Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-24T08:05:02.007Z Has data issue: false hasContentIssue false

Chapter 2 - General Approach to Diagnosis

from Section 1 - Overview

Published online by Cambridge University Press:  27 January 2022

Josep Dalmau
Affiliation:
Universitat de Barcelona
Francesc Graus
Affiliation:
Universitat de Barcelona
Get access

Summary

The diagnosis of autoimmune encephalitis should be considered in patients with rapid progression (<3 months) of short-term memory loss, decreased or altered level of consciousness, lethargy, personality change, or psychiatric manifestations in association with at least one of the following criteria: new-onset seizures or focal CNS symptoms, CSF pleocytosis, or MRI features suggestive of brain inflammation. Many alternative causes of encephalitis can be excluded after a careful clinical history and evaluation of the CSF, brain MRI, and routine blood tests. Some types of encephalitis can be suspected before receiving the results of neural antibodies, according to the clinical presentation (for instance, faciobrachial dystonic seizures in anti-LGI encephalitis, or psychotic manifestation in anti-NMDAR encephalitis) or brain MRI features (temporal lobe involvement in limbic encephalitis). Antibody testing may show false positive and negative results, particularly when only serum is examined, results are not confirmed with additional laboratory studies, or the test is used indiscriminately without selection of patients.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Venkatesan, A, Michael, BD, Probasco, JC, Geocadin, RG, Solomon, T. Acute encephalitis in immunocompetent adults. Lancet 2019;393:702716.Google Scholar
Granerod, J, Cousens, S, Davies, NW, Crowcroft, NS, Thomas, SL. New estimates of incidence of encephalitis in England. Emerg Infect Dis 2013;19: 14551462.Google Scholar
Boucher, A, Herrmann, JL, Morand, P, et al. Epidemiology of infectious encephalitis causes in 2016. Medecine et maladies infectieuses 2017;47:221235.Google Scholar
Granerod, J, Tam, CC, Crowcroft, NS, et al. Challenge of the unknown: a systematic review of acute encephalitis in non-outbreak situations. Neurology 2010;75:924932.Google Scholar
Cohen, J, Sotoca, J, Gandhi, S, et al. Autoimmune encephalitis: a costly condition. Neurology 2019;92:e964e972.Google Scholar
Vora, NM, Holman, RC, Mehal, JM, et al. Burden of encephalitis-associated hospitalizations in the United States, 1998–2010. Neurology 2014;82:443451.Google Scholar
Granerod, J, Ambrose, HE, Davies, NW, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010;10:835844.Google Scholar
Venkatesan, A, Tunkel, AR, Bloch, KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the International Encephalitis Consortium. Clin Infect Dis 2013;57:11141128.Google Scholar
Britton, PN, Eastwood, K, Paterson, B, et al. Consensus guidelines for the investigation and management of encephalitis in adults and children in Australia and New Zealand. Internal Med J 2015;45:563576.Google Scholar
Ambrose, HE, Granerod, J, Clewley, JP, et al. Diagnostic strategy used to establish etiologies of encephalitis in a prospective cohort of patients in England. J Clin Microbiol 2011;49:35763583.Google Scholar
Dubey, D, Pittock, SJ, Kelly, CR, et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 2018;83:166177.Google Scholar
Singh, TD, Fugate, JE, Rabinstein, AA. The spectrum of acute encephalitis: causes, management, and predictors of outcome. Neurology 2015;84:359366.Google Scholar
Graus, F, Titulaer, MJ, Balu, R, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391404.Google Scholar
Cellucci, T, Van Mater, H, Graus, F, et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient. Neurol Neuroimmunol Neuroinflamm 2020;7: e730.Google Scholar
