Skip to main content Accessibility help
Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-03T15:52:24.424Z Has data issue: false hasContentIssue false

Chapter 3 - Interspecific Interactions between Brown Bears, Ungulates, and Other Large Carnivores

from Part I - Systematics, Ecology, and Behavior

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Spanish Council of Scientific Research (CSIC)
Mario Melletti
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access


Large carnivores, such as brown bears (Ursus arctos), wolves (Canis lupus), and tigers (Panthera tigris), can play a key ecological role from their apex position in trophic systems. Within the overall context of bottom-up and top-down regulation of ecosystems, predation by large carnivores often induces demographic and behavioral changes in prey species. These vertical interactions between different trophic levels are important regulatory mechanisms in nature. On the other hand, competitive interactions between species, or horizontal interactions within the same trophic level, are also common. Interspecific interactions between large carnivores are widespread in many ecosystems and can play an important role in community structure and stability. Predation is the mechanism driving apex predators’ function in nature, but it is also a source of conflict with different stakeholders, e.g. hunters and livestock owners, when predation affects domestic or semidomestic species (depredation). This situation is challenging when trying to secure long-term carnivore conservation and coexistence with people in the human-dominated landscapes that currently characterize most of our planet.

Bears of the World
Ecology, Conservation and Management
, pp. 36 - 44
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. (2015). The comparative effects of large carnivores on the acquisition of carrion by scavengers. The American Naturalist 185: 822833.Google Scholar
Apps, C. D., McLellan, B. N. & Woods, J. G. (2006). Landscape partitioning and spatial inferences of competition between black and grizzly bears. Ecography 29: 561572.CrossRefGoogle Scholar
Arthur, S.M. & Vecchio, P.A. Del. (2017). Effects of grizzly bear predation on muskoxen in northeastern Alaska. Ursus 28: 8191.CrossRefGoogle Scholar
Ballard, W., Carbyn, L. N. & Smith, D. (2003). Wolf interactions with non-prey. In: Mech, L. D. & Boitani, L. (Eds.), Wolves: Behavior, ecology, and conservation (pp. 259271). Chicago, IL: University of Chicago Press.Google Scholar
Boertje, R., Keech, M. & Paragi, T. (2010). Science and values influencing predator control for Alaska moose management. Journal of Wildlife Management 74: 917928.CrossRefGoogle Scholar
Boertje, R. D., Gasaway, W. C., Grangaard, D. V. & Kelleyhouse, D. G. (1988). Predation on moose and caribou by radio-collared grizzly bears in east central Alaska. Canadian Journal of Zoology 66: 24922499.CrossRefGoogle Scholar
Bruskotter, J. T. & Shelby, L. B. (2010). Human dimensions of large carnivore conservation and management. Human Dimensions of Wildlife 15: 311314.CrossRefGoogle Scholar
Caro, T. M. & Stoner, C .J. (2003). The potential for interspecific competition among African carnivores. Biological Conservation 110: 6775.CrossRefGoogle Scholar
Chapron, G., Kaczensky, P., von Arx, M., et al. (2014). Recovery of large carnivores in Europe’s modern human‐dominated landscapes. Science 346: 15171519.CrossRefGoogle ScholarPubMed
Dahle, B., Wallin, K., Cederlund, G., et al. (2013). Predation on adult moose Alces alces by European brown bears. Wildlife Biology 19: 165169.Google Scholar
Derocher, A. E., Wiig, Ø. & Bangjord, G. (2000). Predation of Svalbard reindeer by polar bears. Polar Biology 23: 675678.CrossRefGoogle Scholar
DeVault, T. L., Rhodes, O. E. & Shivik, J. A. (2003). Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102: 225234.Google Scholar
Elbroch, L. M., Lendrum, P. E., Allen, M. L. & Wittmer, H. U. (2015). Nowhere to hide: pumas, black bears, and competition refuges. Behavioral Ecology 26: 247254.Google Scholar
Frank, J., Støen, O. G., Segerström, P., et al. (2017). Kalvning i hägn och områdesriktad jakt på björn som åtgärder för att minska björnars predation på ren. Rapport från Viltskadecenter 7. Sveriges Lantbruksuniversitet SLU, Grimsø forskningsstation, Riddarhyttan, Sweden. [In Swedish.] Scholar
Garrott, R. A., White, P. J. & Watson, F. G. R. (2009). The ecology of large mammals in central Yellowstone: Sixteen years of integrated field studies. Terrestrial Ecology Series Volume 3. San Diego, CA: Academic Press.Google Scholar
Gervasi, V., Nilsen, E. B., Sand, H., et al. (2012). Predicting the potential demographic impact of predators on their prey: a comparative analysis of two carnivore–ungulate systems in Scandinavia. Journal of Animal Ecology 81: 443454.CrossRefGoogle Scholar
