Scholar
Higashide, D., Miura, S. & Miguchi, H. (2013). Evaluation of camera-trap designs for photographing chest marks of the free-ranging Asiatic black bear, Ursus thibetanus. Mammal Study 38(1): 3539.Google Scholar
Honda, T. (2009). Environmental factors affecting the distribution of the wild boar, sika deer, Asiatic black bear and Japanese macaque in central Japan, with implications for human–wildlife conflict. Mammal Study 34(2): 107116.Google Scholar
Huygens, O. C. & Hayashi, H. (2001). Use of stone pine seeds and oak acorns by Asiatic black bears in central Japan. Ursus 12: 4750.Google Scholar
Huygens, O., Goto, M., Izumiyama, S., Hayashi, H. & Yoshida, T. (2001). Denning ecology of two populations of Asiatic black bears in Nagano prefecture, Japan. Mammalia 65(4): 417428.Google Scholar
Hwang, M. H. & Garshelis, D. L. (2007). Activity patterns of Asiatic black bears (Ursus thibetanus) in the central mountains of Taiwan. Journal of Zoology 271(2): 203209.Google Scholar
Hwang, M. H., Garshelis, D. L., Wu, Y. H. & Wang, Y. (2010). Home ranges of Asiatic black bears in the central mountains of Taiwan: gauging whether a reserve is big enough. Ursus 21(1): 8196.Google Scholar
Iibuchi, R., Nakano, N., Nakamura, T., et al. (2009). Change in body weight of mothers and neonates and in milk composition during denning period in captive Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 57(1): 1322.Google Scholar
Ishibashi, Y. & Saitoh, T. (2004). Phylogenetic relationships among fragmented Asian black bear (Ursus thibetanus) populations in Western Japan. Conservation Genetics 5(3): 311323.Google Scholar
Islam, M. A., Uddin, M., Aziz, M. A. et al. (2013). Status of bears in Bangladesh: going, going, gone? Ursus 24(1): 8390.Google Scholar
Izumiyama, S. & Shiraishi, T. (2004). Seasonal changes in elevation and habitat use of the Asiatic black bear (Ursus thibetanus) in the Northern Japan Alps. Mammal Study 29(1): 18.Google Scholar
Jamtsho, Y. & Wangchuk, S. (2016). Assessing patterns of human–Asiatic black bear interaction in and around Wangchuck Centennial National Park, Bhutan. Global Ecology and Conservation 8: 183189.Google Scholar
Japan Bear Network. (2006). Understanding Asian bears to secure their future. Ibaraki: Japan Bear Network.Google Scholar
Japan Bear Network. (2014). Changes in distribution of Asiatic black bears and brown bears in Japan. Ibaraki: Japan Bear Network.Google Scholar
Kadariya, R., Shimozuru, M., Maldonado, J. E., et al. (2018). High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal. PLoS ONE 13(12): e0207662.Google Scholar
Kamine, A., Shimozuru, M., Shibata, H. & Tsubota, T. (2012). Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 60: 513.Google Scholar
Katayama, A., Tsubota, T., Yamada, F., Kita, I. & Tiba, T. (1996). Reproductive evaluation of Japanese black bears (Selenarctos thibetanus japonicus) by observation of the ovary and uterus. Japanese Journal of Zoo and Wildlife Medicine 1(1): 2632.Google Scholar
Kim, Y.-J., Hong, Y.-J., Min, M.-S., et al. (2011). Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into South Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102(2): 165174.Google Scholar
Kitamura, F. & Ohnishi, N. (2011). Characteristics of Asian black bears stripping bark from coniferous trees. Acta Theriologica 56(3): 267273.Google Scholar
Kobashikawa, S. & Koike, S. (2016). Spatiotemporal factors affecting bark stripping of conifer trees by Asiatic black bears (Ursus thibetanus) in Japan. Forest Ecology and Management 380: 100106.Google Scholar
Koike, S. (2010). Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the Pacific coast of central Japan. Mammalian Biology 75(1): 1728.Google Scholar
Koike, S. & Hazumi, T. (2008). Notes on Asiatic black bears denning habits in the Misaka Mountains, central Japan. Ursus 19(1): 8084.Google Scholar