Escudero, D, Guasp, M, Arino, H, et al. Antibody-associated CNS syndromes without signs of inflammation in the elderly. Neurology 2017;89:14711475.Google Scholar
Blinder, T, Lewerenz, J. Cerebrospinal fluid findings in patients with autoimmune encephalitis: a systematic analysis. Front Neurol 2019;10:804.CrossRefGoogle ScholarPubMed
Balu, R, McCracken, L, Lancaster, E, et al. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 2019;92:e244e252.Google Scholar
Tyler, KL. Acute viral encephalitis. N Engl J Med 2018;379:557566.CrossRefGoogle ScholarPubMed
Gofton, TE, Young, GB. Sepsis-associated encephalopathy. Nat Rev Neurol 2012;8:557566.CrossRefGoogle ScholarPubMed
Frontera, JA. Metabolic encephalopathies in the critical care unit. Continuum (Minneapolis, Minn) 2012;18:611639.Google Scholar
Amin, OS, Shwani, SS, Zangana, HM, Hussein, EM, Ameen, NA. Bilateral infarction of paramedian thalami: a report of two cases of artery of Percheron occlusion and review of the literature. BMJ Case Reports 2011;2011: bcr0920103304.Google Scholar
Chaturvedi, S, Pant, I, Kushwaha, S, Jha, DK. Intravascular lymphoma: an unusual cause of rapid cognitive decline and the role of brain biopsy. BMJ Case Reports 2014;2014: bcr2014205835.Google Scholar
Geschwind, MD, Tan, KM, Lennon, VA, et al. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt-Jakob disease. Arch Neurol 2008;65:13411346.CrossRefGoogle ScholarPubMed
Hirsch, LJ, Gaspard, N, van Baalen, A, et al. Proposed consensus definitions for new-onset refractory status epilepticus (NORSE), febrile infection-related epilepsy syndrome (FIRES), and related conditions. Epilepsia 2018;59:739744.Google Scholar
Arnulf, I, Rico, TJ, Mignot, E. Diagnosis, disease course, and management of patients with Kleine–Levin syndrome. Lancet Neurol 2012;11:918928.CrossRefGoogle ScholarPubMed
Gieraerts, C, Demaerel, P, Van Damme, P, Wilms, G. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome mimicking herpes simplex encephalitis on imaging studies. J Comput Assisted Tomogr 2013;37:279281.Google Scholar
Hurtubise, B, MacLellan, A. Clinical reasoning: a case of acute encephalopathy and rigidity in a 30-year-old man. Neurology 2019;93:759763.Google Scholar
Yshii, LM, Hohlfeld, R, Liblau, RS. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol 2017;13:755763.CrossRefGoogle Scholar
Geschwind, MD, Shu, H, Haman, A, Sejvar, JJ, Miller, BL. Rapidly progressive dementia. Ann Neurol 2008;64:97108.CrossRefGoogle ScholarPubMed
van Sonderen, A, Arino, H, Petit-Pedrol, M, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521528.Google Scholar
van Sonderen, A, Thijs, RD, Coenders, EC, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:14491456.Google Scholar
Hara, M, Arino, H, Petit-Pedrol, M, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:13401348.Google Scholar
Hainsworth, JB, Shishido, A, Theeler, BJ, Carroll, CG, Fasano, RE. Treatment responsive GABA(B)-receptor limbic encephalitis presenting as new-onset super-refractory status epilepticus (NORSE) in a deployed U.S. soldier. Epileptic Disord 2014;16:486493.Google Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.Google Scholar
Maureille, A, Fenouil, T, Joubert, B, et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J Neurol 2019;266:195206.Google Scholar
Golombeck, KS, Bonte, K, Monig, C, et al. Evidence of a pathogenic role for CD8(+) T cells in anti-GABAB receptor limbic encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e232.Google Scholar
Thompson, J, Bi, M, Murchison, AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 2018;141:348356.CrossRefGoogle ScholarPubMed
Joubert, B, Gobert, F, Thomas, L, et al. Autoimmune episodic ataxia in patients with anti-CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2017;4:e371.Google Scholar
