Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T21:45:56.749Z Has data issue: false hasContentIssue false

Section III - Ovarian Cancer

Published online by Cambridge University Press:  20 July 2023

Dennis S. Chi
Affiliation:
Memorial Sloan-Kettering Cancer Center, New York
Nisha Lakhi
Affiliation:
Richmond University Medical Center, Staten Island
Nicoletta Colombo
Affiliation:
University of Milan-Bicocca
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Rodriguez, N, et al. Changes in serum CA-125 can predict optimal cytoreduction to no gross residual disease in patients with advanced stage ovarian cancer treated with neoadjuvant chemotherapy. Gynecol Oncol 2012;125:362366. https://doi.org/10.1016/j.ygyno.2012.02.006CrossRefGoogle ScholarPubMed
Rustin, GJS, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating Response Evaluation Criteria In Solid Tumors (RECIST) 1.1 and CA-125 agreed by the gynecological cancer intergroup (GCIG). Int J Gynecol Cancer 2011;21:419423. https://doi.org/10.1097/IGC.0b013e3182070f17CrossRefGoogle ScholarPubMed
Fleming, ND, et al. CA-125 surveillance increases optimal resectability at secondary cytoreductive surgery for recurrent epithelial ovarian cancer. Gynecol Oncol 2011;121:249252. https://doi.org/10.1016/j.ygyno.2011.01.014CrossRefGoogle ScholarPubMed
Piatek, S, et al. Rising serum CA-125 levels within the normal range is strongly associated recurrence risk and survival of ovarian cancer. J Ovarian Res 2020;13:102. https://doi.org/10.1186/s13048-020-00681-0CrossRefGoogle ScholarPubMed
Pignata, S, et al. Follow-up with CA-125 after primary therapy of advanced ovarian cancer: in favor of continuing to prescribe CA-125 during follow-up. Ann Oncol Off J Eur Soc Med Oncol 2011;22(Suppl. 8):viii40–viii44. https://doi.org/10.1093/annonc/mdr470Google ScholarPubMed
Rustin, GJS, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial., Lancet 2010;376:11551163. https://doi.org/10.1016/S0140-6736(10)61268-8CrossRefGoogle ScholarPubMed
Coleman, RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381:19291939. https://doi.org/10.1056/NEJMoa1902626CrossRefGoogle ScholarPubMed
Du, Bois A, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol 2020;38:6000. https://doi.org/10.1200/JCO.2020.38.15_suppl.6000Google Scholar
Tanner, EJ, et al. Surveillance for the detection of recurrent ovarian cancer: survival impact or lead-time bias? Gynecol Oncol 2010;2010:117. https://doi.org/10.1016/j.ygyno.2010.01.014Google Scholar
Jordens, CFC, et al. Cancergazing? CA-125 and post-treatment surveillance in advanced ovarian cancer. Soc Sci Med 2010;71:15481556. https://doi.org/10.1016/j.socscimed.2010.07.033CrossRefGoogle ScholarPubMed
Tsai, L-Y, et al. Life experiences and disease trajectories in women coexisting with ovarian cancer. Taiwan J Obstet Gynecol 2020;59:115119. https://doi.org/10.1016/j.tjog.2019.11.032CrossRefGoogle ScholarPubMed
Jolicoeur, LJA, et al. Women’s decision-making needs related to treatment for recurrent ovarian cancer: a pilot study. Can Oncol Nurs J 2009;19:117121. https://doi.org/10.5737/1181912x193117121CrossRefGoogle ScholarPubMed

References

Rustin, GJ, et al. Early versus delayed treatment of relapsed ovarian cancer (MRCOV05/EORTC 55955): a randomised trial. Lancet 2010;376:11551163.CrossRefGoogle ScholarPubMed
Krell, D, et al. Audit of CA-125 follow-up after first-line therapy for ovarian cancer. Int J Gynecol Cancer 2017;27:11181122.CrossRefGoogle ScholarPubMed
Esselen, KM, et al. Use of CA-125 tests and CT scans for surveillance in ovarian cancer. JAMA Oncol 2016;2(11):14271433.CrossRefGoogle ScholarPubMed
Coleman, RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381(20):19291939.CrossRefGoogle ScholarPubMed
Du Bois, A, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol 2020;38(Suppl. 15):6000.CrossRefGoogle Scholar

References

Mirza, MR, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol 2020;31(9):11481159. https://doi.org/10.1016/j.annonc.2020.06.004CrossRefGoogle ScholarPubMed
Berger, MF, et al. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018;15:353365. https://doi.org/10.1038/s41571-018-0002-6CrossRefGoogle ScholarPubMed
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474(7353):609–15. https://doi.org/10.1038/nature10166. Erratum in: Nature 2012;490(7419):298.CrossRefGoogle Scholar
www.oncokb.org/ [last accessed October 18, 2022].Google Scholar
Konstantinopoulos, PA, et al. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 2015;5:11371154.CrossRefGoogle ScholarPubMed

References

Flaherty, KT, et al. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J Clin Oncol 2020;38(33):38833894.CrossRefGoogle Scholar
Lee, YJ, et al. Integrating a next generation sequencing panel into clinical practice in ovarian cancer. Yonsei Med J 2019;60(10):914923.CrossRefGoogle ScholarPubMed
Kuderer, NM, et al. Comparison of 2 commercially available next-generation sequencing platforms in oncology. JAMA Oncol 2017;3(7):996998.CrossRefGoogle ScholarPubMed
Haunschild, CE, et al. The current landscape of molecular profiling in the treatment of epithelial ovarian cancer. Gynecol Oncol 2020;160(1):333345.CrossRefGoogle ScholarPubMed
Wallbillich, JJ, et al. A personalized paradigm in the treatment of platinum-resistant ovarian cancer: a cost utility analysis of genomic-based versus cytotoxic therapy. Gynecol Oncol 2016;142(1):144149.CrossRefGoogle ScholarPubMed

References

Grisham, RN, et al. Extreme outlier analysis identifies occult mitogen-activated protein kinase pathway mutations in patients with low-grade serous ovarian cancer. J Clin Oncol 2015;33(34):40994105.CrossRefGoogle ScholarPubMed
Grisham, RN, et al. BRAF mutation is associated with early stage disease and improved outcome in patients with low-grade serous ovarian cancer. Cancer 2012;119(3):548554.Google ScholarPubMed
Farley, J, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol 2013;14(2):134140.CrossRefGoogle ScholarPubMed
Gershenson, DM, et al. A randomized phase II/III study to assess the efficacy of trametinib in patients with recurrent or progressive low-grade serous ovarian or peritoneal cancer. Ann Oncol 2019;30(Suppl. 5):v851v934.CrossRefGoogle Scholar
Monk, BJ, et al. MILO/ENGOT-ov11: binimetinib versus physician’s choice chemotherapy in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum. J Clin Oncol 2020;2020:JCO2001164.Google Scholar