Gorokhov, G. F. (1997). The abundance and structure of the Amur tiger population in southern Sikhote-Alin, in Redkie vidy mlekopitayushchikh i ikh okhrana. In: Proceedings 2nd All-Union Conf. “Rare Species of Mammals and Their Conservation (pp. 119120). Moscow: Nauka.Google Scholar
Griffin, K. A., Hebblewhite, M., Robinson, H. S., et al. (2011). Neonatal mortality of elk driven by climate, predator phenology and predator community composition. Journal of Animal Ecology 80: 12461257.CrossRefGoogle ScholarPubMed
Heptner, V. G. & Sludskii, A. A. (1972). Mlekopitayushchiye Sovetskogo Soyuza. In Mammals of the Soviet Union, Carnivora. Moscow: Vysshaya Shkola/Google Scholar
Huygens, O. C., Miyashita, T., Dahle, B., Carr, M. & Izumiyama, S. (2003). Diet and feeding habits of Asiatic black bears in the Northern Japanese Alps. Ursus 14: 236245.Google Scholar
Hwang, M.-H., Garshelis, D. L. & Wang, Y. (2002). Diets of Asiatic black bears in Taiwan, with methodological and geographical comparisons. Ursus 13: 111125.Google Scholar
Jonzén, N., Sand, H., Wabakken, P., et al. (2013). Sharing the bounty – adjusting harvest to predator return in the Scandinavian human–wolf–bear–moose system. Ecological Modelling 265: 140148.Google Scholar
Kaczensky, P. (1999). Large carnivore depredation on livestock in Europe. Ursus 11: 5972.Google Scholar
Karlsson, J., Støen, O. G., Segerström, P., et al. (2012). Björnpredation på ren och potentiella effekter av tre förebyggande åtgärder. Rapport från Viltskadecenter 6. Sveriges Lantbruksuniversitet SLU, Grimsø forskningsstation, Riddarhyttan, Sweden. [In Swedish.]Google Scholar
Keech, M. A., Bowyer, R. T., Hoef, J. M. Ver, et al. (2000). Life-history consequences of maternal condition in Alaskan moose. The Journal of Wildlife Management 64: 450462.CrossRefGoogle Scholar
Kindberg, J., Swenson, J. E., Ericsson, G., et al. (2011). Estimating population size and trends of the Swedish brown bear Ursus arctos population. Wildlife Biology 17: 114123.Google Scholar
Knight, R. R. & Judd, S. (1979). Grizzly bears that kill livestock. International Conference on Bear Research and Management 5: 186190.Google Scholar
Kostoglod, V. E. (1981). The experience of prolonged tracking of the brown bear in Sikhote-Alin. Bulletin of Moscow Society of Naturalists. Biological series 86: 312.Google Scholar
Krofel, M. & Jerina, K. (2016). Mind the cat: conservation management of a protected dominant scavenger indirectly affects an endangered apex predator. Biological Conservation 197: 4046.Google Scholar
Krofel, M. & Kos, I. (2007). Evidence of the brown bear (Ursus arctos) tracking the Eurasian lynx (Lynx lynx) on the Snežnik plateau, Slovenia. Natura Sloveniae 9: 4546.Google Scholar
Krofel, M., Kos, I. & Jerina, K. (2012). The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behavioral Ecology and Sociobiology 66: 12971304.Google Scholar
Lewis, T. M. & Lafferty, D. J. R. (2014). Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25: 813.CrossRefGoogle Scholar
MacNulty, D., Varley, N. & Smith, D. (2001). Grizzly bear, Ursus arctos, usurps bison calf, Bison bison, captured by wolves, Canis lupus, in Yellowstone National Park, Wyoming. Canadian Journal of Zoology 115: 495498.Google Scholar
Mattisson, J., Persson, J., Andrén, H. & Segerström, P. (2011). Temporal and spatial interactions between an obligate predator, the Eurasian lynx (Lynx lynx), and a facultative scavenger, the wolverine (Gulo gulo). Canadian Journal of Zoology 89: 7989.Google Scholar
Milleret, C. (2011). Estimating wolves (Canis lupus) and brown bear (Ursus arctos) interactions in Central Sweden. Does the emergence of brown bears affect wolf predation patterns? Masters thesis, Université Joseph Fourier–Grenoble.Google Scholar
Milleret, C., Ordiz, A., Chapron, G., et al. (2018). Habitat segregation between brown bears and gray wolves in a human-dominated landscape. Ecology and Evolution 8: 117.CrossRefGoogle Scholar
Monteith, K. L., Bleich, V. C., Stephenson, T. R. & Pierce, B. M. (2014). Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monographs 186: 164.Google Scholar
Mosolov, V. & Valentsev, A. (2003). Lynx of Eurasia. The Kamchatka. In: The lynx. Regional features of ecology, use and protection (pp. 408423). Moscow: Nauka.Google Scholar
Murphy, K., Felzien, G., Hornocker, M. & Ruth, T. (1998). Encounter competition between bears and cougars: some ecological implications. Ursus 10: 5560.Google Scholar
Ordiz, A., Bischof, R. & Swenson, J. E. (2013). Saving large carnivores, but losing the apex predator? Biological Conservation 168: 128133.CrossRefGoogle Scholar
Ordiz, A., Milleret, C., Kindberg, J., et al. (2015). Wolves, people, and brown bears influence the expansion of the recolonizing wolf population in Scandinavia. Ecosphere 6: 114.Google Scholar