van Gerpen, JA, Ahlskog, JE, Chen, R, et al. Orthostatic myoclonus associated with Caspr2 antibodies. Neurology 2016;87:11871188.Google Scholar
Lejuste, F, Thomas, L, Picard, G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm 2016;3:e280.Google Scholar
Ariño, H, Muñoz-Lopetegi, A, Martinez-Hernandez, E, et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020;95:e671e684.Google Scholar
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018;17:760772.Google Scholar
Boronat, A, Gelfand, JM, Gresa-Arribas, N, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120128.CrossRefGoogle ScholarPubMed
Irani, SR, Stagg, CJ, Schott, JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:31513162.Google Scholar
Hoftberger, R, Titulaer, MJ, Sabater, L, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:15001506.Google Scholar
Gadoth, A, Pittock, SJ, Dubey, D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol 2017;82:7992.Google Scholar
Spatola, MP-PM, Simabukuro, MM, Armangué, T, et al. Investigations in GABAa receptor antibody-associated encephalitis. Neurology 2017;88:10121020.CrossRefGoogle ScholarPubMed
O’Connor, K, Waters, P, Komorowski, L, et al. GABAA receptor autoimmunity: a multicenter experience. Neurol Neuroimmunol Neuroinflamm 2019;6:e552.Google Scholar
Loddenkemper, T, Kellinghaus, C, Gandjour, J, et al. Localising and lateralising value of ictal piloerection. J Neurol Neurosurg Psychiatry 2004;75:879883.Google Scholar
Rocamora, R, Becerra, JL, Fossas, P, et al. Pilomotor seizures: an autonomic semiology of limbic encephalitis? Seizure 2014;23:670673.Google Scholar
Wieser, S, Kelemen, A, Barsi, P, et al. Pilomotor seizures and status in non-paraneoplastic limbic encephalitis. Epileptic Disord 2005;7:205211.Google Scholar
Lopez Chiriboga, AS, Pittock, S. Episodic ataxia in CASPR2 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2019;6:e536.Google Scholar
Dalmau, J, Armangue, T, Planaguma, J, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 2019;18:10451057.Google Scholar
Kayser, MS, Titulaer, MJ, Gresa-Arribas, N, Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol 2013;70:11331139.Google Scholar
Florance-Ryan, N, Dalmau, J. Update on anti-N-methyl-D-aspartate receptor encephalitis in children and adolescents. Curr Opin Pediatr 2010;22:739744.Google Scholar
Spatola, M, Petit-Pedrol, M, Simabukuro, MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:10121020.Google Scholar
Ma, J, Han, W, Jiang, L. Japanese encephalitis-induced anti-N-methyl-d-aspartate receptor encephalitis: a hospital-based prospective study. Brain Dev 2020;42:179184.Google Scholar
Cavaliere, E, Nosadini, M, Pelizza, MF, Ventura, G, Toldo, I, Sartori, S. Anti-NMDAR encephalitis preceded by non-herpetic central nervous system infection: Systematic literature review and first case of tick-borne encephalitis triggering anti-NMDAR encephalitis. J Neuroimmunol 2019;332:17.Google Scholar
Piepgras, J, Holtje, M, Michel, K, et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology 2015;85:890897.CrossRefGoogle ScholarPubMed
Guasp, M, Modena, Y, Armangue, T, Dalmau, J, Graus, F. Clinical features of seronegative, but CSF antibody-positive, anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm 2020;7:e659.Google Scholar
Wakerley, BR, Uncini, A, Yuki, N. Guillain-Barre and Miller Fisher syndromes: new diagnostic classification. Nat Rev Neurol 2014;10:537544.Google Scholar
Ho, ACC, Mohammad, SS, Pillai, SC, et al. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol 2017;59:12561260.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157165.Google Scholar
Ward, KN. Child and adult forms of human herpesvirus 6 encephalitis: looking back, looking forward. Curr Opin Neurol 2014;27:349355.CrossRefGoogle ScholarPubMed