References

Slomovitz, B, et al. Low-grade serous ovarian cancer: state of the science. Gynecol Oncol 2020;156:715725.CrossRefGoogle ScholarPubMed
Farley, J, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label single-arm, phase 2 study. Lancet Oncol 2013;14:134140.CrossRefGoogle ScholarPubMed
Monk, BJ, et al. MILO/ENGOT-ov11: binimetinib versus physician’s choice chemotherapy in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum. J Clin Oncol 2020;38(32):37533762.CrossRefGoogle ScholarPubMed
Gershenson, DM, et al. A randomized phase II/III study to assess the efficacy of trametinib in patients with recurrent or progressive low-grade serous ovarian or peritoneal cancer. Ann Oncol 2019;30(Suppl. 5):v851v934.CrossRefGoogle Scholar

References

Morice, P, et al. Mucinous ovarian carcinoma. N Engl J Med 2019;380:12561266.CrossRefGoogle ScholarPubMed
Matsuo, K, et al. Evolving population-based statistics for rare epithelial ovarian cancers. Gynecol Oncol 2020;157:311.CrossRefGoogle ScholarPubMed
Matsuo, K, et al. Effectiveness of postoperative chemotherapy for stage IC mucinous ovarian cancer. Gynecol Oncol 2019;154:505515.CrossRefGoogle ScholarPubMed
Nasioudis, D, et al. Adjuvant chemotherapy is not associated with a survival benefit for patients with early-stage mucinous ovarian carcinoma. Gynecol Oncol 2019;154:302307.CrossRefGoogle Scholar
Trimbos, JB, et al. International Collaborative Ovarian Neoplasm trial 1 and Adjuvant ChemoTherapy In Ovarian Neoplasm trial: two parallel randomized phase III trials of adjuvant chemotherapy in patients with early-stage ovarian carcinoma. J Natl Cancer Inst 2003;95:105112.CrossRefGoogle ScholarPubMed
National Comprehensive Cancer Network. Ovarian Cancer Including Fallopian Tube and Primary Peritoneal Cancer. Version 2.2021. Available from: www.nccn.org/professionals/physician_gls/pdf/ovarian.pdfGoogle Scholar

References

Crane, EK, et al. Early stage mucinous ovarian cancer: a review. Gynecol Oncol 2018;149(3):598604.CrossRefGoogle ScholarPubMed
Trimbos, JB, et al. International Collaborative Ovarian Neoplasm trial 1 and Adjuvant ChemoTherapy In Ovarian Neoplasm trial: two parallel randomized phase III trials of adjuvant chemotherapy in patients with early-stage ovarian carcinoma. J Natl Cancer Inst 2003;95(2):105112.CrossRefGoogle ScholarPubMed
Richardson, MT, et al. Long-term survival outcomes of stage I mucinous ovarian cancer – A clinical calculator predictive of chemotherapy benefit. Gynecol Oncol 2020;159(1):118128.CrossRefGoogle Scholar
Nasioudis, D, et al. Adjuvant chemotherapy is not associated with a survival benefit for patients with early stage mucinous ovarian carcinoma. Gynecol Oncol 2019;154(2):302307.CrossRefGoogle Scholar
Matsuo, K, et al. Effectiveness of postoperative chemotherapy for stage IC mucinous ovarian cancer. Gynecol Oncol 2019;154(3):505515.CrossRefGoogle ScholarPubMed

References

Colombo, N, et al. ESMO-ESGO Ovarian Cancer Consensus Conference Working Group. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann Oncol 2019;30(5):672705.CrossRefGoogle Scholar
Lawrie, TA, et al. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. Cochrane Database Syst Rev 2015;12:CD004706.Google Scholar
Bell, J, et al. Randomized phase III trial of three versus six cycles of adjuvant carboplatin and paclitaxel in early stage epithelial ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2006;102:432439.CrossRefGoogle ScholarPubMed
Chan, JK, et al. The potential benefit of 6 vs. 3 cycles of chemotherapy in subsets of women with early-stage high-risk epithelial ovarian cancer: an exploratory analysis of a Gynecologic Oncology Group study. Gynecol Oncol 2010;116:301306.CrossRefGoogle ScholarPubMed
Prendergast, H, et al, Three versus six cycles of adjuvant platinum-based chemotherapy in early stage clear cell ovarian carcinoma – A multi-institutional cohort. Gynecol Oncol 2017;144:274278.CrossRefGoogle ScholarPubMed

References

Lawrie, TA, et al. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. Cochrane Database Syst Rev 2015;;2015(12):CD004706. https://doi.org/10.1002/14651858.CD004706.pub5Google ScholarPubMed
Bell, J, et al. Gynecologic Oncology Group. Randomized phase III trial of three versus six cycles of adjuvant carboplatin and paclitaxel in early stage epithelial ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2006;102(3):432439. https://doi.org/10.1016/j.ygyno.2006.06.013CrossRefGoogle ScholarPubMed
Vergote, I, et al. Treatment of patients with early epithelial ovarian cancer. Curr Opin Oncol 2003;15(6):452455. https://doi.org/10.1097/00001622-200311000-00008CrossRefGoogle ScholarPubMed
Chan, JK, et al. The potential benefit of 6 vs. 3 cycles of chemotherapy in subsets of women with early-stage high-risk epithelial ovarian cancer: an exploratory analysis of a Gynecologic Oncology Group study. Gynecol Oncol 2010;116(3):301306. https://doi.org/10.1016/j.ygyno.2009.10.073CrossRefGoogle ScholarPubMed
Chan, JK, et al. Survival after recurrence in early-stage high-risk epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2010;116(3):307311. https://doi.org/10.1016/j.ygyno.2009.10.074CrossRefGoogle ScholarPubMed

References

Coleridge, SL, et al. Chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer. Cochrane Database Syst Rev 2019;10:CD005343. https://doi.org/10.1002/14651858.CD005343.pub4Google Scholar
Melamed, A, et al. Effect of adoption of neoadjuvant chemotherapy for advanced ovarian cancer on all-cause mortality: quasi-experimental study. Br Med J 2018;360:5463.CrossRefGoogle ScholarPubMed
Thrall, MM, et al. Thirty-day mortality after primary cytoreductive surgery for advanced ovarian cancer in the elderly. Obstet Gynecol 2011;118(3):537547. https://doi.org/10.1097/AOG.0b013e31822a6d56CrossRefGoogle ScholarPubMed
Tew, W. Ovarian cancer in the older woman. J Geriatr Oncol 2016;7(5):354361.CrossRefGoogle ScholarPubMed
Kumar, A, et al. Functional not chronologic age: frailty index predicts outcomes in advanced ovarian cancer. Gynecol Oncol 2017;147(1):104109.CrossRefGoogle ScholarPubMed

References

Long Roche, K, et al. Practical guidelines for trial to neoadjuvant chemotherapy in advanced ovarian cancer: big risk, big reward … or too much risk? Gynecol Oncol 2020;157:561562.CrossRefGoogle ScholarPubMed
Onda, T, et al. Comparison or survival between primary debulking surgery and neoadjuvant chemotherapy for stage III/IV ovarian, tubal and peritoneal cancers in phase III randomized trial. Eur J Cancer 2020;130:114125.CrossRefGoogle ScholarPubMed
Wright, AA, et al. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology Clinical Practice Guideline. Gynecol Oncol 2016;143:315.CrossRefGoogle ScholarPubMed
Falandry, C, et al. EWOC-1: a randomized trial to evaluate the feasibility of three different first-line chemotherapy regimens for vulnerable elderly with ovarian cancer (OC): a GCIG-ENGOT-GINECO study. J Clin Oncol 2019;37S:ASCO #5508.CrossRefGoogle Scholar
von Gruenigen, VE, et al. Chemotherapy completion in elderly women with ovarian, primary peritoneal or fallopian tube cancer – an NRG oncology/Gynecologic Oncology Group study. Gynecol Oncol 2017;144(3):459467.CrossRefGoogle ScholarPubMed

