Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T11:19:35.588Z Has data issue: false hasContentIssue false

2 - Diversity and Specificity of Ant-Plant Interactions in Canopy Communities: Insights from Primary and Secondary Tropical Forests in New Guinea

from Part I - Landscape Mosaics, Habitat Fragmentation, and Edge Effects

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 26 - 51
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adis, J., Lubin, Y. D. & Montgomery, G. G. (1984). Arthropods from the canopy of inundated and terra firme forests near Manaus, Brazil, with critical considerations on the pyrethrum-fogging technique. Studies on Neotropical Fauna and Environment, 19, 223–36.CrossRefGoogle Scholar
Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R. (2000). Ants: Standard Methods for Measuring and Monitoring Biodiversity. Washington, DC: Smithsonian Institution Press.Google Scholar
Basset, Y., Cizek, L., Cuenoud, P. et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–4.CrossRefGoogle Scholar
Bihn, J. H., Verhaagh, M., Brändle, M. & Brandl, R. (2008). Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic Forest of Brazil. Biological Conservation, 141, 733–43.Google Scholar
Blüthgen, N. & Fiedler, K. (2002). Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. Journal of Animal Ecology, 71, 793801.Google Scholar
Blüthgen, N., Gebauer, G. & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia, 137, 426–35.Google Scholar
Blüthgen, N., Mezger, D. & Linsenmair, K. E. (2006). Ant-hemipteran trophobioses in a Bornean rainforest – diversity, specificity and monopolisation. Insectes Sociaux, 53, 194203.CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitia, W. et al. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229–40.Google Scholar
Butler, R. A. & Laurance, W. F. (2008). New strategies for conserving tropical forests. Trends in Ecology & Evolution, 23, 469–72.Google Scholar
Camarota, F., Powell, S., Vasconcelos, H. L., Priest, G. & Marquis, R. J. (2015). Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna. Ecology, 96, 231–40.CrossRefGoogle Scholar
Chazdon, R. L. (2014). Second Growth. Chicago: University of Chicago Press.Google Scholar
DaRocha, W. D., Ribeiro, S. P., Neves, F. S. et al. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic Forest agroecosystem? Myrmecological News, 21, 8392.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969–72.Google Scholar
de Castro Solar, R. R., Barlow, J., Ferreira, J. et al. (2015). How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecology Letters, 18, 1108–18.Google Scholar
Dejean, A., Corbara, B., Orivel, J. & Leponce, M. (2007). Rainforest canopy ants: the implications of territoriality and predatory behavior. Functional Ecosystems and Communities, 1, 105–20.Google Scholar
Dejean, A., Djieto-Lordon, C., Cereghino, R. & Leponce, M. (2008). Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees. Basic and Applied Ecology, 9, 316–23.Google Scholar
Dejean, A., Fisher, B. L., Corbara, B. et al. (2010). Spatial distribution of dominant arboreal ants in a Malagasy coastal rainforest: gaps and presence of an invasive species. PLoS ONE, 5, e9319.Google Scholar
Ewers, R. M., Boyle, M. J. W., Gleave, R. A. et al. (2015). Logging cuts the functional importance of invertebrates in tropical rainforest. Nature Communications, 6, 6836.CrossRefGoogle ScholarPubMed
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. & Turner, E. C. (2015). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441–50.Google Scholar
Fayle, T. M., Turner, E. C. & Foster, W. A. (2013). Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nest-sites and non-native species. Ecography, 36, 1051–7.CrossRefGoogle Scholar
Fayle, T. M., Turner, E. C., Snaddon, J. L. et al. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 11, 337–45.CrossRefGoogle Scholar
Feldhaar, H., Fiala, B., Hashim, R. B. & Maschwitz, U. (2003). Patterns of the Crematogaster-Macaranga association: The ant partner makes the difference. Insectes Sociaux, 50, 919.CrossRefGoogle Scholar
Floren, A. (2005). How reliable are data on arboreal ant (Hymenoptera: Formicidae) communities collected by insecticidal fogging? Myrmecologische Nachrichten, 7, 91–4.Google Scholar
Floren, A., Freking, A., Biehl, M. & Linsenmair, K. E. (2001). Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography, 24, 547–54.CrossRefGoogle Scholar
Floren, A. & Linsenmair, K. E. (1997). Diversity and recolonization dynamics of selected arthropod groups on different tree species in a lowland rainforest in Sabah, with special reference to Formicidae. In Canopy Arthropods, ed. Stork, N. E., Adis, J. & Didham, R. K.. London: Chapman & Hall, pp. 344–81.Google Scholar
Floren, A., Wetzel, W. & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 6574.Google Scholar
Frederickson, M. E. & Gordon, D. M. (2007). The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil’s gardens’ is increased herbivory on Duroia hirsuta trees. Proceedings of the Royal Society B-Biological Sciences, 274, 1117–23.CrossRefGoogle Scholar
Gullan, P. J., Buckley, R. C. & Ward, P. S. (1993). Ant-tended scale insects (Hemiptera: Coc-cidae: Myzolecanium) within lowland rain forest trees in Papua New Guinea. Journal of Tropical Ecology, 9, 8191.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist, 80, 231–68.CrossRefGoogle Scholar