Wainwright, MS, Martin, PL, Morse, RP, et al. Human herpesvirus 6 limbic encephalitis after stem cell transplantation. Ann Neurol 2001;50:612619.Google Scholar
Haberlandt, E, Bast, T, Ebner, A, et al. Limbic encephalitis in children and adolescents. Arch Dis Childhood 2011;96:186191.Google Scholar
Malter, MP, Helmstaedter, C, Urbach, H, Vincent, A, Bien, CG. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol 2010;67:470478.Google Scholar
Pillai, SC, Hacohen, Y, Tantsis, E, et al. Infectious and autoantibody-associated encephalitis: clinical features and long-term outcome. Pediatrics 2015;135:e974984.Google Scholar
Krupp, LB, Banwell, B, Tenembaum, S. Consensus definitions proposed for pediatric multiple sclerosis and related disorders. Neurology 2007;68:S712.Google Scholar
Krupp, LB, Tardieu, M, Amato, MP, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler 2013;19:12611267.Google Scholar
Fridinger, SE, Alper, G. Defining encephalopathy in acute disseminated encephalomyelitis. J Child Neurol 2014;29:751755.CrossRefGoogle ScholarPubMed
Zhang, L, Wu, A, Zhang, B, et al. Comparison of deep gray matter lesions on magnetic resonance imaging among adults with acute disseminated encephalomyelitis, multiple sclerosis, and neuromyelitis optica. Mult Scler 2014;20:418423.Google Scholar
Lu, Z, Zhang, B, Qiu, W, et al. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis. PLoS One 2011;6:e22766.Google Scholar
Baumann, M, Sahin, K, Lechner, C, et al. Clinical and neuroradiological differences of paediatric acute disseminating encephalomyelitis with and without antibodies to the myelin oligodendrocyte glycoprotein. J Neurol Neurosurg Psychiatry 2015;86:265272.Google Scholar
Armangue, T, Olive-Cirera, G, Martinez-Hernandez, E, et al. Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study. Lancet Neurol 2020;19:234246.Google Scholar
Ogawa, R, Nakashima, I, Takahashi, T, et al. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol Neuroimmunol Neuroinflamm 2017;4:e322.Google Scholar
Salama, S, Khan, M, Pardo, S, Izbudak, I, Levy, M. MOG antibody-associated encephalomyelitis/encephalitis. Mult Scler 2019;25:14271433.Google Scholar
Wang, L, ZhangBao, J, Zhou, L, et al. Encephalitis is an important clinical component of myelin oligodendrocyte glycoprotein antibody associated demyelination: a single-center cohort study in Shanghai, China. Eur J Neurol 2019;26:168174.CrossRefGoogle ScholarPubMed
Mattozzi, S, Sabater, L, Escudero, D, et al. Hashimoto encephalopathy in the 21st century. Neurology 2020;94:e217e224.CrossRefGoogle Scholar
Titulaer, MJ, Hoftberger, R, Iizuka, T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014;75:411428.Google Scholar
Rojc, B, Podnar, B, Graus, F. A case of recurrent MOG antibody positive bilateral optic neuritis and anti-NMDAR encephalitis: different biological evolution of the two associated antibodies. J Neuroimmunol 2019;328:8688.Google Scholar
Ren, Y, Chen, X, He, Q, Wang, R, Lu, W. Co-occurrence of anti-n-methyl-d-aspartate receptor encephalitis and anti-myelin oligodendrocyte glycoprotein inflammatory demyelinating diseases: a clinical phenomenon to be taken seriously. Front Neurol 2019;10:1271.Google Scholar
Martinez-Hernandez, E, Guasp, M, Garcia-Serra, A, et al. Clinical significance of anti-NMDAR concurrent with glial or neuronal surface antibodies. Neurology 2020;94:e2302e2310.Google Scholar
Dorr, J, Krautwald, S, Wildemann, B, et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol 2013;9:307316.Google Scholar
Flanagan, EP, Hinson, SR, Lennon, VA, et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann Neurol 2017;81:298309.Google Scholar
Ganta, K, Malik, AM, Wood, JB, Levin, MC. Radial contrast enhancement on brain magnetic resonance imaging diagnostic of primary angiitis of the central nervous system: a case report and review of the literature. J Med Case Rep 2014;8:26.Google Scholar