References

du Bois, A, et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 2009;115(6):12341244.CrossRefGoogle Scholar
Woelber, L, et al. Perioperative morbidity and outcome of secondary cytoreduction for recurrent epithelial ovarian cancer. Eur J Surg Oncol 2010;36(6):583588.CrossRefGoogle ScholarPubMed
Vergote, I, et al. Neoadjuvant chemotherapy versus debulking surgery in advanced tubo-ovarian cancers: pooled analysis of individual patient data from the EORTC 55971 and CHORUS trials. Lancet Oncol 2018;19(12):16801687.CrossRefGoogle ScholarPubMed
Cancer Genome Atlas Research. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474(7353):609615.CrossRefGoogle Scholar
Mahner, S, et al. Prognostic impact of the time interval between surgery and chemotherapy in advanced ovarian cancer: analysis of prospective randomised phase III trials. Eur J Cancer 2013;49(1):142149.CrossRefGoogle ScholarPubMed
Reuss, A, et al. TRUST: Trial of Radical Upfront Surgical Therapy in advanced ovarian cancer (ENGOT ov33/AGO-OVAR OP7). Int J Gynecol Cancer 2019;29(8):13271331.CrossRefGoogle ScholarPubMed

References

Searle, Gemma, et al. Prolonged interruption of chemotherapy in patients undergoing delayed debulking surgery for advanced high-grade serous ovarian cancer is associated with a worse prognosis. Gynecol Oncol 2020;158(1):5458. https://doi.org/10.1016/j.ygyno.2020.04.048CrossRefGoogle ScholarPubMed
Straubhar, AM, et al. A multimodality triage algorithm to improve cytoreductive outcomes in patients undergoing primary debulking surgery for advanced ovarian cancer: a Memorial Sloan Kettering Cancer Center team ovary initiative. Gynecol Oncol 2020;158(3):608613.CrossRefGoogle ScholarPubMed
Vergote, I, et al. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Group; NCIC Clinical Trials Group. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med 2010;363(10):943953.CrossRefGoogle ScholarPubMed
Kehoe, S, et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomized, controlled, non-inferiority trial. Lancet 2015;386(9990):249257.CrossRefGoogle Scholar
Ramirez, PT, et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med 2018;379(20):18951904. https://doi.org/10.1056/NEJMoa1806395CrossRefGoogle ScholarPubMed

References

Vrie, Rvan de et al. Laparoscopy for diagnosing resectability of disease in women with advanced ovarian cancer. Cochrane Database Syst Rev 2019;3: CD009786. https://doi.org/10.1002/14651858.CD009786.pub3Google ScholarPubMed
Fagotti, A, et al. Role of laparoscopy to assess the chance of optimal cytoreductive surgery in advanced ovarian cancer: a pilot study. Gynecol Oncol 2005;96(3):729735. https://doi.org/10.1016/j.ygyno.2004.11.031CrossRefGoogle ScholarPubMed
Fagotti, A, et al. Prospective validation of a laparoscopic predictive model for optimal cytoreduction in advanced ovarian carcinoma. Am J Obstet Gynecol 2008;199(6):642.e1–642.e6. https://doi.org/10.1016/j.ajog.2008.06.052CrossRefGoogle ScholarPubMed
Fagotti, A, et al. A laparoscopy-based score to predict surgical outcome in patients with advanced ovarian carcinoma: a pilot study. Ann Surg Oncol 2006;13(8):11561161. https://doi.org/10.1245/ASO.2006.08.021CrossRefGoogle ScholarPubMed
Fagotti, A, et al. A multicentric trial (Olympia–MITO 13) on the accuracy of laparoscopy to assess peritoneal spread in ovarian cancer. Am J Obstet Gynecol 2013;209(5):462.e1–462.e11. https://doi.org/10.1016/j.ajog.2013.07.016CrossRefGoogle ScholarPubMed
Jansen, FW, et al. Complications of laparoscopy: an inquiry about closed- versus open-entry technique. Am J Obstet Gynecol 2004;190(3):634638. https://doi.org/10.1016/j.ajog.2003.09.035CrossRefGoogle ScholarPubMed

References

Sircar, S, et al. Mini-laparotomy in advanced ovarian cancer. Gynecol Surg 2011;9:179183.CrossRefGoogle Scholar
Fleming, N, et al. Laparoscopic algorithm to triage the timing of tumor reductive surgery in advanced ovarian cancer. Obstet Gynecol 2018;132(3):545554.CrossRefGoogle ScholarPubMed
Fagotti, A, et al. A multicentric trial (Olympia-MITO 13) on the accuracy of laparoscopy to assess peritoneal spread in ovarian cancer. Am J Obstet Gynecol 2013;209(5):462.e1–462.e11.90CrossRefGoogle ScholarPubMed
Kumar, A, et al. Models to predict outcomes after primary debulking surgery: independent validation of models to predict suboptimal cytoreduction and gross residual disease. Gynecol Oncol 2019;154(1):7276.CrossRefGoogle ScholarPubMed
Narasimhulu, DM, et al. Using an evidence-based triage algorithm to reduce 90-day mortality after primary debulking surgery for advanced epithelial ovarian cancer. Gynecol Oncol 2019;155(1):5862.CrossRefGoogle ScholarPubMed

References

Ataseven, B, et al. Impact of abdominal wall metastases on prognosis in epithelial ovarian cancer. Int J Gynecol Cancer 2016;26:15941600.CrossRefGoogle ScholarPubMed
Luger, AK, et al. Enlarged cardiophrenic lymph nodes predict disease involvement of the upper abdomen and the outcome of primary surgical debulking in advanced ovarian cancer. Acta Obstet Gynecol Scand 2020;99(8):10921099.CrossRefGoogle ScholarPubMed
Cowan, RA, et al. Feasibility, safety and clinical outcomes of cardiophrenic lymph node resection in advanced ovarian cancer. Gynecol Oncol 2017;147(2):262266.CrossRefGoogle ScholarPubMed
Prader, S, et al. Pattern and impact of metastatic cardiophrenic lymph nodes in advanced epithelial ovarian cancer. Gynecol Oncol 2019;152(1):7681.CrossRefGoogle ScholarPubMed
Larish, A, et al. Recurrence patterns in=patients with abnormal cardiophrenic lymph nodes at ovarian cancer diagnosis. Int J Gynecol Cancer 2020;30(4):504508.CrossRefGoogle ScholarPubMed

