Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T05:25:10.873Z Has data issue: false hasContentIssue false

18 - Linear dynamics of stationary toroidal plasmas

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

Transonic toroidal plasmas

Waves and instabilities of transonically rotating axi-symmetric plasmas is a highly complex problem that is of interest for the two unrelated fields of laboratory plasma confinement, aimed at eventual thermonuclear energy production, and the dynamics of a vast number of astrophysical plasmas rotating about compact objects, broadly indicated as accretion disks. The complexity comes from the transonic transitions of the poloidal flow which causes the character of the rotating equilibrium states to change dramatically, from elliptic to hyperbolic or vice versa, when the poloidal velocity surpasses certain critical speeds. Associated with these transitions the different types of magnetohydrodynamic shocks may appear (see Chapter 20). Obviously, at such transitions the possible waves and instabilities of the system also change dramatically. We here describe these changes for the two mentioned classes of physical systems, starting from the point of view that the continuous spectrum of ideal MHD presents the best organizing principle for the structure of the complete spectrum of waves and instabilities since it is the most robust part of it. It provides the simplest approach to local waves and instabilities of the system and, possibly, to the onset of MHD turbulence.

The equilibrium problem of translation symmetric and axi-symmetric plasmas was formulated by Goedbloed and Lifschitz [181] in terms of three generic functions (see Section 18.2) that permit analysis of the different singularities and the resolution of the concomitant discontinuities that occur in transonic MHD flows.

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 355 - 404
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×