Wickel, J, Chung, HY, Kirchhof, K, et al. Encephalitis with radial perivascular emphasis: Not necessarily associated with GFAP antibodies. Neurol Neuroimmunol Neuroinflamm 2020;7;e670.Google Scholar
Hoffman, LA, Vilensky, JA. Encephalitis lethargica: 100 years after the epidemic. Brain 2017;140:22462251.Google Scholar
Dale, RC, Irani, SR, Brilot, F, et al. N-methyl-D-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann Neurol 2009;66:704709.Google Scholar
Vilensky, JAGS, Duvoisin, RC, Mukhamedzyanov, RZ. Post-epidemic period encephalitis lethargica. In Vilensky, JA, ed., Encephalitis Lethargica. New York: Oxford University Press, 2011:83139.Google Scholar
McCall, S, Vilensky, JA, Gilman, S, Taubenberger, JK. The relationship between encephalitis lethargica and influenza: a critical analysis. J Neurovirol 2008;14:177185.Google Scholar
Vilensky, JAGS. Secondary (chronic) encephalitis lethargica. In Vilensky, JA, ed. Encephalitis Lethargica. New York Oxford University Press, 2011: 161182.Google Scholar
Vilensky, JA, Gilman, S, McCall, S. A historical analysis of the relationship between encephalitis lethargica and postencephalitic Parkinsonism: a complex rather than a direct relationship. Mov Disord 2010;25:11161123.Google Scholar
Vilensky, JA, Gilman, S, McCall, S. Does the historical literature on encephalitis lethargica support a simple (direct) relationship with postencephalitic Parkinsonism? Mov Disord 2010;25:11241130.CrossRefGoogle ScholarPubMed
Dale, RC, Church, AJ, Surtees, RA, et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 2004;127:2133.Google Scholar
Dale, RC, Merheb, V, Pillai, S, et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 2012;135:34533468.Google Scholar
Mohammad, SS, Sinclair, K, Pillai, S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014;29:117122.Google Scholar
Marques-Matos, C, Melo, C, Sampaio, M, et al. Child neurology: treatable bilateral striatal lesions related to anti-dopamine 2 receptor autoimmunity. Neurology 2018;91:98101.Google Scholar
Graus, F, Delattre, JY, Antoine, JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:11351140.Google Scholar
Lang, K, Pruss, H. Frequencies of neuronal autoantibodies in healthy controls: estimation of disease specificity. Neurol Neuroimmunol Neuroinflamm 2017;4:e386.Google Scholar
Berridge, G, Menassa, DA, Moloney, T, et al. Glutamate receptor delta2 serum antibodies in pediatric opsoclonus myoclonus ataxia syndrome. Neurology 2018;91:e714e723.Google Scholar
Shimokaze, T, Kato, M, Yoshimura, Y, Takahashi, Y, Hayasaka, K. A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor delta2. Brain Dev 2007;29:224226.Google Scholar
Matsumoto, H, Okabe, S, Hirakawa-Yamada, M, et al. Steroid-responsive focal epilepsy with focal dystonia accompanied by glutamate receptor delta2 antibody. J Neuroimmunol 2012;249:101104.Google Scholar
Mochizuki, Y, Mizutani, T, Isozaki, E, Ohtake, T, Takahashi, Y. Acute limbic encephalitis: a new entity? Neurosci Lett 2006;394:58.CrossRefGoogle ScholarPubMed
Abboud, H, Rossman, I, Mealy, MA, et al. Neuronal autoantibodies: differentiating clinically relevant and clinically irrelevant results. J Neurol 2017;264:22842292.Google Scholar
Budhram, A, Nicolle, MW, Yang, L. The positive predictive value of onconeural antibody testing: a retrospective review. Can J Neurol Sci 2018;45:577579.Google Scholar
Ebright, MJ, Li, SH, Reynolds, E, et al. Unintended consequences of Mayo paraneoplastic evaluations. Neurology 2018;91:e2057e2066.Google Scholar
Zidan, A, Fein, A, Zuchowski, K. The use, misuse and abuse of paraneoplastic panels in neurological disorders: a retrospective study. Clin Neurol Neurosurg 2019;186:105545.Google Scholar