Koike, S. & Masaki, T. (2019). Characteristics of fruits consumed by mammalian frugivores in Japanese temperate forest. Ecological Research 34: 246254.Google Scholar
Koike, S., Masaki, T., Nemoto, Y., et al. (2011). Estimate of the seed shadow created by the Asiatic black bear Ursus thibetanus and its characteristics as a seed disperser in Japanese cool-temperate forest. Oikos 120(2): 280290.Google Scholar
Koike, S., Kozakai, C., Nemoto, Y., et al. (2012). Effect of hard mast production on foraging and sex-specific behavior of the effect of hard mast production on foraging and sex-specific behavior of the Asiatic black bear (Ursus thibetanus). Mammal Study 37(1): 2128.Google Scholar
Koike, S., Soga, M., Enari, H., Kozakai, C. & Nemoto, Y. (2013). Seasonal changes and altitudinal variation in deer fecal pellet decay. European Journal of Wildlife Research 59(5): 765768.Google Scholar
Koike, S., Nakashita, R., Kozakai, C., et al. (2016). Baseline characterization of the diet and stable isotope signatures of bears that consume natural foods in central Japan. European Journal of Wildlife Research 62(1). doi:10.1007/s10344-015-0969-6Google Scholar
Komatsu, T., Tsubota, T., Kishimoto, M., Hamasaki, S. & Tiba, T. (1994). Puberty and stem cell for the initiation and resumption of spermatogenesis in the male Japanese black bear (Selenarctos thibetanus japonicus). Journal of Reproduction and Development 40(6): j65j71.Google Scholar
Komatsu, T., Yamamoto, Y., Atoji, Y., Tsubota, T. & Suzuki, Y. (1997). Seasonal changes in subcellular structures of Leydig and Sertoli cells in the Japanese black bear, Ursus thibetanus japonicus. Archives of Histology and Cytology 60(3): 225234.Google Scholar
Kozakai, C., Koike, S., Yamazaki, K. & Furubayashi, K. (2008). Examination of captive Japanese black bear activity using activity sensors. Mammal Study 33(3): 115119.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2009). Behavioural study of free-ranging Japanese black bears II – How does a bear manage in a year of food shortage? In: Oi, T., Ohnishi, N., Koizumi, T. & Okochi, I. (Eds.), FFPRI Scientific Meeting Report 4 Biology of Bear Intrusions – Proceedings of an International Workshop on “The Mechanism of the Intrusion of Bears into Residential Areas” (pp. 6466). Ibaraki: Forestry and Forest Products Research Institute Matunosato.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2011). Effect of mast production on home range use of Japanese black bears. Journal of Wildlife Management 75(4). doi:10.1002/jwmg.122Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2013). Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hard-mast availability. Journal of Mammalogy 94(2). doi:10.1644/11-MAMM-A-246.1Google Scholar
Kozakai, C., Kondo, M., Arimoto, I., et al. (2015). I. Background and legal structure on conservation and management of bears. Honyurui Kagaku (Mammalian Science) 55(2): 219239.Google Scholar
Kozakai, C., Nemoto, Y., Nakajima, A., et al. (2017). Influence of food availability on matrilineal site fidelity of female Asian black bears. Mammal Study 42(4). doi:10.3106/041.042.0404Google Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220.Google Scholar
Kubo, M., Uni, S., Agatsuma, T. et al. (2008). Hepatozoon ursi n. sp. (Apicomplexa: Hepatozoidae) in Japanese black bear (Ursus thibetanus japonicus). Parasitology International 57(3): 287294.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7(1). doi:10.1038/srep46487Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31(8): 20042017.Google Scholar
Latham, E., Stetz, J. B., Seryodkin, I., et al. (2012). Non-invasive genetic sampling of brown bears and Asiatic black bears in the Russian Far East. Ursus 23(2): 145158.Google Scholar
