Hostname: page-component-7d684dbfc8-dh8xm Total loading time: 0 Render date: 2023-10-01T11:29:45.621Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Chapter 5 - Inference of Network Expressions

Published online by Cambridge University Press:  05 June 2013

Summary

Introduction

This chapter introduces various mathematical models and combinatorial algorithms that are used to infer network expressions which appear repeated in a word or are common to a set of words, where by network expression is meant a regular expression without Kleene closure on the alphabet of the input word(s). A network expression on such an alphabet is therefore any expression built up of concatenation and union operators. For example, the expression A(C + G)T concatenates A with the union (C + G) and with T. Inferring network expressions means discovering such expressions which are initially unknown. The only input is the word(s) where the repeated (or common) expressions will be sought. This is in contrast with another problem, we shall not be concerned with, which searches for a known expression in a word(s) both of which are in this case part of the input. The inference of network expressions has many applications, notably in molecular biology, system security, text mining, etc. Because of the richness of the mathematical and algorithmic problems posed by molecular biology, we concentrate on applications in this area. The network expressions considered may therefore contain spacers where by spacer is meant any number of don't care symbols (a don't care is a symbol that matches anything). Constrained spacers are consecutive don't care symbols whose number ranges over a fixed interval of values. Network expressions with don't care symbols but no spacers are called “simple” while network expressions with spacers are called “flexible” if the spacers are unconstrained, and “structured” otherwise.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×