Seluk, L, Taliansky, A, Yonath, H, et al. A large screen for paraneoplastic neurological autoantibodies: diagnosis and predictive values. Clin Immunol (Orlando, Fla) 2019;199:2936.Google Scholar
Brier, MR, Bucelli, RC, Day, GS. Reader response: unintended consequences of Mayo paraneoplastic evaluations. Neurology 2019;93:603.Google Scholar
Alamowitch, S, Graus, F, Uchuya, M, et al. Limbic encephalitis and small cell lung cancer: clinical and immunological features. Brain 1997;120:923928.Google Scholar
Voltz, R, Gultekin, SH, Rosenfeld, MR, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer [see comments]. N Engl J Med 1999;340:17881795.Google Scholar
Do, LD, Chanson, E, Desestret, V, et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017;88:514524.Google Scholar
Titulaer, MJ, McCracken, L, Gabilondo, I, et al. Late-onset anti-N-methyl-D-aspartate receptor encephalitis. Neurology 2013;81:10581063.Google Scholar
Hoftberger, R, von Sonderen, A, Leypoldt, F, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84:24032412.Google Scholar
Spatola, M, Sabater, L, Planaguma, J, et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 2018;90:e1964e1972.Google Scholar
Carvajal-Gonzalez, A, Leite, MI, Waters, P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:21782192.Google Scholar
Arino, H, Armangue, T, Petit-Pedrol, M, et al. Anti-LGI1-associated cognitive impairment: presentation and long-term outcome. Neurology 2016;87:759765.Google Scholar
Wingerchuk, DM, Banwell, B, Bennett, JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177189.Google Scholar
Sepulveda, M, Sola-Valls, N, Escudero, D, et al. Clinical profile of patients with paraneoplastic neuromyelitis optica spectrum disorder and aquaporin-4 antibodies. Mult Scler 2017;24:17531759.Google Scholar
Gresa-Arribas, N, Planaguma, J, Petit-Pedrol, M, et al. Human neurexin-3alpha antibodies associate with encephalitis and alter synapse development. Neurology 2016;86:22352242.Google Scholar
Shahrizaila, N, Yuki, N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry 2013;84:576583.Google Scholar
Dalmau, J, Graus, F, Villarejo, A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:18311844.Google Scholar
Arino, H, Hoftberger, R, Gresa-Arribas, N, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72:874881.Google Scholar
Irani, SR, Pettingill, P, Kleopa, KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol 2012;72:241255.Google Scholar
Graus, F, Saiz, A, Dalmau, J. GAD antibodies in neurological disorders – insights and challenges. Nat Rev Neurol 2020;16:353365.Google Scholar
van Coevorden-Hameete, MH, de Bruijn, M, de Graaff, E, et al. The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain 2019;142:16311643.Google Scholar
Joubert, B, Saint-Martin, M, Noraz, N, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:11151124.Google Scholar
Mariotto, S, Gajofatto, A, Batzu, L, et al. Relevance of antibodies to myelin oligodendrocyte glycoprotein in CSF of seronegative cases. Neurology 2019;93:e1867e1872.Google Scholar
Bien, CG, Bien, CI, Dogan Onugoren, M, et al. Routine diagnostics for neural antibodies, clinical correlates, treatment and functional outcome. J Neurol 2020;267:21012114.Google Scholar
Waters, P, Vincent, A. Myelin oligodendrocyte glycoprotein CSF testing needs testing. Neurology 2019;93:871872.Google Scholar
Petit-Pedrol, M, Armangue, T, Peng, X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276286.Google Scholar
Hinson, SR, Lopez-Chiriboga, AS, Bower, JH, et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm 2018;5:e438.Google Scholar
Gastaldi, M, Thouin, A, Franciotta, D, Vincent, A. Pitfalls in the detection of N-methyl-d-aspartate-receptor (NMDA-R) antibodies. Clin Biochem 2016;50:345355.Google Scholar