Liu, F., McShea, W., Garshelis, D., et al. (2009). Spatial distribution as a measure of conservation needs: an example with Asiatic black bears in south-western China. Diversity and Distributions 15(4): 649659.Google Scholar
Mizukami, R. N., Goto, M. & Izumiyama, S. (2005a). Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16(1): 93101.Google Scholar
Mizukami, R. N., Goto, M., Izumiyama, S., et al. (2005b). Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes in Environmental and Health Studies 41(1): 8794.Google Scholar
Mondolfi, E. & Boede, E. O. (1981). A hybrid of the spectacled bear (Tremarctos ornatus) and the Asiatic black bear (Selenarctos thibetanus) born at the Maracay Zoological Park, Venezuela. Memoria de La Sociedad de Ciencias Naturales La Salle 41(December): 143148.Google Scholar
Nakamura, S., Okano, T., Shibata, H., et al. (2008). Relationships among changes of serum leptin concentration, leptin mRNA expression in white adipose tissue (WAT), and WAT fat-cell size in female Japanese black bears (Ursus thibetanus japonicus). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 86(9): 10421049.Google Scholar
Naoe, S., Tayasu, I., Sakai, Y., et al. (2016). Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Current Biology 26(8): R315R316.Google Scholar
Nautiyal, H. & Huffman, M. A. (2018). Interspecific feeding association between central Himalayan langurs (Semnopithecus schistaceus) and Himalayan black bears (Ursus thibetanus), in a temperate forest of the western Indian Himalayas. Mammal Study 43(1): 16.Google Scholar
Ngoprasert, D., Steinmetz, R., Reed, D. H., Savini, T. & Gale, G. A. (2011). Influence of fruit on habitat selection of Asian bears in a tropical forest. Journal of Wildlife Management 75(3): 588595.Google Scholar
Ohnishi, N. & Osawa, T. (2014). A difference in the genetic distribution pattern between the sexes in the Asian black bear. Mammal Study 39(1): 1116.Google Scholar
Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H. B. & Oi, T. (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102(6): 579589.Google Scholar
Ohnishi, N., Yuasa, T., Morimitsu, Y. & Oi, T. (2011). Mass-intrusion-induced temporary shift in the genetic structure of an Asian black bear population. Mammal Study 71: 6771.Google Scholar
Okano, T., Nakamura, S., Komatsu, T., et al. (2006a). Characteristics of frozen–thawed spermatozoa cryopreserved with different concentrations of glycerol in captive Japanese black bears (Ursus thibetanus japonicus). The Journal of Veterinary Medical Science 68(10): 11011104.Google Scholar
Okano, T., Nakamura, S., Nakashita, R., et al. (2006b). Incidence of ovulation without coital stimuli in captive Japanese black bears (Ursus thibetanus japonicus) based on serum progesterone profiles. The Journal of Veterinary Medical Science 68(10): 11331137.Google Scholar
Pigeon, K. (2018). What is it about the Terai of Nepal that favors sloth bears over Asiatic black bears? Biological research. International Bear News 27(3): 4951.Google Scholar
Reid, D., Jiang, M., Teng, Q., Qin, Z. & Hu, J. (1991). Ecology of the Asiatic black bear (Ursus thibetanus) in Sichuan, China. Mammalia 55(2): 221237.Google Scholar
Saito, M., Yamauchi, K., Aoi, T., et al. (2008). Individual identification of Asiatic black bears using extracted DNA from damaged crops. Ursus 19(2): 162167.Google Scholar
Sakamoto, Y., Kunisaki, T., Sawaguchi, I., et al. (2009). A note on daily movement patterns of a female Asiatic black bear (Ursus thibetanus) in a suburban area of Iwate Prefecture, northeastern Japan. Mammal Study 34(3): 165170.Google Scholar
Sangay, T. & Vernes, K. (2008). Human–wildlife conflict in the Kingdom of Bhutan: patterns of livestock predation by large mammalian carnivores. Biological Conservation 141(5): 12721282.Google Scholar
Sathyakumar, S. & Choudhury, A. (2007). Distribution and status of the Asiatic black bear in India. Journal of the Bombay Natural History Society 104: 316323.Google Scholar
Sathyakumar, S., Sharma, L. K. & Charoo, S. A. (2015). Ecology of Asiatic black bear (Ursus thibetanus) in Dachigam National Park, Kashmir, India. Final project report, Dehradun.Google Scholar
Sato, M., Tsubota, T., Komatsu, T., et al. (2001). Changes in sex steroids, gonadotropins, prolactin, and inhibin in pregnant and nonpregnant Japanese black bears (Ursus thibetanus japonicus). Biology of Reproduction 65(4): 10061013.Google Scholar
Scotson, L. (2017). Distribution, range connectivity, and trends of bear populations in Southeast Asia. Doctoral thesis, University of Minnesota.Google Scholar
Seryodkin, I. V. (2015a). Trichinosis of brown bear and Asiatic black bear in the Russian Far East. In Bulletin of KrasGAU 12: 168173.Google Scholar
Seryodkin, I. V. (2015b). Diet composition of brown bear and Asiatic black bear in the Middle Sikhote-Alin (Russian Far East): comparative study. The Bulletin of Irkutsk State University 12: 3238.Google Scholar
Seryodkin, I. V, Kostyria, A. V, Goodrich, J. M. et al. (2003). Denning ecology of brown bears and Asiatic black bears in the Russian Far East. Ursus 14(2): 153161.Google Scholar
Sheikh, K. M. (2006). The status of bears in Pakistan. In: Understanding Asian bears to secure their future (pp. 16). Ibaraki: Japan Bear Network.Google Scholar
Shimoinaba, S. & Oi, T. (2015). Relationship between tooth wear and age in the Japanese black bear in Hiroshima Prefecture, Japan. Mammal Study 40(1): 5360.Google Scholar
Shimozuru, M., Iibuchi, R., Yoshimoto, T., et al. (2013). Pregnancy during hibernation in Japanese black bears: effects on body temperature and blood biochemical profiles. Journal of Mammalogy 94(3): 618627.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37(1): 2153.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS ONE 6(1). doi:10.1371/journal.pone.0014509Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94(1): 118.Google Scholar
Stevens, K., Dehgan, A., Karlstetter, M., et al. (2011). Large mammals surviving conflict in the eastern forests of Afghanistan. Oryx 45(2): 265271.Google Scholar
Takahata, C., Nishino, S., Kido, K. & Izumiyama, S. (2013). An evaluation of habitat selection of Asiatic black bears in a season of prevalent conflicts. Ursus 24(1): 1626.Google Scholar
Takahata, C., Nielsen, S. E., Takii, A. & Izumiyama, S. (2014). Habitat selection of a large carnivore along human–wildlife boundaries in a highly modified landscape. PLoS ONE 9(1): e86181.Google Scholar
Takahata, C., Takii, A. & Izumiyama, S. (2017). Season-specific habitat restriction in Asiatic black bears, Japan. Journal of Wildlife Management 81(7): 12541265.Google Scholar
Tochigi, K., Masaki, T., Nakajima, A., et al. (2018a). Detection of arboreal feeding signs by Asiatic black bears: effects of hard mast production at individual tree and regional scales. Journal of Zoology 305(4): 223231.Google Scholar
Tochigi, K., Tamatani, H., Kozakai, C., et al. (2018b). Reproductive histories of Asian black bears can be determined by cementum annuli width. Mammal Study 43(4): 261.Google Scholar
Tsubota, T., Taki, S., Nakayama, S., et al. (2001). Immunolocalization of steroidogenic enzymes in the corpus luteum and the placenta of the Japanese black bear, Ursus thibetanus japonicus, during pregnancy. Reproduction 121(4): 587594.Google Scholar
Tsubota, T., Sato, M., Okano, T., et al. (2008). Annual changes in serum leptin concentrations in the adult female Japanese black bear (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 70(12): 13991403.Google Scholar
Tsuji, Y. & Su, H. H. (2018). Macaques as seed dispersal agents in Asian forests: a review. International Journal of Primatology 39(3): 356376.Google Scholar
Umemura, Y., Koike, S., Kozakai, C., et al. (2018). Using a novel method of potential available energy to determine masting condition influence on sex-specific habitat selection by Asiatic black bears. Mammalia 82(3): 288297.Google Scholar
Uni, S., Matsubayashi, M., Ikeda, E. & Suzuki, Y. (2003). Characteristics of a hepatozoonosis in lungs of Japanese black bears (Ursus thibetanus japonicus). Journal of Veterinary Medical Science 65(3): 385388.Google Scholar
Wang, F., McShea, W. J., Wang, D. & Li, S. (2015). Shared resources between giant panda and sympatric wild and domestic mammals. Biological Conservation 186: 319325.Google Scholar
Wozencraft, W. C. (2005). Order carnivora. In: Wilson, D. E. & Reede, D. M. (Eds.), Mammal species of the world: A taxonomic and geographic reference. Vol.1, 3rd edition (pp. 532628). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10(9): 119.Google Scholar
Xuan, D. (2006). The current status and conservation of bears in Vietnam. In Understanding Asian bears to secure their future (pp. 61–65). Hokkaido: Japan Bear Network.Google Scholar
Yadav, S., Lamichhane, B., Subedi, N., et al. (2017). Himalayan black bear discovered in Babai valley of Bardia National Park, Nepal, co-occurring with sloth bears. International Bear News 26(3): 2325.Google Scholar
Yamaguchi, T. (1991). Present status of trichinellosis in Japan. Southeast Asian Journal of Tropical Medicine and Public Health 22(Suppl): 295301.Google Scholar
Yamamoto, K., Tsubota, T. & Kita, I. (1998). Observation of sexual behavior of captive Japanese black bears, Ursus thibetanus japonicus. Journal of Reproduction and Development 44(5): j1318.Google Scholar
Yamamoto, T., Oka, T., Ohnishi, N., et al. (2012). Genetic characterization of northernmost isolated population of Asian black bear (Ursus thibetanus) in Japan. Mammal Study 37(2): 8591.Google Scholar
Yamamoto, T., Tamatani, H., Tanaka, J., et al. (2016). Abiotic and biotic factors affecting the denning behaviors in Asiatic black bears Ursus thibetanus. Journal of Mammalogy 97: 128134.Google Scholar
Yamazaki, K., Kozakai, C., Kasai, S., et al. (2008). A preliminary evaluation of activity sensing GPS collars for estimating daily activity patterns of Japanese black bears. Ursus 19: 154161.Google Scholar
Yamazaki, K., Kozakai, C., Koike, S., et al. (2012). Myrmecophagy of Japanese black bears in the grasslands of the Ashio area, Nikko National Park, Japan. Ursus 23(1). doi:10.2192/URSUS-D-10-00012.1Google Scholar
Yumoto, K., Yamazaki, K., Koike, S., et al. (2010). Ixodid ticks collected from Japanese black bears in the Northern Kanto District, Central Japan (Arachnida, Acarina). Bulletin of Ibaraki Nature Museum 13: 8184.Google Scholar

References

Addison, E. M., Pybus, M. J. & Rietveld, H. J. (1978). Helminth and arthropod parasites of black bear, Ursus americanus, in central Ontario. Canadian Journal of Zoology 56: 21222126.Google Scholar
Allen, J. A. (1910). The black bear of Labrador. Bulletin of the American Museum of Natural History 28: 16.Google Scholar
Alt, G. L. (1980). Rate of growth and size of Pennsylvania black bears. Pennsylvania Game News 51(12): 717.Google Scholar
Alt, G. L. (1982). Reproductive biology of Pennsylvania’s black bear. Pennsylvania Game News 53(2): 915.Google Scholar
Alt, G. L. (1989). Reproductive biology of female black bears and early growth and development of cubs in northeastern Pennsylvania. PhD dissertation, University of West Virginia.Google Scholar
Amstrup, S. C. & Beecham, J. (1976). Activity patterns of radio-collared black bears in Idaho. Journal of Wildlife Management 40: 340348.Google Scholar
Audubon, J. J. & Bachman, J. (1854). The viviparous quadrupeds of North America. New York, NY: V. G. Audubon.Google Scholar
