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Abstract

The widespread use of finite-element analysis (FEA) in industry has led to a large accumulation
of cases. Leveraging past FEA cases can improve accuracy and efficiency in analyzing new
complex tasks. However, current engineering case retrieval methods struggle to measure
semantic similarity between FEA cases. Therefore, this article proposed a method for measuring
the similarity of FEA cases based on ontology semantic trees. FEA tasks are used as indexes for
FEA cases, and an FEA case ontology is constructed. By using named entity recognition
technology, pivotal entities are extracted from FEA tasks, enabling the instantiation of the
FEA case ontology and the creation of a structured representation for FEA cases. Then, a
multitree algorithm is used to calculate the semantic similarity of FEA cases. Finally, the
correctness of this method was confirmed through an FEA case retrieval experiment on a
pressure vessel. The experimental results clearly showed that the approach outlined in this article
aligns more closely with expert ratings, providing strong validation for its effectiveness.

Introduction

As a widely used numerical calculation method in the engineering field, finite-element analysis
(FEA) technology is of great importance for improving innovation ability, ensuring product
quality, and reducing production costs (Hughes, 2012). The FEA process often involves the
following stages: problem identification, preprocessing, computation, and post-processing
(Wriggers et al., 2007; Xu et al., 2019). At each stage of the analysis process, engineers need to
determine many types of decision-making tasks, such as classifying problems, selecting compu-
tation model parameters (e.g., geometric simplification, and finite element type and size),
determining the numeric algorithm type and parameters, and evaluating the numeric results
(Wriggers et al., 2007). The accuracy and reliability of the FEA result are highly dependent on the
quality of the decisions made at each stage of the analysis process.

One approach to improve the quality of decision-making is to obtain decision-making-related
references from existing solved cases (Zhan et al., 2010; Badin et al., 2011; Numthong and Butdee,
2012; Kestel et al., 2019). The references include how to simplify the geometric model, how to
determine the type and size of the finite element, how to determine the boundary conditions, and
how to select the analysis algorithm. Therefore, the decision-making results in solved cases can
help the decision-making process of the current analysis task.

The case-based reasoning (CBR) method that models the process of solving a problem by
establishing the analogy relation between the current problem and previously solved problem(s)
is proposed to facilitate the use of information from previously solved FEA cases (Wriggers et al.,
2007; Zhao et al., 2009; Khan et al., 2014; Khan and Chaudhry, 2015). Wriggers et al. (2007)
proposed a knowledge-based system for the intelligent support of the preprocessing stage of
engineering analysis in the contact mechanics domain. Khan and Chaudhry (2015) proposed an
adaptive FEA-integrated system based on the CBR method for mesh selection. Wang and Rong
(2008) presented a CBR method for welding fixture design. According to the above research
results, the key tasks of the CBR-based FEA process are representation in terms of FEA cases and
retrieval of solved cases that are most similar to the current case.

One of the most promising approaches to represent the FEA case is through the use of
ontologies. Yoshioka et al. (2004) demonstrated a physical ontology-based support system for
knowledge-intensive engineering called the Knowledge-Intensive Engineering Framework to
integrate multiple engineering models and allow more flexible use of them. Sun et al. (2009)
proposed an ontology-based framework that included a hierarchy transfer approach and a three-
stage automated FEA method for automated FEA to help users to define the appropriate finite
elementmodel more easily. Grosse et al. (2005) proposed a formal set of ontologies for classifying
analysis modeling knowledge to enable robust knowledge sharing. Xu et al. (2019) proposed that
FEA modeling processes can be expressed as the entities and relations among entities in an
ontology tree to obtain the FEA script grammar. These results suggest that the FEAprocess can be
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modeled as ontologies in terms of a set of concepts within a domain
and the relationships between them.