References

Hynninen, J, et al. FDG PET/CT in staging of advanced epithelial ovarian cancer: frequency of supradiaphragmatic lymph node metastasis challenges the traditional pattern of disease spread. Gynecol Oncol 2012;126(1):6468. https://doi.org/10.1016/j.ygyno.2012.04.023CrossRefGoogle ScholarPubMed
Kolev, V, et al. Prognostic significance of supradiaphragmatic lymphadenopathy identified on preoperative computed tomography scan in patients undergoing primary cytoreduction for advanced epithelial ovarian cancer. Int J Gynecol Cancer 2010;20(6):979984. https://doi.org/10.1111/IGC.0b013e3181e833f5CrossRefGoogle ScholarPubMed
Laasik, M, et al. Behavior of FDG-avid supradiaphragmatic lymph nodes in PET/CT throughout primary therapy in advanced serous epithelial ovarian cancer: a prospective study. Cancer Imaging 2019;19(1):27. https://doi.org/10.1186/s40644-019–0215–7CrossRefGoogle ScholarPubMed
Lee, IO, et al. Prognostic significance of supradiaphragmatic lymph node metastasis detected by (18)F-FDG PET/CT in advanced epithelial ovarian cancer. BMC Cancer 2018;18(1):1165. https://doi.org/10.1186/s12885-018–5067–1CrossRefGoogle ScholarPubMed
Mert, I, et al. Clinical significance of enlarged cardiophrenic lymph nodes in advanced ovarian cancer: implications for survival. Gynecol Oncol 2018;148(1):6873. https://doi.org/10.1016/j.ygyno.2017.10.024CrossRefGoogle ScholarPubMed
Cowan, RA, et al. Feasibility, safety and clinical outcomes of cardiophrenic lymph node resection in advanced ovarian cancer. Gynecol Oncol 2017;147(2):262266. https://doi.org/10.1016/j.ygyno.2017.09.001CrossRefGoogle ScholarPubMed
Jamieson, A, et al. Subtypes of stage IV ovarian cancer; response to treatment and patterns of disease recurrence. Gynecol Oncol 2017;146(2):273278. https://doi.org/10.1016/j.ygyno.2017.05.023CrossRefGoogle ScholarPubMed

References

Jaaback, K, et al. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev 2016;11:CD005340. https://doi.org/10.1002/14651858.cd005340.pub3Google Scholar
de Bree, E, et al. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum 2017;2:4762.CrossRefGoogle ScholarPubMed
González-Moreno, S, et al. Hyperthermic intraperitoneal chemotherapy: rationale and technique. World J Gastrointest Oncol 2010;2:6875.CrossRefGoogle ScholarPubMed
Huo, YR, et al. Hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery (CRS) in ovarian cancer: a systematic review and meta-analysis. Eur J Surg Oncol 2015;41:15781589.CrossRefGoogle ScholarPubMed
van Driel, WJ, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018;378:13631364.CrossRefGoogle ScholarPubMed
Koole, SN, et al. Cost effectiveness of interval cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in stage iii ovarian cancer on the basis of a randomized phase iii trial. J Clin Oncol 2019;37:20412050.Google ScholarPubMed

References

Verwaal, VJ, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003;21(20):37373743.CrossRefGoogle ScholarPubMed
van Driel, WJ, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018;378(3):230240.CrossRefGoogle ScholarPubMed
Lim, MC, et al. Randomized trial of hyperthermic intraperitoneal chemotherapy (HIPEC) in women with primary advanced peritoneal, ovarian, and tubal cancer. J Clin Oncol 2017;35(15,Suppl.): meeting abstract.CrossRefGoogle Scholar
Zivanovic, O, et al. Secondary cytoreduction and carboplatin hyperthermic intraperitoneal chemotherapy for platinum-sensitive recurrent ovarian cancer: an MSK Team Ovary Phase II Study. J Clin Oncol 2021;39(23):25942604.CrossRefGoogle ScholarPubMed
Chiva, LM, et al. A critical appraisal of hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of advanced and recurrent ovarian cancer. Gynecol Oncol 2015;136(1):130135.CrossRefGoogle ScholarPubMed
Quénet, F, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2021;22(2):256266.CrossRefGoogle ScholarPubMed
Goéré, D, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol 2020;21(9):11471154.CrossRefGoogle ScholarPubMed
Klaver, CEL, et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. Lancet Gastroenterol Hepatol 2019;4(10):761770.CrossRefGoogle ScholarPubMed

References

Markman, M, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol 2001;19(4):10011007. https://doi.org/10.1200/JCO.2001.19.4.1001CrossRefGoogle ScholarPubMed
Armstrong, DK, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354(1):3443. https://doi.org/10.1056/NEJMoa052985CrossRefGoogle ScholarPubMed
Lesnock, JL, et al. BRCA1 expression and improved survival in ovarian cancer patients treated with intraperitoneal cisplatin and paclitaxel: a Gynecologic Oncology Group Study. Br J Cancer 2013;108(6):12311237. https://doi.org/10.1038/bjc.2013.70CrossRefGoogle ScholarPubMed
Tewari, D, et al. Long-term survival advantage and prognostic factors associated with intraperitoneal chemotherapy treatment in advanced ovarian cancer: a gynecologic oncology group study. J Clin Oncol 2015;33(13):14601466. https://doi.org/10.1200/JCO.2014.55.9898CrossRefGoogle ScholarPubMed
Walker, JL, et al. Randomized trial of intravenous versus intraperitoneal chemotherapy plus bevacizumab in advanced ovarian carcinoma: an NRG Oncology/Gynecologic Oncology Groups study. J Clin Oncol 2019;37(16):13801390. https://doi.org/10.1200/JCO.18.01548CrossRefGoogle Scholar
Fujiwara, K, et al. A randomized phase 3 trial of intraperitoneal versus intravenous carboplatin with dose-dense weekly paclitaxel in patients with ovarian, fallopian tube, or primary peritoneal carcinoma (a GOTIC-001/JGOG-3019/GCIG, iPoccTrial). Presented at the 2022 SGO Annual Meeting on Womens’ Cancer; March 1821, 2022; Phoenix, AZ. Abstract 241.Google Scholar

References

Tewari, D, et al. Long-term survival advantage and prognostic factors associated with intraperitoneal chemotherapy treatment in advanced ovarian cancer: a gynecologic oncology group study. J Clin Oncol 2015;33:14601466.CrossRefGoogle ScholarPubMed
Walker, JL, et al. Randomized trial of intravenous versus intraperitoneal chemotherapy plus bevacizumab in advanced ovarian carcinoma.J Clin Oncol 2019;37(16):13801390. https://doi.org/10.1200/JCO.18.01568CrossRefGoogle ScholarPubMed
Wright, JD, et al.Utilization and toxicity of alternative delivery methods of adjuvant chemotherapy for ovarian cancer. Obstet Gynecol 2016;127(6):985991.Google Scholar
Havrilesky, LJ, et al. Gynecologic Oncology Group. Cost effectiveness of intraperitoneal compared with intravenous chemotherapy for women with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2008;26(25):41444450.CrossRefGoogle ScholarPubMed

References

Moore, K, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379(26):24952505.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019;381:24162428.CrossRefGoogle ScholarPubMed
González-Martín, A, et al. PRIMA/ENGOT-OV26/GOG-3012 Investigators. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381(25):23912402.CrossRefGoogle ScholarPubMed
Monk, BJ, Parkinson, C, Lim, MC et al. A Randomized, Phase III Trial to Evaluate Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol. 2022 Dec 1;40(34):39523964.Google Scholar
Ning, Li, Jianqing Zhu, , Rutie Yin, et al. Efficacy and safety of niraparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer using an individualized starting dose (PRIME Study): A randomized, double-blind, placebo-controlled, phase 3 trial (LBA 5), Gynecologic Oncology, 2022; 166 (S1): 50-S51.CrossRefGoogle Scholar
Coleman, RL, et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med 2019;381(25):24032415.CrossRefGoogle ScholarPubMed
DiSilvestro, P, Banerjee, S, Colombo, N et al. Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial. J Clin Oncol. 2023 Jan 20;41(3):609–617.CrossRefGoogle Scholar
Ray-Coquard, I.L., Leary, A., Pignata, S., et al. LBA29 Final overall survival (OS) results from the phase III PAOLA-1/ENGOT-ov25 trial evaluating maintenance olaparib (ola) plus bevacizumab (bev) in patients (pts) with newly diagnosed advanced ovarian cancer (AOC). Annals of Oncology, 2022; 33 (s7): S1396–S1397.CrossRefGoogle Scholar
Vergote, I, Ray-Coquard, I, Anderson, DM et al. Population-adjusted indirect treatment comparison of the SOLO1 and PAOLA-1/ENGOT-ov25 trials evaluating maintenance olaparib or bevacizumab or the combination of both in newly diagnosed, advanced BRCA-mutated ovarian cancer. Eur J Cancer. 2021 Nov;157:415–423.CrossRefGoogle Scholar
Norquist, BM, et al. Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: an NRG Oncology/Gynecologic Oncology Group Study. Clin Cancer Res 2018;24(4):777783.CrossRefGoogle ScholarPubMed

References

González Martín, A, et al. Exploratory outcome analyses according to stage and/or residual disease in the ICON7 trial of carboplatin and paclitaxel with or without bevacizumab for newly diagnosed ovarian cancer. Gynecol Oncol 2019;152:5360.CrossRefGoogle ScholarPubMed
González-Martín, A, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381:23912402.CrossRefGoogle ScholarPubMed
Coleman, RL, et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med 2019;381:24032415.CrossRefGoogle ScholarPubMed
Moore, K, et al. Maintenance olaparibin patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379:24952505.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019;381:24162428.CrossRefGoogle ScholarPubMed
Vergote, I, et al. Population-adjusted indirect treatment comparison of the SOLO1 and PAOLA-1/ENGOT-ov25 trials evaluating maintenance olaparibor bevacizumab or the combination of both in newly diagnosed, advanced BRCA-mutated ovarian cancer. Eur J Cancer 2021;157:415423. https://doi.org/10.1016/j.ejca.2021.08.023CrossRefGoogle ScholarPubMed

References

Moore, K, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379(26):24952505.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019;381(25):24162428.CrossRefGoogle ScholarPubMed
Gonzalez-Martin, A, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381(25):23912402.CrossRefGoogle ScholarPubMed
Poveda, A, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2021;22(5):620631.CrossRefGoogle Scholar
Moore, KN, et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2019;20(5):636648.CrossRefGoogle Scholar

References

Ledermann, J, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 2012;366(15):13821392.CrossRefGoogle ScholarPubMed
Friedlander, M, et al. Long-term efficacy, tolerability and overall survival in patients with platinum-sensitive, recurrent high-grade serous ovarian cancer treated with maintenance olaparib capsules following response to chemotherapy. Br J Cancer 2018;119(9):10751085.CrossRefGoogle ScholarPubMed
Pujade-Lauraine, E, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2017;18(9):12741284.CrossRefGoogle Scholar
Mirza, MR, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375(22):21542164.CrossRefGoogle ScholarPubMed
Coleman, RL, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;390(10106):19491961.CrossRefGoogle ScholarPubMed

References

Tewari, KS, et al. Chapter 77: Ovarian cancer. In: DeVita, VT, Lawrence, TS, Rosenberg, SA (Eds.), DeVita, Hellman , and Rosenberg’s Cancer: Principles & Practice of Oncology (11th edn.). Philadelphia, PA: Lippincott Williams & Wilkins; 2019.Google Scholar
Burger, RA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011;365:24732483.CrossRefGoogle ScholarPubMed
Tewari, KS, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol 2019;37:23172328.CrossRefGoogle ScholarPubMed
González-Martín, A, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381:23912402.CrossRefGoogle ScholarPubMed
Yi, M, et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer 2019;18:60.CrossRefGoogle ScholarPubMed

References

Ray-Coquard, I, et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 2019;381(25):24162428.CrossRefGoogle ScholarPubMed
González-Martín, A, et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2019;381(25):23912402.CrossRefGoogle ScholarPubMed
Mirza, MR, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375(22):21542164.CrossRefGoogle ScholarPubMed
Ledermann, JA, et al. Rucaparib for patients with platinum-sensitive, recurrent ovarian carcinoma (ARIEL3): post-progression outcomes and updated safety results from a randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2020;21(5):710722.CrossRefGoogle ScholarPubMed
Burger, RA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011 29;365(26):24732483.CrossRefGoogle Scholar
González, Martín A, et al. Exploratory outcome analyses according to stage and/or residual disease in the ICON7 trial of carboplatin and paclitaxel with or without bevacizumab for newly diagnosed ovarian cancer. Gynecol Oncol 2019;152(1):5360.CrossRefGoogle Scholar
Aghajanian, C, et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 2012;30(17):20392045.CrossRefGoogle ScholarPubMed
Pujade-Lauraine, E, et al.Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014;32(13):13021308.CrossRefGoogle ScholarPubMed

References

McMullen, M, et al. New approaches for targeting platinum-resistant ovarian cancer. Semin Cancer Biol 2020;2020:S1044–579X(20)30186–3. https://doi.org/10.1016/j.semcancer.2020.08.013Google Scholar
Pujade-Lauraine, E, et al. Management of platinum-resistant, relapsed epithelial ovarian cancer and new drug perspectives. J Clin Oncol 2019;37(27):24372448. https://doi.org/10.1200/JCO.19.00194CrossRefGoogle ScholarPubMed
Lee, JM, et al. New strategies in ovarian cancer treatment. Cancer 2019;125(Suppl. 24):46234629. https://doi.org/10.1002/cncr.32544CrossRefGoogle ScholarPubMed
Poveda, AM, et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J Clin Oncol 2014;33:38363838.CrossRefGoogle Scholar
Oronsky, B, et al. A brief review of the management of platinum-resistant-platinum-refractory ovarian cancer. Med Oncol 2017;34(6):103. https://doi.org/10.1007/s12032-017-0960-zCrossRefGoogle ScholarPubMed

References

Davis, A, et al. “Platinum resistantovarian cancer: what is it, who to treat and how to measure benefit? Gynecol Oncol 2014;133: 624631.Google ScholarPubMed
Pujade-Lauraine, E, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 2014;32(13):13021308. https://doi.org/10.1200/JCO.2013.51.4489.CrossRefGoogle ScholarPubMed
Kaufman, B, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33:244250.CrossRefGoogle Scholar
Fong, PC, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009;361:123134.CrossRefGoogle ScholarPubMed
Moore, KN, et al. QUADRA: a phase 2, open-label, single-arm study to evaluate niraparib in patients (pts) with relapsed ovarian cancer (ROC) who have received ≥3 prior chemotherapy regimens. J Clin Oncol 2018;36:5514.CrossRefGoogle Scholar
Liu, JF, et al. A phase 2 biomarker trial of combination cediranib and olaparib in relapsed platinum (plat) sensitive and plat resistant ovarian cancer (ovca). J Clin Oncol 2018;36:5519.CrossRefGoogle Scholar
Disis, ML, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol 2019;5:393401.CrossRefGoogle ScholarPubMed
Matulonis, UA, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: interim results from the phase 2 KEYNOTE-100 study. J Clin Oncol 2018;36:5511.CrossRefGoogle Scholar
Konstantinopoulos, PA, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol 2019;5:11411149.CrossRefGoogle ScholarPubMed
Zamarin, D, et al. Randomized phase ii trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J Clin Oncol 2020;38:18141823.CrossRefGoogle ScholarPubMed
Wenham, RM, et al. Phase II trial of dose dense (weekly) paclitaxel with pembrolizumab (MK-3475) in platinum-resistant recurrent ovarian cancer. 2016;34:TPS5612-TPS.Google Scholar
Richardson, DL, et al. Phase I expansion study of XMT-1536, a novel NaPi2b-targeting antibody-drug conjugate (ADC): preliminary efficacy, safety, and biomarker results in patients with previously treated metastatic ovarian cancer (OC) or non-small cell lung cancer (NSCLC). J Clin Oncol 2020;38:3549.CrossRefGoogle Scholar
Moore, KN, et al. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a phase i expansion study. J Clin Oncol 2017;35:11121118.CrossRefGoogle ScholarPubMed
Arend, RC, et al. Clinical trial in progress: pivotal study of VB-111 combined with paclitaxel versus paclitaxel for treatment of platinum-resistant ovarian cancer (OVAL, VB-111-701/GOG-3018). J Clin Oncol 2020;38:TPS6097-TPS.CrossRefGoogle Scholar

References

Harter, P, et al. Surgery in recurrent ovarian cancer: the Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) DESKTOP OVAR Trial. Ann Surg Oncol 2006;13:17021710. https://doi.org/10.1245/s10434-006-9058-0CrossRefGoogle ScholarPubMed
Harter, P, et al. Prospective validation study of a predictive score for operability of recurrent ovarian cancer: the Multicenter Intergroup Study DESKTOP II. A Project of the AGO Kommission OVAR, AGO Study Group, NOGGO, AGO-Austria, and MITO. Int J Gynecol Cancer 2011;21:289295. https://doi.org/10.1097/IGC.0b013e31820aaafdCrossRefGoogle Scholar
Zang, R, et al. A randomized phase III trial of secondary cytoreductive surgery in later recurrent ovarian cancer: SOC1/SGOG-OV2. J Clin Oncol 2020;38:6001–6001. https://doi.org/10.1200/JCO.2020.38.15_suppl.6001CrossRefGoogle Scholar
Coleman, RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381:19291939. https://doi.org/10.1056/NEJMoa1902626CrossRefGoogle ScholarPubMed
Du Bois, A, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol 2020;38:6000. https://doi.org/10.1200/JCO.2020.38.15_suppl.6000CrossRefGoogle Scholar

References

Bristow, RE, et al. Cytoreductive surgery for recurrent ovarian cancer: a meta-analysis. Gynecol Oncol 2009;112(1):265274.CrossRefGoogle ScholarPubMed
Insitute, NC. Cancer Stat Facts: Ovarian Cancer. 2020.Google Scholar
Coleman, RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381(20):19291939.CrossRefGoogle ScholarPubMed
duBois, A, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clin Oncol (online) 2020;38. https://doi.org/10.1200/JCO.2017.35.15_SUPPL.5501Google Scholar
Zang, R, et al. A randomized phase III trial of secondary cytoreductive surgery in later recurrent ovarian cancer: SOC1/SGOG-OV2. J Clin Oncol 2020 (online). https://doi.org/10.1200/jco.2020.38.15_suppl.6001CrossRefGoogle Scholar
Coleman, RL, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;390(10106):19491961.CrossRefGoogle ScholarPubMed
Mirza, MR, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 2016;375(22):21542164.CrossRefGoogle ScholarPubMed
Pujade-Lauraine, E, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2017;18(9):12741284.CrossRefGoogle Scholar
Poveda, A, et al. Final overall survival (OS) results from SOLO2/ENGOT-ov21: a phase III trial assessing maintenance olaparib in patients (pts) with platinum-sensitive, relapsed ovarian cancer and a BRCA mutation. J Clin Oncol (online) 2020;38. https://doi.org/10.1200/jco.2020.38.15_suppl.6002CrossRefGoogle Scholar

References

Dubois, A, et al. Randomized phase III study to evaluate the impact of secondary cytoreductive surgery in recurrent ovarian cancer: final analysis of AGO DESKTOP III/ENGOT-ov20. J Clinical Oncol 2020;38:6000.Google Scholar
Coleman, R, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019;381:1929–1939.CrossRefGoogle ScholarPubMed
Shih, K, et al. Tertiary cytoreduction in patients in recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer: an updated series. Gynecol Oncol 2010;117:330–335.CrossRefGoogle ScholarPubMed
Fotopoulou, C, et al. Value of tertiary cytoreductive surgery in epithelial ovarian cancer: an international multicenter evaluation. Ann Surg Oncol 2013;20:1348–1354.CrossRefGoogle ScholarPubMed
Falcone, F, et al. Tertiary cytoreductive surgery in recurrent epithelial ovarian cancer: a multicenter MITO retrospective study. Gynecol Oncol 2017;147:66–72.CrossRefGoogle ScholarPubMed

References

Fotopoulou, C, et al. Value of tertiary cytoreductive surgery in epithelial ovarian cancer: an international multicenter evaluation. Ann Surg Oncol 2013;20:13481354.CrossRefGoogle ScholarPubMed
Fanfani, F, et al. Is there a role for tertiary (TCR) and quaternary (QCR) cytoreduction in recurrent ovarian cancer?Anticancer Res 2015;35:69516956.Google Scholar
Falcone, F, et al. Tertiary cytoreductive surgery in recurrent epithelial ovarian cancer: a multicentre MITO retrospective study. J Gynecol Oncol 2017;147:6672.CrossRefGoogle ScholarPubMed
Manning-Geist, BL, et al. Tertiary cytoreduction for recurrent ovarian carcinoma: an updated and expanded analysis. J Gynecol Oncol 2021;162:345352.CrossRefGoogle ScholarPubMed

References

Le Saux, O, et al. Challenges for immunotherapy for the treatment of platinum-resistant ovarian cancer. Seminars in Cancer Biology 2020.Google ScholarPubMed
Borella, F, et al. Immune checkpoint inhibitors in epithelial ovarian cancer: an overview on efficacy and future perspectives. Diagnostics (Basel) 2020;10(3):E146.CrossRefGoogle ScholarPubMed
Zamarin, D, et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J Clin Oncol 2020;38:18141823.CrossRefGoogle ScholarPubMed
Chmielewski, M, et al. TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Adv Cell Gene Ther 2020;3:e84CrossRefGoogle Scholar
Parvathareddy, SK, et al. Differential expression of PD-L1 between primary and metastatic epithelial ovarian cancer and its clinico-pathological correlation. Sci Rep 2021;11:3750.CrossRefGoogle ScholarPubMed

References

Matulonis, UA, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol 2019;30(7):10801087.CrossRefGoogle ScholarPubMed
Zamarin, D, et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J Clin Oncol 2020;38(16):18141823.CrossRefGoogle ScholarPubMed
Pujade-Lauraine, E, et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol 2021;22(7):10341046.CrossRefGoogle ScholarPubMed
Moore, KN, et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J Clin Oncol 2021;39(17):18421855.CrossRefGoogle ScholarPubMed
Monk, BJ, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol 2021;22(9):12751289.CrossRefGoogle ScholarPubMed
Hamanishi, J, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 2015;33(34):40154022.CrossRefGoogle ScholarPubMed

References

Cousins, SE, et al. Surgery for the resolution of symptoms in malignant bowel obstruction in advanced gynaecological and gastrointestinal cancer. Cochrane Database Syst Rev 2016;1:CD002764.Google Scholar
Kucukmetin, A, et al. Palliative surgery versus medical management for bowel obstruction in ovarian cancer. Cochrane Database Syst Rev 2010;7:CD007792.Google Scholar
Paul Olson, T, et al. Palliative surgery for malignant bowel obstruction from carcinomatosis: a systematic review. JAMA Surg 2014;149(4):383392.CrossRefGoogle ScholarPubMed
SWOG S1316. Surgery or non-surgical management in treating patients with intra-abdominal cancer and bowel obstruction, ClinicalTrials.gov Identifier: NCT02270450.Google Scholar

References

Lee, YC, et al. Optimizing care of malignant bowel obstruction in patients with advanced gynecologic cancer. J Oncol Pract 2019;15(12):e10661071.CrossRefGoogle ScholarPubMed
Lilley, EJ, et al. Survival, healthcare utilization and end-of-life care in older adults with malignancy-associated malignant bowel obstruction; comparative study of surgery, venting gastrostomy, or medical management. Ann Surg 2018;267(4):692699.CrossRefGoogle ScholarPubMed
Hoppenot, C, et al. Malignant bowel obstruction due to ovarian or uterine cancer: are there differences in outcome? Gynecol Oncol 2019;154(1):177182.CrossRefGoogle ScholarPubMed
Cusimano, MC, et al. Supported self-management as a model for end-of-life care in the setting of malignant bowel obstruction: a qualitative study. Gynecol Oncol 2020;157(3):745753.CrossRefGoogle Scholar
Zucchi, E, et al. Decompressive percutaneous endoscopic gastrostomy in advanced cancer patients with small-bowel obstruction is feasible and effective: a large prospective study. Support Care Cancer 2016;24:28772882.Google ScholarPubMed

References

Veneris, JT, et al. Contemporary management of ovarian germ cell tumors and remaining controversies. Gynecol Oncol 2020;158:467475.CrossRefGoogle ScholarPubMed
Alsdorf, W, et al. Current pharmacotherapy for testicular germ cell cancer. Expert Opin Pharmacother 2019;20:837850.CrossRefGoogle ScholarPubMed
Gershenson, DM, et al. Management of rare ovarian cancer histologies. J Clin Oncol 2019;37:24062415.CrossRefGoogle ScholarPubMed
Reddy Ammakkanavar, N, et al. High-dose chemotherapy for recurrent ovarian germ cell tumors. J Clin Oncol 2015;33:226227.CrossRefGoogle ScholarPubMed
Oosterhuis, JW, et al. Human germ cell tumours from a developmental perspective. Nat Rev Cancer 2019;19:522537.CrossRefGoogle ScholarPubMed

References

Hanna, N, et al. Testicular cancer: a reflection on 50 years of discovery. J Clin Oncol 2014;32(28):30853092CrossRefGoogle ScholarPubMed
Newton, C, et al. A multicentre retrospective cohort study of ovarian germ cell tumours: evidence for chemotherapy de-escalation and alignment of paediatric and adult practice. Eur J Cancer 2019;113:1927.CrossRefGoogle ScholarPubMed
Gershenson, DM, et al. Conundrums in the management of malignant ovarian germ cell tumors: toward lessening acute morbidity and late effects of treatment. Gynecol Oncol 2016; 143(2):428432.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. ESMO Guidelines Committee. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29(Suppl. 4):iv1–iv18CrossRefGoogle ScholarPubMed
Veneris, JT, et al. Contemporary management of ovarian germ cell tumors and remaining controversies. Gynecol Oncol 2020;158(2):467475.CrossRefGoogle ScholarPubMed

References

ESMO. Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29:iv1–iv18.Google Scholar
Gershenson, DM, et al. Treatment of poor-prognosis sex cord-stromal tumors of the ovary with the combination of bleomycin, etoposide, and cisplatin. Obstet Gynecol 1996;87:527531.CrossRefGoogle ScholarPubMed
Zambetti, M, et al. cis-platinum/vinblastine/bleomycin combination chemotherapy in advanced or recurrent granulosa cell tumors of the ovary. Gynecol Oncol 1990;36(3):317320.CrossRefGoogle ScholarPubMed
Brown, J, et al. The activity of taxanes compared with bleomycin, etoposide, and cisplatin in the treatment of sex cord-stromal ovarian tumors. Gynecol Oncol 2005;97:489496.CrossRefGoogle ScholarPubMed
Homesley, HD, et al. Bleomycin, etoposide, and cisplatin combination therapy of ovarian granulosa cell tumors and other stromal malignancies: a gynecologic oncology group study. Gynecol Oncol 1999;72:131137.CrossRefGoogle ScholarPubMed
Pautier, P, et al. Combination of bleomycin, etoposide, and cisplatin for the treatment of advanced ovarian granulosa cell tumors. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 2008;18:446452.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. Management of rare ovarian cancers: the experience of the French website «Observatory for rare malignant tumours of the ovaries» by the GINECO group: Interim analysis of the first 100 patients. Gynecol Oncol 2010;119:5359.CrossRefGoogle ScholarPubMed
Brown, J, et al. 125 Results of a randomized phase II trial of paclitaxel and carboplatin versus bleomycin, etoposide and cisplatin for newly diagnosed and recurrent chemonaive stromal ovarian tumors. Int J Gynecol Cancer 2020;30:A56.Google Scholar

References

DiSaia, PJ, et al. Clinical Gynecologic Oncology (9th edn.). London: Elsevier, 2018.Google Scholar
Network NCC. NCCN Guidelines Version 1.2022 Ovarian Cancer. Published 2022.Google Scholar
Young, RH. Ovarian sex cord-stromal tumours and their mimics. Pathology 2018;50(1):515.CrossRefGoogle ScholarPubMed
Homesley, HD, et al. Bleomycin, etoposide, and cisplatin combination therapy of ovarian granulosa cell tumors and other stromal malignancies: a gynecologic oncology group study. Gynecol Oncol 1999;72(2):131137.CrossRefGoogle ScholarPubMed
Gershenson, DM, et al. Treatment of poor-prognosis sex cord-stromal tumors of the ovary with the combination of bleomycin, etoposide, and cisplatin. Obstet Gynecol 1996;87(4):527531.CrossRefGoogle ScholarPubMed
Brown, J, et al. The activity of taxanes in the treatment of sex cord-stromal ovarian tumors. J Clin Oncol 2004;22(17):35173523.CrossRefGoogle ScholarPubMed
Brown, JMA, et al. 125 Results of a randomized phase II trial of paclitaxel and carboplatin versus bleomycin, etoposide and cisplatin for newly diagnosed and recurrent chemonaive stromal ovarian tumors. Int J Gynecol Cancer 2020;30:A56.Google Scholar

References

Thrall, MM et al. Patterns of spread and recurrence of sex cord-stromal tumors of the ovary. Gynecol Oncol 2001;122:242245.CrossRefGoogle Scholar
Hines, JF, et al. Recurrent granulosa cell tumor of the ovary 37 years after initial diagnosis: a case report and review of the literature. Gynecol Oncol 1996;60(3):484488.CrossRefGoogle ScholarPubMed
Sun, HD, et al. A long-term follow-up study of 176 cases with adult type ovarian granulosa cell tumors. Gynecol Oncol 2012;124(2):244249.CrossRefGoogle ScholarPubMed
Mangili, G, et al.Recurrent granulosa cell tumors (GCTs) of the ovary: a MITO-9 retrospective study. Gynecol Oncol 2013;130(1):3842.CrossRefGoogle ScholarPubMed
Hölscher, G, et al. Improvement of survival in sex cord stromal tumors – an observational study with more than 25 years follow-up. Acta Obstet Gynecol Scand 2009;88:440e8.CrossRefGoogle ScholarPubMed
Fotopolou, C, et al. Adult granulosa cell tumors of the ovary: tumor dissemination pattern at primary and recurrent situation, surgical outcome. Gynecol Oncol 2010;119:285290.CrossRefGoogle Scholar
Lee, YK, et al. Characteristics of recurrence in adult-type granulosa cell tumos. Int J Gynecol Cancer 2008;18:642647.CrossRefGoogle Scholar
Abu-Rustum, NR, et al. Retroperitoneal nodal metastasis in primary and recurrent granulosa cell tumors of the ovary. Gynecol Oncol 2006;103:31.CrossRefGoogle ScholarPubMed
Wang, PH, et al. Outcome of patients with recurrent adult-type granulosa cell tumors – a Taiwanese Gynecologic Oncology Group study. Taiwan J Obstet Gynecol 2015;54(3):253259.CrossRefGoogle ScholarPubMed
Zhao, D, et al. Characteristics and treatment results of recurrence in adult-type granulosa cell tumor of ovary. J Ovarian Res 2020;13(1):19.CrossRefGoogle ScholarPubMed

References

Gershenson, DM, et al. Treatment of poor-prognosis sex cord-stromal tumors of the ovary with the combination of bleomycin, etoposide, and cisplatin. Obstet Gynecol 1996;87(4):527531.CrossRefGoogle ScholarPubMed
Homesley, HD, et al. Bleomycin, etoposide, and cisplatin combination therapy of ovarian granulosa cell tumors and other stromal malignancies: a Gynecologic Oncology Group study. Gynecol Oncol 1999;72(2):131137.CrossRefGoogle ScholarPubMed
Brown, J, et al. The activity of taxanes compared with bleomycin, etoposide, and cisplatin in the treatment of sex cord-stromal ovarian tumors. Gynecol Oncol 2005;97(2):489496.CrossRefGoogle ScholarPubMed
Pautier, P, et al. Combination of bleomycin, etoposide, and cisplatin for the treatment of advanced ovarian granulosa cell tumors. Int J Gynecol Cancer 2008;18(3):446452.CrossRefGoogle ScholarPubMed
Burton, ER, et al. A phase II study of paclitaxel for the treatment of ovarian stromal tumors: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2016;140(1):4852.CrossRefGoogle ScholarPubMed
Ray-Coquard, I, et al. Effect of weekly paclitaxel with or without bevacizumab on progression-free rate among patients with relapsed ovarian sex cord-stromal tumors: the ALIENOR/ENGOT-ov7 randomized clinical trial. JAMA Oncol 2020; 6(12):19231930.CrossRefGoogle ScholarPubMed
Brown, J, et al. Efficacy and safety of bevacizumab in recurrent sex cord-stromal ovarian tumors: results of a phase 2 trial of the Gynecologic Oncology Group. Cancer 2014;120(3):344351.CrossRefGoogle ScholarPubMed
van Meurs, HS, et al. Hormone therapy in ovarian granulosa cell tumors: a systematic review. Gynecol Oncol 2014;134(1):196205.CrossRefGoogle ScholarPubMed
Mills, AM, et al. Emerging biomarkers in ovarian granulosa cell tumors. Int J Gynecol Cancer 2019;29(3):560565.CrossRefGoogle ScholarPubMed
Pierini, S, et al. Ovarian granulosa cell tumor characterization identifies FOXL2 as an immunotherapeutic target. JCI Insight 2020;5(16):e136773.CrossRefGoogle ScholarPubMed

References

Herzog, TJ, et al. Ovarian cancer clinical trial endpoints: Society of Gynecologic Oncology White Paper. Gynecol Oncol 2014;132(1):817.CrossRefGoogle ScholarPubMed
Broglio, KR, et al. Detecting an overall survival benefit that is derived from progression-free survival. JNCI J Natl Cancer Inst 2009;101(23):16421649.CrossRefGoogle ScholarPubMed
Herzog, TJ, et al. SGO guidance document for clinical trial designs in ovarian cancer: a changing paradigm. Gynecol Oncol 2014;135:37.CrossRefGoogle ScholarPubMed
Herzog, TJ, et al. FDA ovarian cancer clinical trial endpoints workshop: Society of Gynecologic Oncology White Paper. Gynecol Oncol. 2017;147(1):310.CrossRefGoogle ScholarPubMed

References

Bookman, MA, et al. Fifth Ovarian Cancer Consensus Conference. Harmonising clinical trials within the Gynecologic Cancer InterGroup: consensus and unmet needs from the Fifth Ovarian Cancer Consensus Conference. Ann Oncol 2017;28(Suppl. 8):viii30–viii35.CrossRefGoogle ScholarPubMed
Rustin, GJ, et al. MRC OV05; EORTC 55955 investigators. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet 2010;376(9747):11551163.CrossRefGoogle ScholarPubMed
Pfisterer, J, et al. Optimal duration of bevacizumab combined with carboplatin and paclitaxel in patients with primary epithelial ovarian, fallopian tube or peritoneal cancer. J Clin Oncol 2021;39(15):5501.CrossRefGoogle Scholar
Paoletti, X, et al.Gynecologic Cancer InterGroup (GCIG) Meta-analysis Committee. Assessment of progression-free survival as a surrogate end point of overall survival in first-line treatment of ovarian cancer: a systematic review and meta-analysis. JAMA Netw Open 2020;3(1): e1918939.CrossRefGoogle ScholarPubMed
Lecuru, F, et al. Surrogate endpoint of progression-free (PFS) and overall survival (OS) for advanced ovarian cancer (AOC) patients (pts) treated with neo-adjuvant chemotherapy (NACT): Results of the CHIVA randomized phase II GINECO study. Ann Oncol 2019;30(Suppl. 5):3251.CrossRefGoogle Scholar
Friedlander, M, et al.Health-related quality of life and patient-centred outcomes with olaparib maintenance after chemotherapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT Ov-21): a placebo-controlled, phase 3 randomised trial. Lancet Oncol 2018;19(8):11261134.CrossRefGoogle Scholar
Moore, K, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018;379(26):24952505.CrossRefGoogle ScholarPubMed