Ayres, L. A., Chow, L. S. & Graber, D. M. (1986). Black bear activity patterns and human induced modifications in Sequoia National Park. Ursus 6: 151154.Google Scholar
Bacon, E. S. & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Ursus 3: 2736.Google Scholar
Baird, S. F. (1859). Mammals of the boundary. United States and Mexican Boundary Survey 2: 162.Google Scholar
Barone, M. A., Roelke, M. E., Howard, J., et al. (1994). Reproductive characteristics of male Florida panthers: comparative studies from Florida, Texas, Colorado, Latin America, and North American zoos. Journal of Mammalogy 75: 150162.Google Scholar
Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., et al. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human–bear conflicts. PLoS ONE 9: e85122.Google Scholar
Beckmann, J. P. & Berger, J. (2003a). Using black bears (Ursus americanus) to test ideal-free distribution models experimentally. Journal of Mammalogy 84: 594606.Google Scholar
Beckmann, J. P. & Berger, J. (2003b). Rapid ecological and behavioural changes in carnivores: the responses of black bears (Ursus americanus) to altered food. Journal of Zoology 261: 207212.Google Scholar
Beckmann, J. P. & Lackey, C. W. (2018). Lessons learned from a 20-year collaborative study on American black bears. Human–Wildlife Interactions 12: 396404.Google Scholar
Beecham, J. J., Hernando, M. D. G., Karamanlidis, A. A., et al. (2015). Management implications for releasing orphaned, captive-reared bears back to the wild. Journal of Wildlife Management 79: 13271336.Google Scholar
Beeman, L. E. & Pelton, M. R. (1980). Seasonal foods and feeding ecology of black bears in the Smoky Mountains. Ursus 4: 141147.Google Scholar
Belant, J. L., Kielland, K., Follmann, E. H., et al. (2006). Interspecific resource partitioning in sympatric ursids. Ecological Applications 16: 23332343.Google Scholar
Beston, J. A. (2011). Variation in life history and demography of the American black bear. Journal of Wildlife Management 75: 15881596.Google Scholar
Binninger, C. E., Beecham, J. J., Thomas, L. A., et al. (1980). A serologic survey for selected infectious diseases of black bears in Idaho. Journal of Wildlife Diseases 16: 423430.Google Scholar
Black, W., Troyer, R. M., Coutu, J., et al. (2019). Identification of gammaherpesvirus infection in free-ranging black bears (Ursus americanus). Virus Research 259: 4653.Google Scholar
Blair, C. D., Muller, L. I., Clark, J. D., et al. (2020). Survival and conflict behavior of American black bears after rehabilitation. Journal of Wildlife Management 84: 7586.Google Scholar
Boone, W. R., Keck, B. B., Catlin, J. C., et al. (2004). Evidence that bears are induced ovulators. Theriogenology 61: 11631169.Google Scholar
Bowman, J. L., Leopold, B. D., Vilella, F. J., et al. (2001). Attitudes of landowners towards American black bears compared between areas of high and low bear populations. Ursus 12: 153160.Google Scholar
Bowman, J. L., Leopold, B. D., Vilella, F. J., et al. (2004). A spatially explicit model, derived from demographic variables, to predict attitudes towards black bear restoration. Journal of Wildlife Management 68: 223232.Google Scholar
Bradburd, G. S., Coop, G. M. & Ralph, P. L. (2018). Inferring continuous and discrete population genetic structure across space. Genetics 210: 3352.Google Scholar
Bridges, A. S., Vaughn, M. R. & Klenzendorf, S. (2004). Seasonal variation in American black bear Ursus americanus activity patterns: quantification via remote photography. Wildlife Biology 10: 277284.Google Scholar
Brodeur, V., Ouellet, J. P., Courtois, R., et al. (2008). Habitat selection by black bears in an intensively logged boreal forest. Canadian Journal of Zoology 86: 13071316.Google Scholar
Brody, A. J. & Pelton, M. R. (1989). Effects of roads on black bear movements in