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution, 20, 249–75.Google Scholar
Jimenez-Soto, E. & Philpott, S. M. (2015). Size matters: nest colonization patterns for twig-nesting ants. Ecology and Evolution, 5, 3288–98.Google Scholar
Klimes, P., Fibich, P., Idigel, C. & Rimandai, M. (2015). Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS ONE, 10, e0117853.Google Scholar
Klimes, P., Husnik, F., Borovanska, M. & Gullan, P. J. (2016). Contrasting tri-trophic food webs between primary and secondary tropical forest: role of species ecology and phylogeny (Abstract). In Annual Meeting of the Association for Tropical Biology and Conservation. Montpellier: 53 rd ATBC, Le Corum, p. 220.Google Scholar
Klimes, P., Idigel, C., Rimandai, M. et al. (2012). Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology, 81, 1103–12.Google Scholar
Klimes, P. & McArthur, A. (2014). Diversity and ecology of arboricolous ant communities of Camponotus (Hymenoptera: Formicidae) in a New Guinea rainforest with description of four new species. Myrmecological News, 20, 141–58.Google Scholar
Lach, L., Parr, L. C. & Abbott, K. L. (2010). Ant Ecology. New York: Oxford University Press.Google Scholar
Letourneau, D. K. & Barbosa, P. (1999). Ants, stem borers, and pubescence in Endospermum in Papua New Guinea. Biotropica, 31, 295302.Google Scholar
Lowman, M. D., Schowalter, T. D. & Franklin, J. F. (2012). Methods in Forest Canopy Research. London: University of California Press.Google Scholar
Novotny, V. (2010). Rain forest conservation in a tribal world: why forest dwellers prefer loggers to conservationists. Biotropica, 42, 546–9.Google Scholar
Novotny, V., Miller, S. E., Leps, J. et al. (2004). No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters, 7, 10901100.CrossRefGoogle Scholar
Oliveira, P. S., Freitas, A. V. L. & Del-Claro, K. (2002). Ant foraging on plant foliage: contrasting effects. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, ed. Oliveira, P. S. & Marquis, R. J.. New York: Columbia University Press, pp. 287305.Google Scholar
R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ribas, C. R., Schoereder, J. H., Pic, M. & Soares, S. M. (2003). Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology, 28, 305–14.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Ryder Wilkie, K. T., Mertl, A. L. & Traniello, J. F. A. (2010). Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS ONE, 5, e13146.Google Scholar
Satoh, T., Yoshida, T., Koyama, S. et al. (2016). Resource partitioning based on body size contributes to the species diversity of wood-boring beetles and arboreal nesting ants. Insect Conservation and Diversity, 9, 412.CrossRefGoogle Scholar
Shearman, P. & Bryan, J. (2011). A bioregional analysis of the distribution of rainforest cover, deforestation and degradation in Papua New Guinea. Austral Ecology, 36, 924.CrossRefGoogle Scholar
Šmilauer, P. & Lepš, J. (2014). Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge: Cambridge University Press.Google Scholar
Staab, M., Blüthgen, N. & Klein, A.-M. (2015). Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos, 124, 827–34.Google Scholar
Staab, M., Schuldt, A., Assmann, T. & Klein, A.-M. (2014). Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest. Ecological Entomology, 39, 637–47.Google Scholar
Tanaka, H. O., Yamane, S. & Itioka, T. (2010). Within-tree distribution of nest sites and foraging areas of ants on canopy trees in a tropical rainforest in Borneo. Population Ecology, 52, 147–57.Google Scholar
Toussaint, E. F. A., Hall, R., Monaghan, M. T. et al. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications, 5, 4001.Google Scholar
Vasconcelos, H. L. & Bruna, E. M. (2012). Arthropod responses to the experimental isolation of Amazonian forest fragments. Zoologia, 29, 515–30.Google Scholar
Wardhaugh, C. W., Stork, N. E. & Edwards, W. (2013). Specialization of rainforest canopy beetles to host trees and microhabitats: not all specialists are leaf-feeding herbivores. Biological Journal of the Linnean Society, 109, 215–28.Google Scholar
Whitfeld, T. J. S., Lasky, J. R., Damas, K. et al. (2014). Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica, 46, 538–48.CrossRefGoogle Scholar
Whitfeld, T. J. S., Novotny, V., Miller, S. E. et al. (2012). Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 93, S211–S22.Google Scholar
Widodo, E. S., Naito, T., Mohamed, M. & Hashimoto, Y. (2004). Effects of selective logging on the arboreal ants of a Bornean rainforest. Entomological Science, 7, 341–9.Google Scholar
Woodcock, P., Edwards, D. P., Fayle, T. M. et al. (2011). The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3256–64.Google Scholar
Woodcock, P., Edwards, D. P., Newton, R. J. et al. (2013). Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot. PLoS ONE, 8, e60756.Google Scholar
Yanoviak, S. P., Silveri, C., Hamm, C. A. & Solis, M. (2012). Stem characteristics and ant body size in a Costa Rican rain forest. Journal of Tropical Ecology, 28, 199204.Google Scholar
Yusah, K. M., Fayle, T. M., Harris, G. & Foster, W. A. (2012). Optimizing diversity assessment protocols for high canopy ants in tropical rain forest. Biotropica, 44, 7381.Google Scholar
Yusah, K. M. & Foster, W. A. (2016). Tree size and habitat complexity affect ant communities (Hymenoptera: Formicidae) in the high canopy of Bornean rain forest. Myrmecological News, 23, 1523.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×