Dahm, L, Ott, C, Steiner, J, et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 2014;76:8294.Google Scholar
Hara, M, Martinez-Hernandez, E, Arino, H, et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 2018;90:e1386e1394.Google Scholar
Boronat, A, Sabater, L, Saiz, A, Dalmau, J, Graus, F. GABAB receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011;76:795800.Google Scholar
Dechelotte, B, Muniz-Castrillo, S, Joubert, B, et al. Diagnostic yield of commercial immunodots to diagnose paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2020;7;e701.Google Scholar
Ruiz-García, R, Martínez-Hernández, E, Saiz, A, Dalmau, J, Graus, F. The diagnostic value of onconeural antibodies depends on how they are tested. Front Immunol 2020;11:1482.Google Scholar
Graus, F, Delattre, JY, Antoine, JC, et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 2004;75:11351140.Google Scholar
Sabater, L, Titulaer, M, Saiz, A, et al. SOX1 antibodies are markers of paraneoplastic Lambert Eaton myasthenic syndrome. Neurology 2008;70:924928.Google Scholar
Sabater, L, Saiz, A, Dalmau, J, Graus, F. Pitfalls in the detection of CV2 (CRMP5) antibodies. J Neuroimmunol 2016;290:8083.CrossRefGoogle ScholarPubMed
Krakenes, T, Herdlevaer, I, Raspotnig, M, et al. CDR2L is the major Yo antibody target in paraneoplastic cerebellar degeneration. Ann Neurol 2019;86:316321.Google Scholar
Corradi, JP, Yang, CW, Darnell, JC, Dalmau, J, Darnell, RB. A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J Neurosci 1997;17:14061415.Google Scholar
Herdlevær, I, Haugen, M, Mazengia, K, et al. Paraneoplastic cerebellar degeneration: the importance of including CDR2L as a diagnostic marker. Neurol Neuroimmunol Neuroinflamm 2021;8:e963.Google Scholar
Zandi, MS, Paterson, RW, Ellul, MA, et al. Clinical relevance of serum antibodies to extracellular N-methyl-d-aspartate receptor epitopes. J Neurol Neurosurg Psychiatry 2015;86:708713.Google Scholar
Steiner, J, Walter, M, Glanz, W, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry 2013:70:271278.Google Scholar
Ruiz-García, R, Muñoz-Sánchez, G, Naranjo, L, et al. Limitations of a commercial assay as diagnostic test of autoimmune encephalitis. Front Immunol 2021;12:691536.Google Scholar
Gastaldi, M, Mariotto, S, Giannoccaro, MP, et al. Subgroup comparison according to clinical phenotype and serostatus in autoimmune encephalitis: a multicenter retrospective study. Eur J Neurol 2019;27:633643.Google Scholar
Mohan, D, Wansley, DL, Sie, BM, et al. PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nature Protocols 2018;13:19581978.Google Scholar
Larman, HB, Zhao, Z, Laserson, U, et al. Autoantigen discovery with a synthetic human peptidome. Nature Biotechnol 2011;29:535541.CrossRefGoogle ScholarPubMed
Xu, GJ, Kula, T, Xu, Q, et al. Viral immunology: comprehensive serological profiling of human populations using a synthetic human virome. Science 2015;348:aaa0698.Google Scholar
Mandel-Brehm, C, Dubey, D, Kryzer, TJ, et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N Engl J Med 2019;381:4754.Google Scholar
Johnson, TP, Larman, HB, Lee, MH, et al. Chronic dengue virus panencephalitis in a patient with progressive dementia with extrapyramidal features. Ann Neurol 2019;86:695703.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • General Approach to Diagnosis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • General Approach to Diagnosis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • General Approach to Diagnosis
  • Josep Dalmau, Universitat de Barcelona, Francesc Graus, Universitat de Barcelona
  • Book: Autoimmune Encephalitis and Related Disorders of the Nervous System
  • Online publication: 27 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108696722.003
Available formats
×