Ordiz, A., Sæbø, S., Kindberg, J., Swenson, J. E. & Støen, O. G. (2017). Seasonality and human disturbance alter brown bear activity patterns: implications for circumpolar carnivore conservation? Animal Conservation 20: 5160.CrossRefGoogle Scholar
Palomares, F. & Caro, T. M. (1999). Interspecific killing among mammalian carnivores. The American Naturalist 153: 492508.Google Scholar
Périquet, S., Fritz, H. & Revilla, E. (2015). The lion king and the hyaena queen: large carnivore interactions and coexistence. Biological Reviews 90: 11971214.Google Scholar
Pikunov, D. G. & Korkishko, V. G. (1992). Leopard of Far East. Moscow: Nauka [in Russian].Google Scholar
Rakov, N. V. (1965). The current distribution of the tiger in the Amur-Ussuri region. Zoologicheskii Zhurnal 44: 433441.Google Scholar
Ruong, I. (1982). Samerna i historien och nutiden. Stockholm: BonnierFakta.Google Scholar
Sand, H., Wabakken, P., Zimmermann, B., et al. (2008). Summer kill rates and predation pattern in a wolf–moose system: can we rely on winter estimates? Oecologia 156: 5364.Google Scholar
Sanz-Pérez, A., Ordiz, A., Sand, H., et al. (2018). No place like home? A test of the natal habitat-biased dispersal hypothesis in Scandinavian wolves. Royal Society Open Science 5: 181379.Google Scholar
Sato, Y., Mano, T. & Takatsuki, S. (2005). Stomach contents of brown bears (Ursus arctos) in Hokkaido, Japan. Wildlife Biology 11: 133144.Google Scholar
Schoener, T. W. (1983). Field experiments on interspecific competition. The American Naturalist 122: 240285.Google Scholar
Schwartz, C. C., Cain, S. L., Podruzny, S., Cherry, S. & Frattaroli, L. (2010). Contrasting activity patterns of sympatric and allopatric black and grizzly bears. Journal of Wildlife Management 74: 16281638.Google Scholar
Seryodkin, I. V., Miquelle, D. G., Goodrich, J. M., Kostyria, A. V. & Petrunenko, Y. K. (2018). Interspecific relationships between the Amur tiger (Panthera tigris altaica) and brown (Ursus arctos) and Asiatic black (Ursus thibetanus) bears. Biology Bulletin 45: 853864.Google Scholar
Sinclair, A. R. E. & Krebs, C. J. (2002). Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philosophical Transactions of the Royal Society of London B 357: 12211231.Google Scholar
Sivertsen, T. R. (2017). Risk of brown bear predation on semi-domesticated reindeer calves interactions and landscape heterogeneity. Doctoral thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Smith, D. W., Peterson, R. O. & Houston, D. B. (2003). Yellowstone after wolves. BioScience 53: 330340.CrossRefGoogle Scholar
Stirling, I. & Derocher, A. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. Bears: Their Biology and Management 8: 189204.Google Scholar
Swenson, J. E., Wabakken, P., Sandegren, F., et al. (1995). The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildlife Biology 1: 1125.Google Scholar
Swenson, J., Dahle, B., Busk, H., et al. (2007). Predation on moose calves by European brown bears. Journal of Wildlife Management 71: 19931997.Google Scholar
Swenson, J. E., Schneider, M., Zedrosser, A., et al. (2017). Challenges of managing a European brown bear population; lessons from Sweden, 1943–2013. Wildlife Biology 1: wlb.00251.Google Scholar
Tallian, A., Ordiz, A., Metz, M. C., et al. (2017). Competition between apex predators? Brown bears decrease wolf kill rate on two continents. Proceedings of the Royal Society B: Biological Sciences 284: 20162368.Google Scholar
Tkachenko, K. N. (2012). Specific features of feeding of the Amur tiger Panthera tigris altaica (Carnivora, Felidae) in a densely populated locality (with reference to Bol’shekhekhtsirskii Reserve and its environs). Biology Bulletin 39: 279287.Google Scholar
Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. (2013). Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS One 8: e77373.Google Scholar
Wilmers, C. C. & Getz, W. M. (2005). Gray wolves as climate change buffers in Yellowstone. PLoS Biology 3: e92.Google Scholar
Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Wayne, M. (2003). Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology 72: 909916.Google Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 1530.Google Scholar
Wyman, C. (2002). Grizzly on a bull bison in Yellowstone National Park. Ursus 13: 375377.Google Scholar
Zabel, A. & Holm-Müller, K. H. (2008). Conservation performance payments for carnivore conservation in Sweden. Conservation Biology 22: 247251.Google Scholar
Zager, P. & Beecham, J. (2006). The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17: 95108.Google Scholar
Zhiryakov, V. A. & Baidavletov, R. Z. (2003). Lynx of Eurasia. Kazakhstan. In: The lynx. Regional features of ecology, use and protection (pp. 344367). Moscow: Nauka.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats