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Moduli of Stable Pairs

We bring together the moduli theory of Chapter 6 with K-flatness of Chapter 7
to obtain the moduli theory of stable pairs in full generality. The basic
definitions originate in the papers Kollár and Shepherd-Barron (1988) and
Alexeev (1996); the resulting moduli spaces are usually called KSBA moduli
spaces.

In Section 8.1 we discuss a bookkeeping device called marking: we need
to know not only what the boundary divisor ∆ is, but also how it is written as
a linear combination of effective Z-divisors. In the cases considered in Chap-
ter 6, there was always a unique, obvious marking; this is why the notion was
not introduced before. Simple examples show that, without marking, we get
infinite dimensional moduli spaces, already for pointed curves (8.2).

The notion of Kollár–Shepherd-Barron–Alexeev stability is introduced in
Section 8.2. The proof that we get a good moduli theory, as defined in (6.10),
follows the methods of Chapter 6 if the coefficients are rational (8.9), but a few
more steps are need if they are irrational (8.15).

The end result is the following consequence of (8.9) and (8.15).

Theorem 8.1 Fix a base scheme S of characteristic 0, a coefficient vector
a = (a1, . . . , ar) ∈ [0, 1]r, an integer n, and a real number v. Let SP(a, n, v)
denote the functor of marked, stable pairs of dimension n and volume v. Then
SP(a, n, v) is good moduli theory (6.10) and it has a coarse moduli space
SP(a, n, v), which is projective over S .

A variant with floating coefficients is treated in Section 8.3 and the moduli
theory of more general polarized pairs is discussed in Sections 8.4–8.5.

The construction of moduli spaces as quotients by group actions is treated
in Section 8.6, and a short overview of descent is in Section 8.7.
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8.1 Marked Stable Pairs 309

In Section 8.8, we discuss several unexpected problems that appear in
positive characteristic. Quite likely, these necessitate substantial changes
in the moduli theory of varieties of dimension≥ 3 in positive and mixed
characteristics.

Further Results

An early difficulty of KSBA theory was that good examples were not easy to
write down. The first notable successes were Alexeev (2002); Hacking (2004).
By now there is a rapidly growing body of fully understood cases.

Various moduli spaces are worked out in the papers Abramovich and Vis-
toli (2000); van Opstall (2005, 2006b,a); Hacking (2012); Alexeev (2015);
Franciosi et al. (2015b, 2017, 2018); Alexeev (2016); Ascher and Gallardo
(2018); Ascher and Bejleri (2019, 2021a,b); Ascher et al. (2020); Alexeev and
Thompson (2021); Bejleri and Inchiostro (2021).

Examples of stable degenerations and their relations to other invariants are
exhibited in Hassett (1999, 2000, 2001); Alexeev (2008); Tziolas (2009, 2010);
Hacking and Prokhorov (2010); Hacking (2013, 2016); Urzúa (2016b,a); Rana
(2017); Hacking et al. (2017); Rana and Urzúa (2019); Franciosi et al. (2022).

Computations of invariants of stable surfaces are given in Liu and Rollenske
(2014); Franciosi et al. (2015a); Stern and Urzúa (2016); Tziolas (2017, 2022).

Special examples are computed in detail in Hacking et al. (2006, 2009);
Thompson (2014); Ascher and Molcho (2016); Alexeev and Liu (2019a,b);
Donaldson (2020).

Other approaches to the moduli spaces are discussed in Abramovich and
Vistoli (2002); Alexeev and Knutson (2010); Abramovich and Hassett (2011);
Abramovich et al. (2013, 2017); Abramovich and Chen (2014); Abramovich
and Fantechi (2017).

Assumptions In this Chapter we work over a Q-scheme. The definitions are
set up in full generality, but some of the theorems fail in positive characteristic;
see Section 8.8 for a discussion.

8.1 Marked Stable Pairs

So far, we have studied slc pairs (X,∆), but usually did not worry too much
about how ∆ was written as a sum of divisors. As long as we look at a single
variety, we can write ∆ uniquely as

∑
aiDi where the Di are prime divisors, and

there is usually not much reason to do anything else. However, the situation
changes when we look at families.
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310 Moduli of Stable Pairs

8.2 (Is D = 1
n (nD)?) Assume that we have an slc family over an irreducible

base f : (X,∆) → S with generic point g ∈ S . Then the natural approach is to
write ∆g =

∑
aiDi

g, where the Di
g are prime divisors on the generic fiber Xg.

For any other point s ∈ S this gives a decomposition ∆s =
∑

aiDi
s, where Di

s

is the specialization of Di
g. Note that the Di

s need not be prime divisors. They
can have several irreducible components with different multiplicities and two
different Di

s,D
j
s can have common irreducible components. Thus ∆s =

∑
aiDi

s

is not the “standard” way to write ∆s.
Let us now turn this around. We fix a proper slc pair (X0,∆0) and aim to

understand all deformations of it. A first suggestion could be the following:

8.2.1 (Naive definition) An slc deformation of (X0,∆0) over a local scheme
(0 ∈ S ) is a proper slc morphism f : (X,∆) → S whose central fiber (X,∆)0 is
isomorphic to (X0,∆0).

As an example, start with
(
P1

xy, (x = 0)
)
. Pick n ≥ 1 and variables ti. Then(

P1
xy × A

n
t ,

1
n
(
xn + tn−1xn−1y + · · · + t0yn = 0

))
(8.2.2)

is a deformation of
(
P1

xy, (x = 0)
)

over An by the naive definition (8.2.1). We
get a deformation space of dimension n−2 using Aut

(
P1, (0:1)

)
. Letting n vary

results in an infinite dimensional deformation space.
The polynomial in (8.2.2) is irreducible over k(t0, . . . , tn−1), thus our recipe

says that we should write ∆ = 1
n Dg (where Dg is irreducible). Then the special

fiber is written as (x = 0) = 1
n (xn = 0).

The situation becomes even less clear if we take two deformations as in
(8.2.2) for two different values n,m and glue them together over the origin.
The family is locally stable. One side says that the fiber over the origin should
be 1

n (xn = 0), the other side that it should be 1
m (xm = 0).

As (8.2) suggests, some bookkeeping is necessary to control the multiplic-
ities of the divisorial part of a pair (X,∆) in families. This is the role of the
marking we introduce next.

Once we control how a given R-divisor ∆ is written as a linear combination
of Z-divisors, we obtain finite dimensional moduli spaces.

Definition 8.3 (Marked pairs) A marking of an effective Weil R-divisor ∆ is a
way of writing ∆ =

∑
aiDi, where the Di are effective Z-divisors and 0 < ai ∈

R. We call a = (a1, . . . , ar) the coefficient vector.
A marked pair is a pair (X,∆), plus a marking ∆ =

∑
aiDi.
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8.1 Marked Stable Pairs 311

We allow the Di to be empty; this has the advantage that the restriction
of a marking to an open subset is again a marking. However, in other con-
texts, this is not natural and we will probably sometimes disregard empty
divisors.

Observe that ∆ =
∑

aiDi and ∆ =
∑

( 1
2 ai)(2Di) are different as markings.

This seems rather pointless for one pair but, as we observed in (8.2), it is a
meaningful distinction when we consider deformations of a pair.

Note that, for a given (X,∆), markings are combinatorial objects that are
not constrained by the geometry of X. If ∆ =

∑
i biBi and the Bi are dis-

tinct prime divisors, then the markings correspond to ways of writing the
vector (b1, . . . , br) as a positive linear combination of nonnegative integral
vectors.

Comments Working with such markings is a rather natural thing to do. For
example, plane, curves C of degree d can be studied using the log CY pair(
P2,∆C := 3

d C
)

as in Hacking (2004). Thus, even if C is reducible, we want to
think of the Q-divisor ∆C as 3

d C; hence as a marked divisor with a =
( 3

d
)
. Sim-

ilarly, in most cases when we choose the boundary divisor ∆, it has a natural
marking.

However, when a part of ∆ is forced upon us, for instance coming from the
exceptional divisor of a resolution, there is frequently no “natural” marking,
though usually it is possible to choose a marking that works well enough.

If (X,∆) is slc and ai >
1
2 for every i, then the marking is almost determined

by ∆. For example, if the ai are distinct then the obvious marking of ∆ =
∑

aiDi

is the unique one. If all the ai = 1, then the markings of
∑

i∈I Di correspond to
partitions of I.

If we allow ai = 1
2 , then an irreducible divisor D can have three different

markings: [D], 1
2 [2D], or 1

2 [D] + 1
2 [D]. The smaller the ai, the more markings

are possible.

Definition 8.4 (Families of marked pairs) Fix a real vector a = (a1, . . . , ar). A
family of marked pairs with coefficient vector a = (a1, . . . , ar) consists of
(8.4.1) a flat morphism f : X → S with demi-normal fibers (11.36),
(8.4.2) an effective, relative, Mumford R-divisor ∆, plus
(8.4.3) a marking ∆ =

∑
aiDi, where the Di are effective, relative, Mumford

Z-divisors (4.68).

As we discussed in Section 4.1, the relative Mumford assumption on the Di

assures that markings can be pulled back by base-change morphisms W → S .
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312 Moduli of Stable Pairs

However, being relative Mumford is not automatic. This means that not all
markings of ∆ give a family of marked pairs.

Examples 8.5 (Marking and stability) Given a family of pairs f : (X,∆)→ S ,
it can happen that it is KSBA-stable for one choice of the marking, but not for
other markings. Although we define KSBA-stability only in the next section,
these examples influenced the precise definitions of KSBA-stability, especially
(8.13), so this is their right place.
(8.5.1) If S is normal then, by (4.4), every marking of ∆ yields a family of
marked pairs f : (X,∆)→ S .
(8.5.2) Assume that ∆ is a Q-divisor and S is reduced. There is a smallest
N ∈ N>0 such that N∆ is a Z-divisor. In characteristic 0, D := N∆ is a relative
Mumford divisor by (4.39), thus ∆ = 1

N D gives a marking of (X,∆).
(8.5.3) For R-divisors, there are markings ∆ =

∑
i λi∆i where the λi are Q-

linearly independent; see (11.47). In characteristic 0 we get the same stable
families, independent of the choice of the λi by (11.43.4) and (4.39).
(8.5.4) The simplest case is when ∆ = cD with a single irreducible D. The
only possible markings are ∆ =

∑
ai(miD) for some mi ∈ N and c =

∑
aimi. In

characteristic 0 we get the same stable families, independent of the choices by
(4.39), but not in positive characteristic, see (8.76).
(8.5.5) Let B be a curve with a single node b and B◦ := B \ {b}. Let b1, b2 ∈ B̄
be the preimages of the node in the normalization B̄. Set S̄ = P1 × B̄.

Let Ēi := {pi} × B̄ sections for i = 1, 2, 3 and ∆̄ their sum. If we use the
marking with only 1 divisor D◦1 :=

∑
i E◦i , then we can use any of the six

automorphisms of P1 that preserve {p1, p2, p3} to descend (S̄ , ∆̄) to a family of
marked pairs over B. If we use the marking with three divisors D◦i := E◦i , then
the identity gives the only descent.

8.2 Kollár–Shepherd-Barron–Alexeev Stability

Now we come to the main theorem of the book, the existence of a good moduli
theory for all marked stable pairs (X,∆) in characteristic 0.

The principle is that, once we have K-flatness to replace flatness in Sec-
tion 6.2, the rest of the arguments should go through with small changes. This
is indeed true for rational coefficients, so we start with that case.

For irrational coefficients, it is less clear how to cook up ample line bundles,
so the existence of embedded moduli spaces needs more work.
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KSBA Stability with Rational Coefficients

Fix a rational coefficient vector a = (a1, . . . , ar) and let lcd(a) denote the least
common denominator of the ai.

8.6 (Stable objects) These are marked pairs
(
X,∆ =

∑
i aiDi

)
with coefficient

vector a such that
(8.6.1)

(
X,∆

)
is slc,

(8.6.2) X is projective and KX + ∆ is ample.

8.7 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSBA-stable if the

following hold:
(8.7.1) f : X → S is flat, finite type, pure dimensional.
(8.7.2) The Di are K-flat families of relative, Mumford, Z-divisors (7.1).
(8.7.3) The fibers

(
Xs,∆s

)
are slc.

(8.7.4) ω[m]
X/S

(
m∆−B

)
is a flat family of divisorial sheaves, provided lcd(a) | m

and B =
∑

j∈J D j with a j = 1 for j ∈ J.
(8.7.5) f is proper and KX/S + ∆ is f -ample.

The first four of these conditions define locally KSBA-stable families.

8.8 (Explanation) These conditions are mostly straightforward generalizations
of (6.16.1–3). We discussed K-flatness in Chapter 7.

The main question is (8.7.4). We should think of it as the minimal
assumption, which should be made more stronger whenever possible, without
changing the reduced structure of the moduli space.

The main case is B = 0. For ω[m]
X/S

(
m∆

)
to make sense, m∆ must be a Z-

divisor. If the Di have no multiple or common irreducible components, this
holds only if m is a multiple of lcd(a). The nonzero choices of B in (8.7.4) are
discussed in (6.23).

We could also ask about the sheaves ω[m]
X/S

(∑
bmaicDi

)
, as in (6.22.3). As

we saw in (2.41), they are not flat families of divisorial sheaves in general,
but (2.79) discusses various examples where they are. Thus, on a case-by-case
basis, a strengthening of (8.6.4) is possible and useful. This was one of the
themes of Chapter 6.

Theorem 8.9 KSBA-stability with rational coefficients, as defined in (8.6–8.7),
is a good moduli theory (6.10).

Proof We need to check the conditions (6.10.1–5).
Separatedness (6.10.1) follows from (2.50); valuative-properness (6.10.2) is

proved in (2.51) and (7.4.2). Assumption (8.7.4) follows from (2.79.1) if B = 0

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010


314 Moduli of Stable Pairs

and from (2.79.8) when B , 0. Representability is proved in (7.65) and (3.31).
Boundedness holds by (6.8.1) and (6.14).

Once we know that m(KX + ∆) is very ample for every (X,∆) ∈ SP(a, n, v)
for some fixed m, embedded moduli spaces (6.10.3) are constructed in (8.52).
However, the universal family over CmESP(a, n,PN

Q
) satisfies (8.7.3) only for

multiples of m. We can then handle the other values as in the proof of (6.24).
The coarse moduli space exists by (6.6). �

As in (6.25), we get the following from (8.7.3).

Proposition 8.10 For KSBA-stable families as in (8.6–8.7), let m be a multi-
ple of lcd(a). Then χ

(
X, ω[m]

X (m∆)
)

and h0(X, ω[m]
X (m∆)

)
are both deformation

invariant. �

KSBA Stability with Arbitrary Coefficients

Fix a coefficient vector a = (a1, . . . , ar) where ai ∈ [0, 1] are arbitrary real
numbers. By (11.43.1), if KX +

∑
i aiDi is R-Cartier, then we can get many

Q-Cartier divisors. We start by listing them.

Definition 8.11 Fix a = (a1, . . . , ar) with linear Q-envelope LEnvQ(1, a) ⊂
Qr+1 as in (11.44). For ∆ =

∑r
i=1 aiDi, set

LEnvZ(KX + ∆) :=
{
m0KX +

∑
miDi : (m0, . . . ,mr) ∈ LEnvQ(1, a) ∩ Zr+1}.

Let us mention two extreme cases.
(8.11.1) If all ai ∈ Q, then LEnvZ(KX + ∆) consists of all Z-multiples of
lcd(a)(KX + ∆).
(8.11.2) If {1, a1, . . . , ar} is a Q-linearly independent set, then LEnvZ(KX + ∆)
consist of all Z-linear combinations m0KX +

∑
miDi.

It is very important that, by (11.44) and (11.43.1), if KX + ∆ is R-Cartier,
then all elements of LEnvZ(KX + ∆) are Q-Cartier Z-divisors. (There may be
other linear combinations that are Q-Cartier Z-divisors.)

The stable objects are the same as before, but the definition of stable families
again looks different.

8.12 (Stable objects) We parametrize marked pairs
(
X,∆ =

∑
i aiDi

)
with

coefficient vector a such that
(8.12.1)

(
X,∆

)
is slc,

(8.12.2) X is projective and KX + ∆ is ample.
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8.13 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSBA-stable if

the following hold
(8.13.1) f : X → S is flat, finite type, pure dimensional.
(8.13.2) The Di are K-flat families of relative, Mumford, Z-divisors (7.1).
(8.13.3) The fibers

(
Xs,∆s

)
are slc.

(8.13.4) ω[m0]
X/S

(∑
miDi − B

)
is a flat family of divisorial sheaves, whenever

(m0, . . . ,mr) ∈ LEnvZ(KX + ∆) and B =
∑

j∈J D j, where a j = 1 for j ∈ J.
(8.13.5) f is proper and KX/S + ∆ is f -ample.

The first four of these conditions define locally KSBA-stable families.

8.14 (Explanation) These conditions are mostly straightforward generalizations
of (8.7), again the main question is assumption (8.13.4).

If the ai are rational, then, by (8.11.1), LEnvZ(KX + ∆) consists of the
integer multiples of lcd(a)(KX + ∆), so (8.13.4) specializes to (8.7.4). If
1, a1, . . . , ar are Q-linearly independent, then, by (8.11.2), we specialize to
(6.38).

For the intermediate cases we follow the philosophy behind KSB stability
as in Section 6.2. Whenever we can prove to have a flat family of divisorial
sheaves over DVR’s, we require this property over all schemes.

Working with all of LEnvZ(KX + ∆) is (almost) necessary for our proof.
We are using several rational perturbations of KX + ∆ to get enough ample
Q-divisors. These span LEnvZ(KX + ∆) (at least with Q-coefficients).

The choice of B in (8.13.4) is discussed in (6.23).
The sheaves ω[m]

X/S
(∑
bmaicDi

)
are not easy to understand. As we already

noted in (8.8), they are not always flat families of divisorial sheaves, though
the latter holds for infinitely many m, depending on the coefficient vector a.
Unfortunately, the method of (11.50) is ineffective, it is not at all clear how to
produce such values m.

Theorem 8.15 KSBA-stability, as defined in (8.12–8.13), is a good moduli
theory (6.10).

Proof We need to check the conditions (6.10.1–5).
Separatedness and valuative-properness (6.10.1–2) are as for (8.9). Embed-

ded moduli spaces (6.10.3) are worked out in (8.21). Representability holds by
(7.65) and (3.31). Boundedness is discussed in (6.8.2). �

Let us note the following strengthening of (2.65) and (2.69).

Theorem 8.16 Let f :
(
X,∆ =

∑
i∈I aiDi

)
→ S be a KSBA stable family. Let

B =
∑

j∈J D j be a divisor, where a j = 1 for j ∈ J and L an f -semi-ample
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divisorial sheaf (3.25) on X. Then Ri f∗
(
L[−1](−B)

)
and Ri f∗

(
ωX/S [⊗] L(B)

)
are

locally free and compatible with base change for every i.

Proof As in the proof of (2.65), a suitable cyclic cover reduces the first part
to the case when L = OX , which follows from Kovács and Schwede (2016,
5.1). (Note that the latter is stated over a smooth base, but that is not used in
the proof. Also, OX(−B) is a flat family of divisorial sheaves by (8.13.4), thus
(Xs, Bs) is a Du Bois pair for every s ∈ S .) This implies the second part as in
(2.69). �

KSBA Stability, Stronger Version

K-flatness is designed to work for all boundary divisors ∆ =
∑

i aiDi, thus it
cannot capture the stronger properties of those Di that have coefficient > 1

2 . The
notion of strong KSBA-stability takes care of this. The resulting moduli space
has the same underlying reduced subscheme, but a smaller nilpotent structure.

8.17 (Stable objects)
(
X,∆ =

∑
i∈I aiDi

)
, same as in (8.12).

8.18 (Stable families) Families f :
(
X,∆ =

∑
i∈I aiDi

)
→ S as in (8.13), with

the following additional assumption taken from (2.82).
(8.18.1) Let J ⊂ I be any subset such that a j >

1
2 for every j ∈ J and set

DJ := ∪ j∈J D j. Then f |DJ : DJ → S is flat with reduced fibers.
Note It is possible that some variant of (6.27.3) could be added, but (2.83) does
not seem strong enough for this.

The proof of (8.15) carries over without changes to give the following.

Theorem 8.19 Strong KSBA-stability, as defined in (8.17–8.18), is a good
moduli theory (6.10). �

Example 8.20 To see that we do get a smaller scheme structure, even for sur-
faces, start with the A1 singularity S 0 := (y2 − x2 + z2 = 0) and the nodal curve
C0 := (z = y2 − x2 = 0). Then

(
S 0,C0

)
is lc. Over k[ε], consider the trivial

deformation S := (y2 − x2 + z2 = 0). For C0 we take the simplest K-flat, but
nonflat deformation. Using the notation of (7.70.5), it is given by y2 − x2 = 0
and z =

y
xε in the chart (x , 0). The closure is given by

C = (y2 − x2 = zx − yε = zy − xε = z2 = zε = 0).

Then
(
S ,C

)
→ Spec k[ε] is locally stable as in (8.13), but C is not flat over

Spec k[ε]. Hence (8.18.1) is not satisfied.

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010


8.3 Stability with Floating Coefficients 317

8.21 (Construction of embedded moduli spaces) A way of approximating an
R-Cartier pair with Q-Cartier pairs is given in (11.47).

Depending on the vector a, we have Q-linear maps σm
j : R → Q, extended

to divisors by σm
j (

∑
aiDi) :=

∑
σm

j (ai)Di, with the following properties.
(8.21.1) If KX/S + ∆ is R-Cartier then the KX/S + σm

j (∆) are Q-Cartier.
(8.21.2) limm→∞ σ

m
j (∆) = ∆.

(8.21.3) ∆ is a convex R-linear combination of the σm
j (∆) for every fixed m.

(8.21.4) If (X,∆)→ S is stable then so are the
(
X, σm

j (∆)
)
→ S for m � 1.

Since SP(a, n, v) is bounded by (6.8.2), there is a fixed M such that
(8.21.5) the

(
X, σM

j (∆)
)

are stable for every j and every (X,∆) ∈ SP(a, n, v).
The volume of

(
X, σM

j (∆)
)

may depend on (X,∆), but it is locally constant in
families, so only finitely many values can occur for SP(a, n, v). Denote this set
by V ⊂ R.

Let SP
(
σM
∗ (a), n,V

)
be the moduli functor of all pairs (X,∆) of dimension

n, for which all the
(
X, σM

j (∆)
)

are stable and vol
(
X, σM

1 (∆)
)
∈ V . We claim

that this is a good moduli theory.
Indeed, first SP

(
σM

1 (a), n,V
)

is a good moduli theory by (8.9). Then we
have to add the conditions that the KX/S + σM

j (∆) are Q-Cartier for j , 1;
these are representable by (4.29). Finally, once the KX/S + σM

j (∆) are Q-
Cartier, ampleness of these is an open condition. Thus we have the moduli
space SP

(
σM
∗ (a), n,V

)
.

Since ∆ is a convexR-linear combination of theσm
j (∆), SP(a, n, v) is a closed

subspace of SP
(
σM
∗ (a), n,V

)
by (11.4.4). �

8.3 Stability with Floating Coefficients

Much of the technical subtlety of the KSBA approach is caused by the presence
of boundary divisors that are notQ-Cartier. As we discussed in Section 6.4, one
way to avoid these is to work with marked pairs (X,

∑
i∈I aiDi) as in (8.3), where

the ai ∈ R are Q-linearly independent. However, in many important cases, the
ai are dictated by geometric considerations and they are rational.

By working on a Q-factorialization π : X′ → X, we can achieve that the D′i
are Q-Cartier. The price we pay is that KX +

∑
aiD′i is only nef, giving a non-

separated moduli space. We can restore separatedness if we know which linear
combinations −

∑
i ciD′i are π-ample. (The negative sign works better later.)

If we fix ci, then −
∑

i(ci + ηi)D′i is also π-ample for all |ηi| � |ci|. Thus we
can choose the ηi such that the (ai − ci − ηi) are Q-linearly independent; we are
then back to the situation of Alexeev stability, as in Section 6.4. However, we
do not wish to fix the ci.
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Using floating coefficients was considered early on by Alexeev, Hassett, and
Kovács. There is a short discussion in Alexeev (2006), but the first significant
example of it is treated in Alexeev (2015). The general type case with a floating
coefficient is worked out in Filipazzi and Inchiostro (2021).

Keeping in mind the chambers discussed in (6.39), it is clear that one cannot
float several coefficients independently. A solution is to fix an ordering of the
index set I; this is natural in many cases, but not always.

The key observation is that, for a normal pair (X,
∑r

i=1 aiDi), there is at most
one small modification π : X′ → X such that
• −

∑r
i=1 εiD′i is π-ample for all 0 < ε1 � · · · � εr.

(The notation means that there is a δ > 0 such that ampleness holds whenever
εi ≤ δεi+1 for every i. By (11.43), then the D′i := π−1

∗ Di are Q-Cartier.)
To get a good moduli theory out of this, we need to allow certain nonsmall

birational maps X′ → X. There is a further issue that going freely between
X and X′ seems to need the Abundance Conjecture to hold (Kollár and Mori,
1998, 3.12). Thus the working definition is more complicated.

8.22 (Canonical contractions and models of nef slc pairs) By Kollár (2011c),
there are projective surfaces with normal crossing singularities whose canoni-
cal ring is not finitely generated. Thus it is not possible to define the canonical
model of a proper slc pair (Y,∆) in general.

There are problems even if we assume that KY +∆ is semiample. As a typical
example, let S ⊂ P3 be a surface of degree ≥ 5 with a single singular point
s ∈ S that is simple elliptic (2.21.4.1). Let S ′ → S be the minimal resolution
with exceptional curve E′ ⊂ S ′. Next take two copies of (S ′i , E

′
i ) and glue them

along E′1 ' E′2 to get a surface T ′ with normal crossing singularities. Note that
ωT ′ is generated by global sections and it maps T ′ to the surface T obtained
by gluing two copies (S i, si) at the points s1 ' s2. Thus T is not S 2. Here the
problem is that T ′ is singular along the exceptional divisor of T ′ → T . It is
easy to see that this is the only obstacle in general.

Claim 8.22.1 Let g : Y → X be a proper, birational morphism of pure dimen-
sional, reduced schemes. Assume that g∗OY = OX , Y is S 2 and none of the
g-exceptional divisors is contained in Sing Y . Then X is S 2. �

Corollary 8.22.2 Let (Y,∆) be an slc pair such that KY + ∆ is semiample,
inducing a proper morphism g : Y → X. Assume that g is birational and
none of the g-exceptional divisors is contained in Sing Y . Then (X, g∗∆) is slc,
KX +g∗∆ is ample and g is a crepant contraction. That is, KY +∆ is numerically
g-trivial. �

We call (X, g∗∆) the canonical model of (Y,∆) and denote it by (Yc,∆c).
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We stress that here we are considering only those cases for which (Y,∆) →
(Yc,∆c) is a crepant contraction.

Lemma 8.23 Let (Y,∆) be an slc pair and g : Y → X a proper morphism such
that g∗OY = OX and KY + ∆ is numerically g-trivial. Let Θ1,Θ2 be effective
divisors such that Supp Θi ⊂ Supp ∆. Assume that −Θ1 is g-ample and −Θ2 is
g-nef. Then the following hold.
(8.23.1) (X, g∗∆) is slc and g is birational.
(8.23.2) g∗OY

(
mKY + bm∆c

)
= OX

(
mKX + bmg∗∆c

)
for every m ≥ 1.

(8.23.3) −Θ2 is g-semiample.

Proof Since −Θ1 is g-ample, Ex(g) ⊂ Supp Θ1 ⊂ Supp ∆. In particular, g is
birational and Y is smooth at every generic point of Ex(g) that has codimension
1 in Y . Thus X is S 2 by (8.22.1), hence demi-normal, so (1) holds by (4.50).
Next (2) follows from (11.61).

For (3), assume first that Y is normal. We apply (11.28.2) to (Y,∆−εΘ2). Set
Z = g(Θ2). Then (X \ Z, g∗∆) is the canonical model of (Y \ g−1(Z),∆ − εΘ2).
Since −Θ2 is g-nef, Supp Θ2 = g−1(Z), hence none of the lc centers of (Y,∆ −
εΘ2) is contained in g−1(Z). Thus KY + ∆− εΘ2 is g-semiample and so is −Θ2.

In general, we can apply the above to the normalization Ȳ → Y , get a
canonical model of (Ȳ , ∆̄ − εΘ̄2) and then use (11.38) to conclude. �

8.24 (Stable objects) Alexeev–Filipazzi–Inchiostro stability parametrizes pro-
jective, marked, slc pairs(

X,∆ =
∑

j∈Jb jB j +
∑

i∈IaiDi), (8.24.1)

where the divisors are indexed by the disjoint union J ∪ I. We write ∆0 :=∑
j∈J b jB j; this divisor will be treated as in KSBA stability. The new aspect is

the treatment of the divisors Di. The index set I is ordered, so we identify it
with {1, . . . , r}.

The sole assumption that we would like to have is the following.
(8.24.2) KX + ∆ −

∑
i εiDi is ample for all 0 < ε1 � · · · � εr � 1.

Since we can choose the ai − εi to be Q-linearly independent of the b j, we see
that KX + ∆0 and the D1, . . . ,Dr are necessarily R-Cartier by (11.43).

Fixing m and 0 < εm � · · · � εr, letting the others go to 0 gives that
KX + ∆−

∑r
i=m+1 εiDi is nef for 0 ≤ m ≤ r. If the Abundance Conjecture holds,

then these divisors are semiample, but this is not known. So for now we have
to add the assumption:
(8.24.3) KX + ∆ is semiample.
An slc pair (X,∆) as in (1) is AFI-stable if it satisfies assumptions (2–3).

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010


320 Moduli of Stable Pairs

If (3) holds, then we have a crepant contraction to the canonical model
π : (X,∆)→ (Xc,∆c). Then (2) is equivalent to the following condition.
(8.24.4) There are ηim > 0 such that −

∑r
i=m ηimDi is π-nef for 1 < m < r and

π-ample for m = 1.

8.25 (Explanation) By (8.23.3), the assumptions (8.24.2–3) imply that
(8.25.1) KX + ∆ −

∑r
i=m+1 εiDi is semiample for 0 ≤ m ≤ r.

Thus for each m we get a morphism πm : X → Xm. Then (8.23.1) shows that
πm is birational. For the rest of the section, we use a subscript m to denote the
image of a divisor on Xm.

Using (8.23), we get that, for 0 < εm � · · · � εr � 1,
(8.25.2) (Xm,∆m) is slc and KXm + ∆m −

∑r
i=m+1 εiDi

m is ample.
In particular, we have
(8.25.3) a tower of morphisms X =: X0 → X1 → · · · → Xr such that
(8.25.4) KXr + ∆r is ample on Xr, and
(8.25.5) −Dm

m−1 is (Xm−1 → Xm)-ample for every m.
Repeatedly using Hartshorne (1977, exc.II.7.14) we get that (3–5) are equiva-
lent to (8.24.2–3).

In (8.30), we show how to transform the conditions (8.24.2) involv-
ing variable εi > 0 into a set of conditions with fixed δi > 0. The result
is, however, ineffective, and it would be good to find a more constructive
approach.

Note that (Xr,∆r) is the canonical model (Xc,∆c) of (X,∆), it is thus inde-
pendent of the ordering of I. By contrast, the intermediate X → Xm → Xc do
depend on the ordering of I.

8.26 (Stable families) A family f :
(
X,∆ =

∑
j∈J b jB j +

∑
i aiDi) → S is AFI-

stable if the following hold:
(8.26.1) f :

(
X,∆

)
→ S is locally stable.

(8.26.2) KX/S +
∑

j∈J b jB j and the D1, . . . ,Dr are relatively R-Cartier.
(8.26.3) The fibers

(
Xs,∆s

)
are AFI-stable as in (8.24).

(8.26.4) ω[m0]
X/S

(∑
j∈J m jB j +

∑
i∈I niDi) is a flat family of divisorial sheaves if

ni ∈ Z and (m j : j ∈ {0} ∪ J) ∈ LEnvZ(KX +
∑

j∈J b jB j).
The next assumption may be redundant; we discuss it in (8.27) and (8.34).
(8.26.5) f : (X,∆)→ S has a crepant contraction to its simultaneous canonical

model. That is, to a stable morphism f c : (Xc,∆c) → S whose fibers are
the canonical models

(
(Xs)c, (∆s)c) of the fibers.

8.27 (Explanation) Assumptions (8.26.1–3) closely follow (8.7). Assumption
(8.26.4) is modeled on (8.11) and (8.13).
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The Di are Q-Cartier by (11.43.2), hence K-flat by (7.4.6), at least in char-
acteristic 0. Thus if ∆0 :=

∑
j∈J b jB j is the 0 divisor, then we avoid using

K-flatness entirely.
Since ampleness is an open condition (11.54), we see using (8.24.4) that, if S

is Noetherian, then KX +∆−
∑

i εiDi is f -ample for all 0 < ε1 � · · · � εr � 1.
Thus one can view (8.26) as picking one of the chambers discussed in (6.39).

By (8.25), each fiber (Xs,∆s) has a canonical model
(
(Xs)c, (∆s)c). More

generally, we prove in (8.35) that, if S is reduced, then (8.26.1–4) imply
(8.26.5). This implication is not known over arbitrary bases, but we prove
in (8.33) that (X,∆) → S uniquely determines its simultaneous canonical
model.

Assumption (8.26.5) guarantees that taking the relative canonical model is a
natural transformation from AFI-stable families to KSBA-stable families.

A stronger variant of (8.26.5) would be to require that the towers (8.25.3) of
the fibers form a flat family. The latter might be equivalent to (8.26.5).

Theorem 8.28 AFI-stability, as defined in (8.24–8.26) is a good moduli theory
(6.10).

We start with a general discussion on ample perturbations, followed by
results on simultaneous canonical models and boundedness. With these pre-
liminaries in place, the proof of (8.28) given in (8.37) is quite short.

Definition 8.29 A pair
(
X,∆ =

∑
j∈Jb jB j +

∑r
i=1aiDi) as in (8.24) has an

intersection form

I(t0, . . . , tr) :=
(
t0(KX + ∆) + t1D1 + · · · + trDr)n

. (8.29.1)

For a family as in (8.26), the intersection form I(t0, . . . , tr) is a locally constant
function on the base by (8.26.2). We can thus decompose the functor of AFI-
stable pairs into open and closed subfunctors

AFI
(
b, a, n,I(t0, . . . , tr)

)
. (8.29.2)

Next we see that, for each of these subfunctors, there is a uniform choice of
ample divisors.

Proposition 8.30 Fix b, a, n and I(t0, . . . , tr). Then there are δi > 0 such that
(X,∆) ∈ AFI

(
b, a, n,I(t0, . . . , tr)

)
iff the following hold.

(8.30.1) (X,∆) is slc and the Di are R-Cartier,
(8.30.2)

(
t0(KX + ∆) + t1D1 + · · · + trDr)n

= I(t0, . . . , tr),
(8.30.3) KX + ∆ −

∑r
i=1δiDi is ample, and

(8.30.4) KX + ∆ −
∑r

i=m+1δiDi is semiample for m = 1, . . . , r.
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Proof If (X,∆) ∈ AFI
(
b, a, n,I(t0, . . . , tr)

)
then (1–2) hold by assumption.

The key point is that one can find δi that do not depend on (X,∆).
Start with the canonical model (Xr,∆r) = (Xc,∆c). Since(

KXc + ∆c)n
=

(
KX + ∆

)n
= I(1, 0, . . . , 0),

the canonical models form a bounded family by (6.8.1). In particular, there is
an η > 0 such that

(
(KXr +∆r) ·C

)
≥ η for every nonzero effective curve C ⊂ Xr

for every Xr. Thus
(
(KX + ∆) ·C

)
is either 0 or ≥ η for every nonzero effective

curve C ⊂ X.
Choose 0 < c1 � · · · � cr−1 � cr = ar such that KX + ∆ − εr

∑
ciDi is

ample for some εr > 0. Applying (8.31) with ∆2 :=
∑

ciDi and ∆1 := ∆ − ∆2,
we get a fixed δr such that

KX + ∆1 + (1 − δr)∆2 = KX + (∆ − δrDr) −
∑r−1

i=1 ciδrDi

is ample. This holds for all 0 < c1δr � · · · � cr−1δr � 1, so KX + ∆ − δrDr

is nef, so semiample by (8.23.3). By induction on r, we get the other δi and
the divisors in (4) are nef. KX + ∆ is semiample by assumption (8.24.3). This
implies the rest of (4) by (8.23.3).

Conversely, convex linear combinations of the divisors KX + ∆−
∑r

i=m+1δiDi

for m = 0, . . . , r show that (8.24.2) holds. �

Lemma 8.31 (Filipazzi and Inchiostro, 2021, 2.15) Let (X,∆1+∆2) be a proper
slc pair of dimension n. Assume that there is an η > 0 such that
(8.31.1)

(
(KX + ∆1 + ∆2) · C

)
is either 0, or ≥ η for every nonzero effective

curve C, and
(8.31.2) KX + ∆1 + (1 − ε0)∆2 is ample for some ε0 > 0.
Then KX + ∆1 + (1 − ε)∆2 is ample for every η/(2n + η) > ε > 0.

Proof We may assume that X is normal. If ε0 > ε > 0, then KX +∆1 +(1−ε)∆2

is a convex linear combination of KX + ∆1 + (1 − ε0)∆2 and of KX + ∆1 + ∆2,
hence ample.

Thus consider the case when ε0 < ε. We check Kleiman’s ampleness
criterion. For Z ∈ NE(X) we have that(

(KX + ∆1 + (1 − ε)∆2) · Z
)

=
ε−ε0
1−ε0

(
(KX + ∆1) · Z

)
+ 1−ε

1−ε0

(
(KX + ∆1 + (1 − ε0)∆2) · Z

)
.

(8.31.3)

So the criterion holds on the part where
(
(KX + ∆1) · Z

)
≥ 0.

By the Cone theorem of Fujino (2017, 4.6.2), the rest of NE(X) is generated
by curves Ci for which −2n ≤

(
(KX + ∆1) ·Ci

)
< 0. If Ci is such a curve, then,

applying (8.31.3) with ε0 = 0, we get that
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(
(KX+∆1+(1−ε)∆2)·Ci

)
= ε

(
(KX+∆1)·Ci

)
+(1−ε)

(
(KX+∆1+∆2)·Ci

)
. (8.31.4)

Now set ε = ε0. Then the left-hand side is positive, hence so is
(
(KX + ∆1 +

∆2) · Ci
)
. Thus

(
(KX + ∆1 + ∆2) · Ci

)
≥ η by assumption. Thus (8.31.4) gives

that, for every ε > 0,
(
(KX + ∆1 + (1− ε)∆2) ·Ci

)
≥ −2nε+ (1− ε)η. The latter

is positive if ε < η/(2n + η). �

Definition 8.32 Let πX : X → S be a flat, proper morphism with S 2 fibers. A
simultaneous contraction is a factorization πX : X

τ
→ Y→S where

(8.32.1) πY : Y → S is flat, proper with S 2 fibers, and
(8.32.2) τ∗OX = OY .
This implies that (τs)∗OXs = OYs for every s ∈ S .

If the τs are birational, then X → S and the τs uniquely determine Y . When
S is Artinian, this is (8.33), which in turn implies the general case.

Lemma 8.33 Let A be a local, Artinian ring with residue field k. Let gk : Xk →

Yk be a birational morphism between proper, pure dimensional, S 2-schemes
such that (gk)∗OXk = OYk . Let XA → Spec A be a flat, proper morphism.
(8.33.1) There is at most one flat YA → Spec A such that gk lifts to gA : XA →

YA.
(8.33.2) If YA exists, then OYA = (gA)∗OXA .

Proof Note that XA,YA are S 2 since XA → Spec A and YA → Spec A are flat.
Let Uk ⊂ Yk be the largest open set over which gk is an isomorphism.

Thus we get open sets Vk ⊂ Xk, VA ⊂ XA and UA ⊂ YA. Note that YA \ UA

has codimension ≥ 2. Thus OYA is the push-forward of OUA by the injection
jA : UA ↪→ YA (10.6).

Since gA : VA → UA is an isomorphism, we see that OYA = ( jA)∗(gA)∗OVA is
determined by XA and gk. This also implies that (gA)∗OXA = OYA . �

Definition 8.34 Let h : (X,∆) → S be proper and locally stable such that
KX/S + ∆ is h-nef. A simultaneous, canonical, crepant, birational contraction
is a simultaneous contraction πX : X

τ
→ Y→S such that

(8.34.1) πY : (Y, τ∗∆)→ S is stable, and
(8.34.2) τs : (Xs,∆s) → (Ys, g∗∆s) is the crepant, birational contraction to its

canonical model as in (8.22) for every s ∈ S .
By (8.32), πY : (Y, τ∗∆) → S is uniquely determined by πX : (X,∆) → S , even
when S is nonreduced.
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Using the rational approximations ∆n
j → ∆ as in (11.47), we see that

(8.34.3) X → Y → S is a simultaneous canonical contraction for ∆ iff it is a
simultaneous canonical contraction for ∆n

j for n � 1 for every j.

Proposition 8.35 Let g : (X,∆) → S be proper and locally stable, S reduced.
Assume that (Xs,∆s) has a crepant, birational contraction to its canonical
model for every s ∈ S . Then g : (X,∆) → S has a simultaneous, canonical,
crepant, birational contraction.

Proof By (8.34.3) it is enough to deal with the case when ∆ is a Q-divisor.
Next we prove that g∗

(
OX(mKX/S + m∆)

)
is locally free and commutes with

base change for m sufficiently divisible. By Grauert’s theorem (as stated in
Hartshorne (1977, III.12.9)) it is enough to prove this when S is a smooth
curve. In this case (11.28) and (11.38) show that the relative canonical model
exists, τs is an isomorphism for the generic point s ∈ S and a finite, universal
homeomorphism (10.78) for closed points s ∈ S . However, (5.4) then implies
that in fact τs is an isomorphism for every s ∈ S . Thus

h0(Xs,OXs (mKXs + m∆s)
)

= h0((Xs)c,OXc
s (mKXc

s + m∆c
s)
)

= h0((Xc)s,OXc
s (m(KXc/S + ∆ c)s

)
is independent of s ∈ S for m sufficiently divisible, since Xc → S is flat and
KXc/S + ∆c is relatively ample.

With arbitrary S , we get the simultaneous canonical model

Xc = ProjS ⊕r∈N g∗
(
OX(rmKX/S + rm∆)

)
. �

For representability, the key step is the following.

Proposition 8.36 Let g : (X,∆) → S be proper and locally stable. Then there
is a locally closed partial decomposition S sccc → S such that, for any T → S ,
the base change gT : (XT ,∆T ) → T has a simultaneous, canonical, crepant,
birational contraction iff T factors through S sccc.

Proof As before, using (8.34.3), it is enough to deal with the case when ∆ is a
Q-divisor. We may assume that S is connected.

Assume that (Xs,∆s) has a crepant, birational contraction to its canonical
model (Xc

s ,∆
c
s). The self-intersection of KXc

s + ∆c
s equals the self-intersection

of KXs + ∆s, which is independent of s ∈ S . Thus the pairs (Xc
s ,∆

c
s) are in a

bounded family by (6.8.1). In particular, there is an m > 0, independent of s,
such that rmKXc

s +rm∆c
s is Cartier, very ample, and has no higher cohomologies

for r > 0. Moreover, we get only finitely many possible Hilbert functions.
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Thus OXs

(
rmKXs + rm∆s) is locally free, globally generated, and maps

(Xs,∆s) to its canonical model. This implies that if πT : (XT ,∆T ) → T has
a simultaneous canonical, crepant contraction, then, for every r > 0,
(8.36.1) OXT

(
rmKXT /T + rm∆T

)
is relatively globally generated, and

(8.36.2) (πT )∗OXT

(
rmKXT /T + rm∆T

)
is locally free and commutes with base

change.
For each Hilbert function, these conditions are representable by a locally
closed subscheme by (3.21). �

Remark 8.36.3 If the Abundance Conjecture holds, then red S sccc is an open
subset of red S . The scheme-theoretic situation is not clear.

Example 8.36.4 Being semiample and big is not a constructible condition for
families of line bundles. As a simple example, let E ⊂ P2 be an elliptic curve,
π : X := ProjE(OE + OE(3)) → E the resolution of the cone over E. Consider
the line bundles LX := OX(1) ⊗ π∗L where L ∈ Pic◦(E).

Then LX is nef and big for every L ∈ Pic◦(E), but semiample only if L is
a torsion point of Pic◦(E). Thus the set {L : LX is big and semiample} is not
constructible.

A much subtler example of Lesieutre (2014) shows that being nef and big is
also not a constructible condition in families of smooth surfaces.

8.37 (Proof of 8.28) First, we show thatAFI
(
b, a, n,I

)
is bounded and repre-

sentable. By (8.30), there are fixed δi > 0 such that KX +∆−
∑r

i=1δiDi is ample.
The self-intersection of this divisor is I(1, a1 − δ1, . . . , ar − δr), hence all such
stable pairs form a bounded family by (6.8.1). We can choose the ai − δi to be
Q-linearly independent of the bi. Then the Di are R-Cartier by (11.43).

Note that (6.8.1) gives boundedness for pairs such that (X,∆ −
∑r

i=1δiDi)
is slc, but we want (X,∆) to be slc. By (7.65), local stability of (X,∆) is a
representable condition. (Actually, (11.48) shows that, for a suitable choice of
the δi, the (X,∆) are in fact slc.)

Semiampleness of the divisors KX + ∆ −
∑r

i=m+1δiDi is a representable con-
dition by (8.36). Representability of (8.26.4) is handled as in (6.40). (8.26.5)
was treated in (8.36).

Separatedness follows from (11.40) as usual, applied to (X,∆−
∑r

i=m+1 δiDi).
To see valuative-properness, assume that we have f ◦ :

(
X◦,∆◦ =

∑
j∈J b jB j◦+∑r

i=1aiDi◦)→ C◦ over an open subset of a smooth curve C◦ ⊂ C.
Applying (8.35) to the divisors KX + ∆ −

∑r
i=m+1δiDi we also have a tower

f ◦ :
(
X◦,∆◦

)
→

(
X◦1 ,∆

◦
1
)
→ · · · →

(
X◦r ,∆

◦
r
)
→ C◦,

where
(
X◦r ,∆

◦
r
)

is the relative canonical model of
(
X◦,∆◦

)
.
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First, we use (2.51) to get that, after a base change (which we suppress in
the notation),

(
X◦r ,∆

◦
r
)
→ C◦ extends to a stable morphism

(
Xr,∆r

)
→ C.

Next we extend
(
X◦r−1,∆

◦
r−1

)
→ C◦. By construction, KX◦r−1

+ ∆◦r−1 − εrDr,◦
r−1

is relatively ample on X◦r−1 → X◦r for 0 < εr � 1 and relatively semiample
for εr = 0. Thus, by Hacon and Xu (2013, 1.5), after a base change (which we
again suppress in the notation), it extends to a model

(
Xr−1,∆r−1−εrDr

r−1
)
→ C

with the same properties (with a possibly smaller upper bound for εr). This
gives

(
Xr−1,∆r−1

)
→ C. We can continue this until we get the tower

f :
(
X,∆

)
→

(
X1,∆1

)
→ · · · →

(
Xr,∆r

)
→ C,

proving valuative properness. �

8.4 Polarized Varieties

Assumptions In this section, we work with arbitrary schemes. Because of
functoriality, the situation over SpecZ determines everything.

8.38 (Ampleness conditions) Let X be a proper scheme over a field k and L
a line bundle on X. The most important positivity notion is ampleness, but
in connection with projective geometry the notion of very ampleness seems
more relevant. If L is ample then Lr is very ample for r � 1 and there are
numerous Matsusaka-type theorems that give effective control over r; see Mat-
susaka (1972); Lieberman and Mumford (1975); Kollár and Matsusaka (1983).
In practice, this will not be a major difficulty for us.

A problem with very ampleness is that it is not open in flat families (Xs, Ls).
Thus one needs to consider stronger variants. The two most frequently needed
additional conditions are the following.
(8.38.1) Hi(X, L) = 0 for i > 0.
(8.38.2) H0(X, L) generates the ring

∑
r≥0 H0(X, Lr).

These are connected by the notion of Castelnuovo–Mumford regularity; see
Lazarsfeld (2004, sec.I.8) for details.

For our purposes the relevant issue is (1). Thus we say that a line bundle L is
strongly ample if it is very ample and Hi(X, Lm) = 0 for i,m > 0. By Lazarsfeld
(2004, I.8.3), if this holds for all m ≤ dim X + 1 then it holds for all m. Thus
strong ampleness is an open condition in flat families.

Let f : X → S be a proper, flat morphism and L a line bundle on X. We say
that L is strongly f -ample or strongly ample over S , if L is strongly ample on
the fibers. Equivalently, if Ri f∗Lm = 0 for i,m > 0 and L is f -very ample. Thus
f∗L is locally free and we get an embedding X ↪→ PS ( f∗L).
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The main case for us is when f : (X,∆) → S is stable and L = ω[r]
X/S (r∆) for

some r > 0. If r > 1 then Ri f∗Lm = 0 for i,m > 0 by (11.34).

Definition 8.39 (Polarization) A polarized scheme is a pair (X, L) consisting
of a projective scheme X plus an ample line bundle L on X.

In the most basic version of the definition, a polarized family of schemes
over a scheme S consists of a flat, projective morphism f : X → S , plus a
relatively ample line bundle L on X. (See (8.40) for other variants.)

We are interested only in the relative behavior of L, thus two families (X, L)
and (X, L′) are considered equivalent if there is a line bundle M on S such that
L ' L′ ⊗ f ∗M. There are some quite subtle issues with this in general Ray-
naud (1970), but if S is reduced and H0(Xs,OXs ) ' k(s) for every s ∈ S , then
L ' L′ ⊗ f ∗M for some M iff L|Xs ' L′|Xs for every s ∈ S by Grauert’s theo-
rem, as in Hartshorne (1977, III.12.9). See also (8.40) for further comments on
this.

For technical reasons, it is more convenient to deal with the cases when, in
addition, L is strongly f -ample (8.38). We call such an L a strong polarization.
Thus the “naive” functor of strongly polarized schemes

S 7→ PsSch(n,N)(S) (8.39.1)

associates to a scheme S the equivalence classes of all f : (X, L)→ S such that
(8.39.2) f is flat, proper, of pure relative dimension n,
(8.39.3) Xs is pure and H0(Xs,OXs ) ' k(s) for every s ∈ S ,
(8.39.4) L is strongly f -ample (8.38), and
(8.39.5) f∗L is locally free of rank N + 1.
Since L is flat over S , strong f -ampleness implies that f∗L is locally free.
(8.39.6) If we fix the whole Hilbert polynomial χ(X, r) := χ(X, Lr), we get the

functor S 7→ PsSch(χ)(S).
Let f : X → S be a flat, proper morphism and L a line bundle on X. Having

pure fibers is an open condition (10.11) and then pure dimensionality is an
open condition. Thus there is a maximal open subscheme S ◦ ⊂ S such that
f ◦ : (X◦, L◦)→ S ◦ satisfies the assumptions (2–5).

Definition 8.40 (Pre-polarization) The definition in (8.39) is geometrically
clear, but it does not have the sheaf property. In analogy with the notion
of a presheaf, we could define a pre-polarization of a projective morphism
f : X → S to consist of
(8.40.1) an open cover ∪iUi → S , and
(8.40.2) relatively ample line bundles Li on Xi := X ×S Ui such that,
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(8.40.3) for every i, j, the restrictions of Li and L j to Xi j := X ×S Ui ×S U j are
identified as in (8.39).

(That is, there are line bundles Mi j on Ui×S U j such that Li|Xi j ' L j|Xi j⊗ f ∗i jMi j.)
Pre-polarizations form a presheaf, hence the “right” notion of polarization

should be a global section of the corresponding sheaf.
If ∪iUi → S is a cover by Zariski open subsets, the resulting notion

is very similar to what we have in (8.39). The only difference is in prop-
erty (8.39.5) since f∗L need not exists globally. However, PS ( f∗L) does exist
as a Zariski locally trivial PN-bundle over S and we usually use PS ( f∗L)
anyhow.

If the Ui → S are étale, then we still get an object PS ( f∗L) → S , but this
is a Severi–Brauer scheme, that is, an étale locally trivial PN-bundle over S .
(See (8.40.5) for an example with N = 1.) From the theoretical point of view,
it is most natural to use the étale topology for the moduli theory of varieties.
Pre-polarizations define a pre-sheaf in the étale topology and sheafifying gives
the functors

S 7→ PsSchet(n,N)(S) and S 7→ PsSchet(χ)(S). (8.40.4)

(For arbitrary schemes one needs finer topologies; see Raynaud (1970).)
For the difference between PsSchet and PsSch, a simple example to keep in

mind is the following. Consider

X :=
(
x2 + sy2 + tz2 = 0) ⊂ P2

xyz ×
(
A2

st \ (st = 0)
)
, (8.40.5)

with coordinate projection to S := A2
st \ (st = 0). The fibers are all smooth

conics. In the analytic or étale topology, there is a pre-polarization whose
restriction to each fiber is a degree 1 line bundle, but there is no such line
bundle on X. However, OP2 (1) gives a line bundle on X whose restriction to
each fiber has degree 2.

We will, however, stick to the naive versions for several reasons.
• Stable families come with preferred polarizing line bundles ω[m]

X/S (m∆).
• PsSchet and PsSch have the same coarse moduli spaces (8.56.1).
• A suitable power of any pre-polarization naturally gives an actual polariza-

tion using (8.66.6).
So, at the end, the distinction between the functors PsSchet and PsSch does not
matter much for us. There is, however, another related notion that does lead to
different coarse moduli spaces.

8.40.7 (Numerical polarization) Given f : X → S , two relatively ample line
bundles L and L′ on X are considered equivalent if Ls ≡ L′s (p.xv) for every
geometric point s → S . This is the original definition used by Matsusaka
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(1972) and it may be the most natural notion for general polarized pairs. Sta-
ble varieties come with an ample divisor, not just with an ample numerical
equivalence class, which simplifies our task.

8.41 (Strongly embedded schemes) Fix a projective space PN
Z . Over the Hilbert

scheme there is a universal family, hence we get

Univ(PN
Z ) ⊂ PN

Z × Hilb(PN
Z ), (8.41.1)

and OPN (1) gives a polarization of Univ(PN
Z )→ Hilb(PN

Z ). As in (8.39) there is
a largest open subset

Hilbstr
n (PN

Z ) ⊂ Hilbn(PN
Z ), (8.41.2)

over which the polarization is strong (8.39.2–5). One should think of this as
pairs (X, L) that “naturally live” in PN . The universal family restricts to

Univstr
n (PN

Z )→ Hilbstr
n (PN

Z ). (8.41.3)

The corresponding functor associates to a scheme S the set of all flat families
of closed subschemes of pure dimension n of PN

S

f :
(
X ⊂ PN

S ; OX(1)
)
→ S , (8.41.4)

where OX(1) is strongly f -ample. Equivalently, we parametrize objects(
f : (X; L)→ S ; φ ∈ IsomS

(
PS ( f∗L),PN

S
))
, (8.41.5)

consisting of strongly polarized, flat families of purely n-dimensional schemes,
plus an isomorphism φ : PS ( f∗L) ' PN

S . We call the latter a projective framing
of f∗L or of L. We can also fix the Hilbert polynomial χ of X and, for N :=
χ(1) − 1 consider the subschemes

Univstr
χ (PN

Z )→ Hilbstr
χ (PN

Z ) ⊂ Hilbstr
n (PN

Z ). (8.41.6)

By the theory of Hilbert schemes, the spaces Hilbstr
χ (PN

Z ) are quasi-projective,
though usually non-projective, reducible and disconnected; see Grothendieck
(1962), Kollár (1996, chap.I), or Sernesi (2006).

We can summarize these discussions as follows.

Proposition 8.42 Fix a polynomial χ(t). Then

Univstr
χ (PN

Z )→ Hilbstr
χ (PN

Z )

constructed in (8.41) represents the functor of strongly polarized schemes with
Hilbert polynomial χ and a projective framing. That is, for every scheme S ,
pull-back gives a one-to-one correspondence between
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(8.42.1) MorZ
(
S ,Hilbstr

χ (PN
Z )

)
, as in (8.63), and

(8.42.2) flat, projective families of purely n-dimensional schemes f : X → S
with a strong polarization L of Hilbert polynomial χ, plus an isomorphism
PS ( f∗L) ' PN

S , where N + 1 = χ(1). �

The general correspondence between the moduli of polarized varieties and
the moduli of embedded varieties (8.56.1) gives now the following.

Corollary 8.43 Fix a Hilbert polynomial χ with N + 1 = χ(1). Then the stack[
Hilbstr

χ (PN)/PGLN+1
]

represents the functorPsSchet(χ) defined in (8.40.3). �

8.44 (Marking points) So far we have studied varieties with marked divisors
on them. It is sometimes useful to also mark some points. For curves, the points
are also divisors and they interact with the log canonical structure. By contrast,
in dimension ≥ 2, the points and the log canonical structure are independent
of each other. This makes the resulting notion much less interesting theoreti-
cally, but it gives a quick way to rigidify slc pairs, which was quite useful in
Section 5.9.

A flat family of r-pointed schemes is a flat morphism f : X → S plus r
sections σi : S → X. This gives a functor of r-pointed schemes.

Consider the Hilbert scheme with its universal family Univ(PN) →

Hilb(PN). Then the r-fold fiber product

Univ(PN) ×Hilb(PN ) Univ(PN) · · · ×Hilb(PN ) Univ(PN)

represents the functor of r-pointed subschemes of PN . More generally, for any
functor that is representable by a flat universal family UnivM → M, its r-
pointed version is representable by the r-fold fiber product of UnivM over M.

In particular, we get MpSP, the moduli of pointed stable pairs.

8.5 Canonically Embedded Pairs

Assumptions In this section, we work with arbitrary schemes. As before, the
situation over SpecZ determines everything.

Definition 8.45 A strongly polarized family of schemes marked with K-flat
divisors is written as
(8.45.1) f : (X; D1, . . . ,Dr; L)→ S , where
(8.45.2) f : X → S satisfies (8.39.2–5),
(8.45.3) the Di are K-flat families of relative Mumford divisors (7.1), and
(8.45.4) L is strongly f -ample (8.39).
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If we fix the relative dimension and the rank of f∗L, then, as in (8.39.6), we get
the functor

PsMSch(r, n,N). (8.45.5)

We write PsMSch(r, χ) if the Hilbert polynomial χ = χ(Xs, Lm
s ) of L is also

fixed. These can also be sheafified in the étale topology as in (8.40.3). (The
notation does not indicate K-flatness; but it has enough letters in it already.)

The embedded version is denoted by

EsMSch(r, n,PN). (8.45.6)

These functors associate to a scheme S the set of all families of closed
subschemes of a given PN

S (where N = χ(1) − 1) marked with K-flat divisors

f :
(
X ⊂ PN

S ; D1, . . . ,Dr; OX(1)
)
→ S , (8.45.7)

where OX(1) is strongly ample.
Equivalently, we can view EsMSch(r, n,PN) as parametrizing objects(

f : (X; D1, . . . ,Dm; L)→ S ; φ ∈ IsomS
(
PS ( f∗L),PN

S
))

(8.45.8)

consisting of a strongly polarized family of schemes marked with K-flat
divisors, plus a projective framing φ : PS ( f∗L) ' PN

S as in (8.41.5).

8.46 (Universal family of strongly embedded, marked schemes) Fix a projec-
tive space PN

Z and integers n ≥ 1 and r ≥ 0. By (8.41) we have a universal
family of strongly embedded schemes

Univstr
n (PN

Z )→ Hilbstr
n (PN

Z ) (8.46.1)

satisfying (8.39.2–5). The universal family of K-flat, Mumford divisors

KDiv
(
Univstr

n (PN
Z )/Hilbstr

n (PN
Z )

)
→ Hilbstr

n (PN
Z )

was constructed in (7.3). If we need r such divisors, the base of the universal
family we want is the r-fold fiber product

EsMSch(r, n,PN
Z ) := ×r

Hilbn(PN
Z ) KDiv

(
Univstr

n (PN
Z )/Hilbstr

n (PN
Z )

)
. (8.46.2)

We denote the universal family by

F :
(
X,D1, . . . ,Dr; L

)
→ EsMSch(r, n,PN

Z ), (8.46.3)

where we really should have written the rather cumbersome(
X(r, n,PN

Z ),D1(r, n,PN
Z ), . . . ,Dr(r, n,PN

Z ); L(r, n,PN
Z )

)
.
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It is clear from the construction that the spaces EsMSch(r, n,PN
Z ) parametrize

polarized families of schemes marked with divisors, equipped with an extra
framing.

Proposition 8.47 Fix r, n,N. Then the scheme of embedded, marked schemes
EsMSch(r, n,PN

Z ) constructed in (8.46.3) represents EsMSch(r, n,PN
Z ), defined

in (8.45). That is, for every Z-scheme S , pulling back the family (8.46.3) gives
a one-to-one correspondence between
(8.47.1) MorZ

(
S ,EsMSch(r, n,PN

Z )
)
, and

(8.47.2) families f : (X; D1, . . . ,Dr; L) → S of n-dimensional schemes, with
a strong polarization and marked with K-flat Mumford divisors, plus a
projective framing PS ( f∗L) ' PN

S . �

As in (8.43) and (8.56.1), this implies the following.

Corollary 8.48 Fix n,m,N. Then the stack
[
EsMSch(r, n,PN

Z )/PGLN+1
]

repre-
sents the functor PsMSch(r, n,N), defined in (8.45). �

8.49 (Boundedness conditions) The schemes EsMSch(r, n,PN) have infinitely
many irreducible components since we have not fixed the degrees of X and of
the divisors Di. Set

degL(X; D1, . . . ,Dr) :=
(
degL X, degL D1, . . . , degL Dr) ∈ Nr+1. (8.49.1)

This multidegree is a locally constant function on EsMSch(r, n,PN), hence its
level sets give a decomposition

EsMSch(r, n,PN) = qd∈Nr+1 EsMSch(r, n,d,PN). (8.49.2)

The schemes EsMSch(r, n,d,PN) are still not of finite type since the fibers are
allowed to be nonreduced. However, the subscheme

EsMV(r, n,d,PN) ⊂ EsMSch(r, n,d,PN), (8.49.3)

which parametrizes geometrically reduced fibers, is quasi-projective, though
usually non-projective, reducible, and disconnected.

Definition 8.50 A family of marked pairs f : (X,∆) → S as in (8.4) is m-
canonically strongly polarized if
(8.50.1) ωX/S is locally free outside a codimension ≥ 2 subset of each fiber,
(8.50.2) ω[m]

X/S (m∆) is a line bundle, and

(8.50.3) ω[m]
X/S (m∆) is strongly f -ample.
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If X ⊂ PN
S then f : (X,∆) → S is m-canonically strongly embedded if, in

addition,
(8.50.4) ω[m]

X/S (m∆) ' OPN (1) ⊗ f ∗MS for some line bundle MS on S .
These define the functors CmPsMSch and CmEsMSch.

Theorem 8.51 Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then
the functor CmEsMSch(a, n,PN) is represented by a monomorphism

CmEsMSch(a, n,PN
Z )→ EsMSch(r, n,PN

Z )

Proof Start with the universal family, as in (8.46.3),

F :
(
X,D1, . . . ,Dr; L

)
→ EsMSch(r, n,PN

Z ).

Note that (8.50.1) is an open condition and it holds iff ωXs is locally free out-
side a closed subset of codimension ≥ 2 of Xs for every s ∈ S . Being a line
bundle is representable by (3.30) and, once it holds, being a strong polarization
is an open condition. Applying (3.22) to ω[m]

X/S (m∆)(−1) shows that condition
(8.50.4) is representable. �

By (4.45), if KX/S + ∆ is Q-Cartier, then the stable fibers are parametrized
by an open subset, at least in characteristic 0. Thus we get the following.

Corollary 8.52 Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then,
over SpecQ, there is an open subscheme

CmESP(a, n,PN
Q) ⊂ CmEsMSch(a, n,PN

Q),

representing the functor of m-canonically, strongly embedded, stable families.

Warning 8.52.1 The reduced subspace of CmESP is the correct one, but its
scheme structure is still a little too large. The reason is that (8.7.3) imposes
restrictions on ω[r]

X/S
(
r∆

)
for various values of r, but we took care only of our

chosen m (and its multiples).
We dropped the superscript from Es since, as we noted in (8.38), an m-

canonical polarization is automatically strong.

8.6 Moduli Spaces as Quotients by Group Actions

Notation 8.53 For a scheme S , we use PGLn(S ) to denote the group scheme
PGLn over S . We will formulate definitions and results for general algebraic
group schemes whenever possible, but in the applications we use only PGLn,
which is smooth and geometrically reductive.
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Keep in mind that, if k is a field, then, in the literature, PGLn(k) usually
denotes the k-points of the group scheme PGLn, not PGLn(Spec k). It is cus-
tomary to use PGLn to denote PGLn(SpecZ) if we work with arbitrary schemes
and PGLn(SpecQ) if we work in characteristic 0.

8.54 (Comment on algebraic spaces) We will consider quotients of schemes by
algebraic groups, primarily PGLn. It turns out that in many cases such quotients
are not schemes, but algebraic spaces. For this reason, it is natural to formulate
the basic definitions using algebraic spaces.

In our cases, these quotients turn out to be schemes, even projective, but this
is not easy to prove.

In any case, this means that the reader can substitute “scheme” for “algebraic
space” in the sequel, without affecting the final theorems.

Definition 8.55 An action of an algebraic group scheme G on an algebraic
space X is a morphism σ : G × X → X that satisfies the scheme-theoretic
version of the condition g1(g2(x)) = (g1g2)(x). That is, the diagram

G ×G × X

m×1X
��

1G×σ // G × X

σ
��

G × X σ // X

commutes. If G acts on X1, X2 then π : X1 → X2 is a G-morphism if the
following diagram commutes:

G × X1

1G×π
��

σ1 // X1

π

��
G × X2

σ2 // X2.

The categorical quotient is a G-morphism q : X → Y such that the G-action is
trivial on Y and q is universal among such.

Fix N and consider the functor PsSch(N) of strongly polarized schemes of
embedding dimension N. By (8.42), its embedded version has a moduli space
with a universal family Univstr(PN) → Hilbstr(PN). The connection between
the two versions is the following impressive sounding, but quite simple
claim.

Theorem 8.56 The categorical quotient Hilbstr(PN)/PGLN+1 is also the cate-
gorical moduli space PsSch(n,N).
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Proof We have a universal family over Hilbstr(PN), so we get Hilbstr(PN) →
PsSch(n,N) which is PGLN+1-equivariant.

Conversely, let f : (X, L)→ S be a family inPsSch(n,N). Then f∗L is locally
free of rank N + 1 on S , hence S has an open cover S = ∪S i such that each
f∗L|S i is free. Choosing a trivialization gives embedded families, hence mor-
phisms φi : S i → Hilbstr(PN). Over S i∩S j we have two different trivializations,
these differ by a section of gi j ∈ H0(S i ∩ S j,PGLN+1). Thus, composing
with the quotient map q : Hilbstr(PN) → Hilbstr(PN)/PGLN+1 we get that
q◦ (φi|S i∩S j ) = q◦ (gi j(φ j|S i∩S j )

)
= q◦ (φ j|S i∩S j ), since q is PGLN+1-equivariant.

Thus the q ◦ φi glue to a morphism φ : S → Hilbstr(PN)/PGLN+1. �

Remark 8.56.1 Since one can glue a morphism from étale charts, we see that
PsSchet and PsSch have the same categorical moduli spaces (8.40.5). For those
conversant with stacks, this argument proves (8.43) and (8.48).

The same proof applies to pairs and we get the following.

Corollary 8.57 Fix m, n,N ∈N and a rational vector a = (a1, . . . , ar). Then the
categorical quotient CmESP(a, n,PN

Q
)/PGLN+1 is also the categorical mod-

uli space of SP(a, n, ∗,m,N), the functor of stable families that have an
m-canonical, strong embedding into PN . �

Existence of Quotients

Let G be an algebraic group acting on an algebraic space X. Under very mild
conditions, the categorical quotient X/G exists, but it may be very degenerate.
For example, consider An

k with the scalar Gm-action xi 7→ λxi. Then An/Gm =

Spec k, but (An \ {0})/Gm = Pn−1. Note that here the stabilizer is Gm for the
origin, but trivial for every other point. This and many other examples suggest
that points with infinite stabilizers cause problems.

With PGLN+1 acting on the Hilbert scheme, the stabilizer of the point [X]
corresponding to a strongly embedded X ⊂PN is the automorphism group
of the polarized scheme

(
X,OX(1)

)
. As we saw in Section 1.8, infinite

automorphism groups cause many problems.
We get the best results if all automorphism groups are trivial; we discuss

these in Section 8.7. For stable pairs the automorphism groups are finite, but
we need a scheme-theoretic version of this.

Definition 8.58 (Proper action) Let σ : G × X → X be an algebraic group
scheme acting on an algebraic space X. Combining σ with the coordinate
projection to X gives (σ, πX) : G × X−→X × X. The action is called proper
if (σ, πX) is proper and called free if (σ, πX) is a closed embedding. Note that
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the preimage of a diagonal point (x, x) is the stabilizer of x. Thus free implies
that all stabilizers are trivial and, if G is affine (for example PGL), then proper
implies that all stabilizers are finite. (The converses are, however, not true; see
Mumford (1965, p.11).)

Assume that X ⊂ CmESP(a, n,PN) parametrizes pluricanonically embedded
stable subvarieties in PN and G = PGLN+1. We claim that the properness of the
PGLN+1-action is equivalent to the uniqueness of stable extensions considered
in (2.50) (and called separatedness there).1

Over X, we have a universal family Y → X. Let T be the spectrum of a
DVR with generic point η and (q1, q2) : T → X × X a morphism. Thus the
q∗i Y → T give families of stable varieties over T . The generic point η lifts to
G × T iff there is a g(η) ∈ Gη such that q1(η) = σ

(
g(η), q2(η)

)
. Equivalently, if

the generic fibers (q∗1Y)η and (q∗2Y)η are isomorphic, (2.50) then says that the
families q∗1Y and q∗2Y are isomorphic. This isomorphism gives qG : T → G and
(qG, q2) : T → G × X shows that the valuative criterion of properness holds for
G × X → X × X.

Now we come to the definition of the right class of quotients.

Definition 8.59 (Mumford, 1965, p.4) Let G be an algebraic group scheme
acting on an algebraic space X with categorical quotient q : X → X/G (8.55).
It is called a geometric quotient if
(8.59.1) q(K) : X(K)/G(K) → (X/G)(K) is a bijection of sets, whenever K is

algebraically closed,
(8.59.2) q is of finite type and universally surjective, and
(8.59.3) OX/G = (q∗OX)G.
The geometric quotient is denoted by X//G.

The fundamental theorem for the existence of geometric quotients is the
following. Seshadri (1962/1963, 1972) came close to proving it. His ideas were
developed in Kollár (1997) to settle many cases, including PGL that we need.
The general case was treated in Keel and Mori (1997); see Olsson (2016) for a
thorough treatment.

Theorem 8.60 Let G be a flat group scheme acting properly on an algebraic
space X. Then the geometric quotient X//G exists. �

For free actions, the quotient map is especially simple. Over fields, this is
proved in Mumford (1965, prop.0.9). The general case follows from Stacks
(2022, tag 0CQJ).

1 This clash of terminologies is, unfortunately, well entrenched.
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Complement 8.61 Assume in addition that the G-action is free on X. Then
X → X//G is a principal G-bundle. �

For us the main application is the following.

Theorem 8.62 Fix m, n,N ∈ N and a rational vector a = (a1, . . . , ar). Then
the PGLN+1-action on CmESP(a, n,PN

Q
) (8.52) is proper.

Thus the geometric quotient CmESP(a, n,PN
Q

)//PGLN+1 exists and it is the
coarse moduli space of SP(a, n, ∗,m,N), the functor of stable families that
have an m-canonical, strong embedding into PN .

Proof For simplicity, write Univ → CmESP for the universal family over
CmESP(a, n,PN

Q
). Following (8.58), we need to show that

PGLN+1 × CmESP −→ CmESP×CmESP (8.62.1)

is proper. First, we claim that (8.62.1) is isomorphic to

Isom
(
π∗1 Univ, π∗2 Univ

)
−→ CmESP×CmESP, (8.62.2)

where the πi : CmESP → CmESP×CmESP are the coordinate projections.
This is simply the statement that giving a stable pair (X,∆) plus two m-canoni-
cal embeddings into PN is the same as giving one m-canonical embedding into
PN plus an element of PGLN+1.

The properness of (8.62.2) follows from (8.64). The rest then follow from
(8.60) and (8.57). �

8.63 (Morphism schemes) For S -schemes X,Y let MorS (X,Y) be the set
of morphisms that commute with projections to S . We get the functor of
morphisms on S -schemes T 7→ MorT (XT ,YT ).

Claim 8.63.1 Assume that X → S is flat, proper and Y → S is of finite type.
Then the functor of morphisms is representable by a scheme MorS (X,Y).

Proof We can identify a morphism with its graph, which is in HilbS (X ×S Y)
since X → S is flat. Conversely, a subscheme Z ⊂ X ×S Y is the graph of a
morphism iff the first projection πX : Z → X is finite and (πX)∗OZ ' OX . The
first of these is always an open condition, for the second we need the flatness
of Z → S (10.54). �

We also get sets IsomS (X,Y), AutS (X) and schemes IsomS (X,Y) AutS (X).
that represent the functor of isomorphisms (resp. automorphisms). The identity
is always in automorphism, thus we have the identity section S ⊂ AutS (X). We
say that X is rigid (over S ) if S = AutS (X).

The definitions of Mor, Isom,Aut and Mor, Isom,Aut also apply to pairs.
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With the definition of stable families in place, we get the following
consequence of (11.40) about isomorphism schemes.

Proposition 8.64 Let fi : (Xi,∆i)→ S be stable morphisms. Then the structure
map IsomS

(
(X1,∆1), (X2,∆2)

)
→ S is finite.

Proof Choose m such that the divisors m(KXi/S + ∆i) are very fi-ample. Set
Fi := ( fi)∗OXi (mKXi/S + m∆i). Then

IsomS
(
(X1,∆1), (X2,∆2)

)
⊂ IsomS

(
PS (F1),PS (F2)

)
is closed, hence affine over S .

Let T be the spectrum of a DVR over k with generic point tg and φg : tg →
IsomS

(
(X1,∆1), (X2,∆2)

)
a morphism. We can view it as an isomorphism of

the generic fibers φg : (X1,∆1) ×S {tg} ' (X2,∆2) ×S {tg}. By (2.50), φg extends
uniquely to an isomorphism Φ : (X1,∆1) ×S T ' (X2,∆2) ×S T. This is the
valuative criterion of properness for IsomS

(
(X1,∆1), (X2,∆2)

)
, which is thus

both affine and proper, hence finite over S . �

Next we verify (1.77.1) for stable pairs.

Corollary 8.65 Let f : (X,∆) → S be a stable morphism. Then the structure
map π : AutS (X,∆)→ S is finite, the subset S ◦ ⊂ S of rigid fibers is open and
AutS (X,∆) = S iff Aut(Xs,∆s) is trivial for every geometric point s→ S .

Proof Finiteness follows from (8.64). The identity section gives that OS is a
direct summand of π∗OAutS (X,∆). Thus S ◦ is the complement of the support of
π∗OAutS (X,∆)/OS . The fibers of AutS (X,∆)→ S are the Aut(Xs,∆s). �

8.7 Descent

Let q : S ′ → S be a morphism of schemes and assume that we have an object
over S ′. We say that the object descends to S if it is isomorphic to the pull-back
of an object on S . Typical examples are
• a (quasi)coherent sheaf F′, in which case we want to get a (quasi)coherent

sheaf F on S such that F′ ' q∗F, or
• a morphism X′ → S ′, in which case we want to get a morphism X → S

such that X′ ' X ×S S ′.
A systematic theory was developed in Grothendieck (1962, lec.1), treating

the case when S ′→ S is faithfully flat; see also Grothendieck (1971,
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chap.VIII), Bosch et al. (1990, chap.6) or Stacks (2022, tag 03O6) for more
detailed treatments. We explain the basic idea during the proof of (8.69).

Here we discuss the consequences of descent theory for the moduli of
stable pairs; the main one is (8.71). We also prove some special cases that
are representative of the general theory, yet can be obtained by simpler
methods.

8.66 (Functorial polarization) Kollár (1990) Let F be a subfunctor of PsSch.
A functorial polarization (of level r) of F assigns
(8.66.1) to any ( f : (X, L) → S ) ∈ F (S ) another ( f : (X, L̄) → S ) ∈ F (S )

such that L̄ is equivalent to Lr, and
(8.66.2) to every q : S ′ → S an isomorphism σ(q) : q∗X(L̄) ' (q∗XL) such that
(8.66.3) σ(q ◦ q′) = σ(q′) ◦ (q′X)∗σ(q) for every q′ : S ′′ → S ′ and q : S ′ → S .
Note that in (2) we need to fix an isomorphism, it is not enough to say that the
two sides are isomorphic.

If the choice of L̄ is specified, then we say that F is functorially polarized.
The following are examples of functorial polarizations.

(8.66.4) If Ls ' ωXs for s ∈ S , then L̄ := ωX/S is a functorial polarization.
(8.66.5) If every family in F has a natural section σ : S → X, then we can
take L̄ := L ⊗ f ∗(σ∗L)−1. This applies, for instance, to pointed varieties and
(depending on our definition) to polarized abelian varieties.
(8.66.6) Assume that r := χ(Xs, Ls) is constant and positive for every (Xs, Ls)
in F . Then, using the notation of (3.24.3), L̄ := Lr ⊗ f ∗(det R q f∗L)−1 is a level
r functorial polarization.
(8.66.7)

(
P1,OP1 (1)

)
does not have a functorial polarization of level 1, since

that would lead to a nontrivial representation of Aut(P1) on H0(P1,OP1 (1)
)
'

k2. On the other hand,
(
P1, ω−1

P1

)
gives a functorial polarization of level 2.

Functorial polarizations also give natural line bundles on the base spaces
of families. Let F be a functorially polarized subfunctor of PSch. For any
( f : (X, L̄) → S ) ∈ F (S ) we get the line bundle det R q f∗

(
L̄⊗k) as in (3.24.3).

For k � 1 it is given by the simpler formula det f∗
(
L̄⊗k).

These line bundles are functorial for base changes, thus they give line
bundles on the moduli stack of F .

Uniqueness of descent now follows easily.

Proposition 8.67 Let S ′ → S be a faithfully flat morphism and X′ → S ′ a
flat, proper morphism such that X′ is rigid over S ′. Then there is at most one
scheme X → S such that X′ ' X ×S S ′.
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Proof Assume that we have X1 → S and X2 → S . Since the Xi ×S S ′ ' X′

are flat and proper, so are Xi → S . We aim to prove that IsomS (X1, X2) ' S .
To see this, take any T → S ′, and note that

IsomT (X′T , X
′
T ) = IsomT

(
X1 ×S T, X2 ×S T

)
= MorS

(
T, IsomS (X1, X2)

)
.

If X′ is rigid over S ′ then IsomT (X′T , X
′
T ) has only 1 element, so MorS (T, S ) =

MorS
(
T, IsomS (X1, X2)

)
for every T . Thus S = IsomS (X1, X2). �

The simplest descent result is the following; see (1.73).

Lemma 8.68 Let K/k be a finite, separable field extension and (X, L) a rigid,
functorially polarized, projective variety defined over K. Then (X, L) descends
to k iff (X, L) ' (Xσ, Lσ) for every σ ∈ Gal(k̄/k).

Proof We may assume that K/k is Galois. Then only the σ ∈ Gal(K/k) matter.
We get an action of Gal(K/k) on H0(X, L) by

H0(X, L)
σ−lin
−→ H0(Xσ, Lσ)

K−isom
−→ H0(X, L).

This is well defined since the K-isomorphism is unique, even on L. By the
fundamental lemma on quasi-linear maps (see Shafarevich (1974, sec.A.3))
there is a unique k-subspace V(X, L) ⊂ H0(X, L) such that V(X, L) ⊗k K =

H0(X, L). Since X = ProjK
∑

H0(X, Lm), we see that Xk := Projk
∑

V(X, Lm)
defines the descent. �

Theorem 8.69 Let S ′ → S be a faithfully flat morphism and f ′ : (X′, L′)→ S ′

a flat, functorially polarized projective morphism that is rigid over S ′. The
following are equivalent.
(8.69.1) f ′ : (X′, L′)→ S ′ descends to f : (X, L)→ S .
(8.69.2) For every Artinian scheme τ : A → S , the pull-back f ′A : (X′A, L

′
A) →

A is independent of the lifting τ′ : A→ S ′.
If S is normal and S ′ → S is smooth, then it is enough to check (2) for spectra
of fields.

Proof We just explain how this fits in the framework of faithfully flat descent,
for which we refer to Stacks (2022, tag 03O6).

Let πi : S ′ ×S S ′ → S ′ denote the coordinate projections for i = 1, 2. Pulling
back f ′ : (X′, L′)→ S ′ to S ′ ×S S ′ by the πi, we get two families

f ′i : (X′i , L
′
i )→ S ′ ×S S ′.

If f : (X, L) → S exists then these are both isomorphic to the pull-back of
f : (X, L) → S , hence to each other σ12 : (X′1, L

′
1) ' (X′2, L

′
2). The existence
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of σ12 is a necessary condition for descent. The key observation is that it is
not sufficient, one also needs certain compatibility conditions over the triple
product S ′ ×S S ′ ×S S ′. However, if (X′, L′) is rigid over S ′, then σ12 is unique
and the compatibility conditions are automatic.

To prove that σ12 exists, consider

π : IsomS ′×S S ′
(
(X′1, L

′
1), (X′2, L

′
2)
)
→ S ′ ×S S ′.

Since (X′, L′) is rigid over S ′, π is a monomorphism. Assumption (2) implies
that it is scheme-theoretically surjective, hence an isomorphism.

If S ′ → S is smooth then S ′ ×S S ′ → S is also smooth, hence S ′ ×S S ′ is
normal if S is normal. In that case, surjectivity is a set-theoretic question. �

Corollary 8.70 Let G be a flat group scheme over S and S ′ → S a principal
G-bundle. Let f ′ : (X′, L′) → S ′ be a flat, functorially polarized projective
morphism that is rigid over S ′. Assume that the G actions lifts to (X′, L′).

Then f ′ : (X′, L′)→ S ′ descends to f : (X, L)→ S .

Proof We need to check assumption (8.69.2). So fix τ : A → S and liftings
τi : A → S ′. Then S ′A is a principal G-bundle with two sections τi. Thus τ2 =

g12 ◦ τ1 for some section g12 of GA. Since the G-action lifts to (X′, L′), the
corresponding pull-backs are isomorphic. �

Now we come to the main theorem.

Theorem 8.71 Let SPrigid ⊂ SP be the open subset parametrizing stable pairs
without automorphisms. Then there is a universal family over SPrigid.

Proof First, note that SPrigid is indeed open by (8.65).
For rigid families the existence is a local question. We may thus fix

the dimension n, the number of marked divisors r, the coefficient vector
(a1, . . . , ar), the volume v and the intended embedding dimension N.

First, consider the case when the ai are rational and also fix m > 1, a multiple
of lcd(a1, . . . , ar). Set d := (n, r, a1, . . . , ar,m, v,N).

Let SP(d)(S ) denote the set of marked families f : (X,∆) → S with these
numerical data, for which m(KX/S + ∆) is a Cartier Z-divisor and a strong
polarization, and such that f∗OX

(
m(KX/S + ∆)

)
has rank N + 1. Similarly, let

EMSP(d)(S ) denote the set of these objects together with a strong embedding
into PN

S .
By (8.52), we have the moduli spaces EMSPrigid(d) ⊂ EMSP(d), with

universal families. By (8.61), EMSPrigid(d)→ SPrigid(d) is a principal PGLN+1-
bundle. Hence the universal family over EMSPrigid(d) descends to SPrigid(d) by
(8.70).

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010


342 Moduli of Stable Pairs

The case of irrational coefficients is very similar. We need to work with the
rational approximations

(
X, σm

j (∆)
)
→ S as in (8.21). �

Complement 8.71.1 The same proof works for other variants of the moduli
of stable pairs, in particular we get universal families over the moduli space
MpSPrigid of rigid, pointed, stable pairs (8.44).

8.8 Positive Characteristic

We discuss, mostly through examples, two types of problems that complicate
the moduli theory of pairs in positive characteristic.

The first problem is that, as we already noted in (2.4), the four versions of the
definition of local stability in (2.3) are not equivalent in positive characteristic.
The first such examples are in Kollár (2022); these are families of 3-folds. In
(8.73) we discuss a series of higher dimensional examples that have very mild
singularities.

The second is due to p-torsion in local class groups, visible most clearly in
(4.39). As we see starting with (8.75), this issue appears already for the moduli
of 4 points on P1. This difficulty can be avoided either by working only over
weakly normal bases, or by a strong reliance on markings.

Theorem 8.72 Kollár (2022) Let k be an algebraically closed field of charac-
teristic , 0. There are flat, projective morphisms f : (X,∆) → A1

k of relative
dimension 3 such that
(8.72.1) (X, Xt + ∆) is lc for every t ∈ A1,
(8.72.2)

(
X̄t,Diff X̄t

∆
)

is lc for every t ∈ A1,
(8.72.3)

(
X̄0,Diff X̄0

∆
)

lifts to characteristic 0, yet
(8.72.4) X0 is not weakly normal, Sing X0 is 1-dimensional, and X̄0 → X0 is

purely inseparable over Sing X0.

The singularities of the 3-folds in Kollár (2022) are rather complicated.
We discuss here instead another series of examples, arising from cones over
homogeneous spaces. These are higher dimensional, but similar to the various
examples discussed in Section 2.3.

Example 8.73 (Kovács–Totaro–Bernasconi examples) Let X = G/P be a pro-
jective, homogeneous space. If P is reduced, then G/P is Fano and Kodaira
vanishing holds on X in any characteristic by the Bott–Kempf theorem.

The cases when P is non-reduced were studied in Haboush and Lauritzen
(1993). For some of these, X = G/P is Fano, but Kodaira vanishing fails for
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a multiple of the canonical class. The first example was identified by Kovács
(2018); giving a seven-dimensional canonical singularity in characteristic 2,
that is not CM. A large series of examples is exhibited in Totaro (2019), leading
to terminal singularities in any characteristic p > 0, that are not CM. These
were further studied by Bernasconi (2018).

Kollár (2022) observed that they can be used to construct stable degenera-
tions, where the generic fibers are smooth with ample canonical class and the
special fibers have isolated, nonnormal singularities.

Assume that X = G/P as above and −KX = mH for some ample divisor H
for some m ≥ 1. |H| is very ample by Lauritzen (1996), so it gives an embed-
ding X ↪→ PN , where N = dim |H|. Let Y := C(X,H) ⊂ PN+1 be the projective
cone over X with vertex v.

Let D ∈ |H| be a smooth divisor and DY ⊂ Y its preimage. Since KX + D ∼
(m−1)H, (2.35) shows that (Y,DY ) is a log canonical pair if m = 1, a canonical
pair if m > 1.

DY ⊂ Y is a Cartier divisor that is smooth outside v. Thus DY is nor-
mal ⇔ depthv DY ≥ 2 ⇔ depthv Y ≥ 3; see (2.36). Since Hi+1

v (Y,OY ) '∑
m∈ZHi(X,OX(mH)

)
by (2.35.1), DY is normal iff H1(X,OX(mH)

)
= 0 for

all m ∈ Z by (10.29.5).
Therefore, if H1(X,OX(H)

)
, 0, then DY is not normal. Intersecting Y with a

pencil of hyperplanes with base locus Z = v, we get a locally stable morphism
π : BZY → P1. It has one fiber isomorphic to DY , the others are isomorphic to
X.

Taking a suitable cyclic cover (2.13), we get a series of examples of stable
families, where the generic fibers are smooth varieties with ample canonical
class and the special fibers have isolated nonnormal singularities.

The cases described in Totaro (2019) have m = 2. Then the normalization
of DY has canonical singularities, hence these families occur in what is usually
considered the “interior” of the moduli space.

Aside 8.73.1 Another class of non-CM, cyclic, quotient singularities is
described in Yasuda (2019). These all have depth ≥ 3 by Ellingsrud and
Skjelbred (1980), so they do not lead to families as in (8.72).

8.74 (Cartier or Q-Cartier?) One of the early key conceptual steps of the
minimal model program was the realization that, starting with dimension 3,
minimal models can be singular. Moreover, their canonical class need not be
Cartier. It was gradually understood that the more general Q-Cartier condition
is the important one.

In moduli theory, we frequently start with pairs (X, B) where X is smooth
and B is Cartier, but in compactifying their moduli space we encounter pairs
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(X′, B′) where X′ is singular and KX′ is onlyQ-Cartier. Thus the usual approach
is to work with pairs (X, B) where KX + B is Q-Cartier.

Next we discuss various problems that arise when the denominators involve
the characteristic.

8.75 (Moduli of points on P1) We consider the moduli problem of n = 2r+1 ≥
3 unordered, distinct points in P1. Fix an index set I of n elements. There is only
one natural way of defining the objects of this theory.
(8.75.1) (Geometric objects)

(
P1,

∑
i∈I[pi]

)
where the pi are distinct points.

(8.75.2) (Objects over a field)
(
P1,Z

)
where Z ⊂P1 is a geometrically reduced,

0-dimensional subscheme of degree n.
The question becomes more subtle when families are considered.
(8.75.3) (Families)

(
PS → S ,D

)
where PS → S is a locally trivial P1-bundle

and D ⊂ PS is a divisor over S of degree n. For ordered points the tra-
ditional choice is to take D to be a union of sections of PS → S , but for
unordered points we have two natural choices.
(3.a) (Cartier) D is a relative Cartier divisor over S .
(3.b) (Q-Cartier) D is a relative Q-Cartier divisor over S .
The first is closest to the traditional choice of union of sections, the second
is more in the spirit of the higher dimensional theory.

(8.75.4) (Base spaces) Ideally we should work over arbitrary base schemes,
but it turns out that unexpected things happen even when the base is quite
nice. We consider three classes of base schemes.
(4.a) (Reduced)
(4.b) (Seminormal)
(4.c) (Weakly normal)

The cases (3.a–b) and (4.a–c) are in principle independent, thus we have six
different settings for the moduli problem. We might expect that, for all of them,
M0,n/S n '

(
Symn P1 \ (diagonal)

)
/PGL2 is a fine moduli space.

Theorem 8.76 Consider the above six settings of the moduli problem of n ≥ 3
unordered points in P1 over a field k.
(8.76.1) If char k = 0 then M0,n/S n is a fine moduli space in all six settings.
(8.76.2) If char k > 0 then M0,n/S n is a fine moduli space, provided either

(8.75.3.a) or (8.75.4.c) holds.
(8.76.3) If char k > 0 and we are in (8.75.3.b+4.a) or (8.75.3.b+4.b), then

M0,n/S n is not even a coarse moduli space. In fact the categorical moduli
space (1.9) is Spec k.
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Proof Let
(
PS → S ,D

)
be as in (8.75.3). If D is flat over S , then choosing

an open cover S = ∪ j U j and isomorphisms PU j ' P
1 × U j gives mor-

phisms φ j : U j → Hilbn(P1). Changing the local trivialization changes the
φ j by an element of Aut(P1). Thus the φ j glue to give a global morphism
φ : S → M0,n/S n.

Since PS → S is smooth, a relativelyQ-Cartier divisor D is Cartier by (4.39)
if char k = 0. The same holds in any characteristic if the base is weakly normal
by (4.41). In both cases D is flat over S , showing (1) and (2).

The proof of (3) relies on the following construction.
Let k be a field of characteristic p > 0, B a smooth projective curve over k

and S a k-variety, for example a smooth curve. Let ∆ be an effective, relative
Cartier divisor on B × S → S . Any universal homeomorphism τ : S → T
(10.78) factors through a power of the Frobenius (for some q = pm) as

Fq : S
τ
−→ T

τ′

−→ S .

Taking product with B we get τB : B× S → B×T and τ′B : B×T → B× S . Set
∆T := (τB)∗∆ on B× T . If τ is birational, the coefficients of ∆T are the same as
the coefficients of ∆. Also, ∆T is Q-Cartier since q∆T = (τ′B)∗∆. However, the
Cartier index may get multiplied by q. We have thus proved the following.

Claim 8.76.4 If (B×S ,∆)→ S is in our moduli problem using (8.75.3.b), then
so is (B × T,∆T )→ T . �

A typical example with concrete equations is in (4.12).

Assume now that we work in the settings (8.75.3.b+4.a) or (8.75.3.b+4.b).
Let Mn be the categorical moduli space. If

(
P1 × S ,D

)
is a family of n points

on P1, then we get a moduli map φ : S → Mn. By the above construction, for
any τ : S → T we get a factorization φ : S

τ
→ T→Mn.

Corollary 8.76.5 If the universal push-out of all the above τ : S → T is S →
Spec k, then the moduli map φ : S →Mn is constant.

Instead of proving this in general, we work out some typical examples.

Example 8.76.6 The map Spec k[x]→ Spec k
[
(x − c)r, (x − c)s] is a birational,

universal homeomorphism for any (r, s) = 1 and c ∈ k. The universal push-out
of all of them is Spec k[x]→ Spec k; cf. (10.87).

Indeed, if f (x) ∈ k
[
(x− c)r, (x− c)s] vanishes at c then it has a zero of multi-

plicity ≥ min{r, s}. Thus only the constants are contained in the intersection of
all of them.

This settles (8.75.3.b+4.a), but the curves Spec k
[
(x − c)r, (x − c)s] are

not seminormal if r, s> 1. Over an algebraically closed field k, there are
two-dimensional seminormal examples.

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010


346 Moduli of Stable Pairs

Example 8.76.7 Set Rq := k[x] + (yq − x)k[x, y] ⊂ k[x, y]. Rq is seminormal,
but not weakly normal and its normalization is k[x, y]. The conductor ideal is
(yq − x)k[x, y]. It is a principal ideal in k[x, y], but not in Rq.

The map Spec k[x, y] → Spec Rq is birational. It is again easy to check that
the universal push-out of all of them is Spec k[x, y] → Spec k[x]. Thus if we
combine the maps Spec k[x, y] → Spec Rq with all linear coordinate changes,
then the universal push-out is Spec k[x, y]→ Spec k. �

https://doi.org/10.1017/9781009346115.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.010