Another key technology of the CBR-based FEA system is the
similarity estimation between FEA cases. A common similarity
retrieval method in the engineering field is to express the case using
the word level-based method,, such as keyword mathching (Salton
et al., 1975), feature vectors (Korenius et al., 2007), topic extraction,
(Lin, 2020) and vector space model (VSM) (Figueiras et al., 2012),
and then calculate the similarity between the two vectors using the
Euclidean or cosine distance (Hu et al., 2013; Ke et al., 2020). The
elements in the vector are either keywords or entities within the
ontologies. Similarity measures based on VSMhave been applied to
a variety of tasks, such as the retrieval of information in collabora-
tive engineering projects (Figueiras et al., 2012), relaxed lightweight
assembly (Hu et al., 2013) customer demand data for remanufac-
turing processes (Ke et al., 2020), and the data in IoT (Internet of
Things) (Sang et al., 2019). However, this type of calculation
method lacks the structure information between entities, making
it difficult to measure the similarity between the two cases from a
semantic point of view. Another option to define similarity meas-
ures for cases is through the use of embeddings (Zou et al., 2020).
For example, Xu et al. (2021) used the word2vec model to obtain
semantic information from fault data for fault classification.
Cordeiro et al., (2019) proposed that the doc2vec model can be
used to measure the semantic similarity of text in the oil and gas
domain. Cai et al. (2019) proposed a deep learning and word
embedding method to represent industrial alarm data to predict
alarm information. Reimers and Gurevych (2019) used the
Sentence-BERT (SBERT) model to improve the document retrieval
system for the supply chain domain (Sant Albors, 2021). Further-
more, with the advancement of cross-modal embedding techniques
(Rehman et al., 2018, 2019), embedding themultimodal data within
cases can also lead to further enhancements in case retrieval per-
formance. However, although the embedding method can express
context information, structure information between objects in cases
is not considered in the similarity calculation.

For these reasons, a semantic similarity calculation method for
FEA cases based on ontology is proposed that aims at resolving the
difficulty of representing and retrieving solved FEA cases. Consid-
ering that FEA models are often encapsulated and difficult to
represent directly, the FEA task is used as the index for the FEA
case. The FEA tasks are expressed structurally using ontologies.
Through instantiating the ontology based on the named entity
recognition (NER) method, the structural FEA tasks are con-
structed automatically. These structural FEA tasks are organized
into a semantic tree. By comparing the structural similarity of the
semantic trees, a similarity comparison algorithm for FEA cases is
proposed. Finally, the most relevant FEA cases can be obtained by
comparing the structural similarity of the semantic trees.

Methods

With the accumulation of FEA cases, how to identify the most
similar cases from these solved cases has become one of the key
technologies in the CBR-based FEA system. An FEA case mainly
includes the data of the FEA modeling process that consists of the
FEA task, FEA solution, FEA model, and FEA result (Saarelainen
et al., 2014; Joshi, 2004). The FEA task is the textual description of
the analysis problem, which includes the mechanical device classi-
fication, aim of the analysis, contact pair identification, material
properties definition, and contact problem properties definition.

Therefore, the description of the FEA task can be considered as a
requirement of a specific FEA modeling process, and this descrip-
tion is used as the index for the FEA case.

The FEA task description is typically text described in natural
language, which needs to be transferred into a structured represen-
tation. Based on the structured representation of the FEA task
description, an FEA case retrieval method is proposed. Figure 1
provides an insight into the overall process. In the first step, the
ontology of the FEA modeling process is constructed and then the
structured representation of the FEA task description is obtained by
instantiating the ontology according to the task description. Finally,
based on semantic tree technologies, a similarity comparison algo-
rithm is proposed.

Representation of the description of FEA tasks

The description of FEA tasks is generally in the form of natural
language, which is particularly applicable to large-scale enterprises
where the process of design and analysis requires the collaboration
of several departments (Saarelainen et al., 2014; Nosenzo et al.,
2014), and to the engineering field where the analysis results need to
be checked, such as pressure vessels (Gupta and Vora, 2014;
Niranjana et al., 2018). To form a representation that can be
processed by a computer, first, an ontology of the FEA modeling
process is constructed, then text processing technology is used to
obtain the entities of the task description, and finally, the ontology
is instantiated to form a structured description of the FEA task
based on the entities.

An ontology is a clear and accurate description of a conceptu-
alization (Uschold andGruninger, 1996). An ontology can be easily
transformed into a storage form that can be understood by a
computer. Additionally, an ontology can express domain know-
ledge through the semantic definition of terms and axioms. Many
research results have demonstrated that an ontology can be used to
formally define the FEA task (Wriggers et al., 2007; Sun et al., 2009).
Figure 2 shows the ontology of the FEA task. The ontology is
divided into a set of classes, where each class represents information
about the product, the aim of the analysis, the material, and the
working conditions. The Product information class describes the
analysis object, including its equipment name, part name, and
design requirements. The Analysis aim class describes the purpose
of FEA in the case, such as stress analysis or fatigue analysis. The
class of Material and Physical data describes material information
and its physical data about the analysis object, such as Material
designation and Material characteristic. The Working condition
class can be subdivided into the Design condition and Operating
condition classes. The Design condition represents the condition
used in the product design stage, such as design pressure or design
temperature. The Operating condition represents the various loads
and constraints that act on the analysis object during the operating
state. The class hierarchy forms the ontology, which defines the
general terms and state relations between the classes of the FEA
modeling process.

The semantic representation of the FEA task of the buffer tank of
a reciprocating piston compressor is shown in Figure 3. In the
figure, each entity is obtained by instantiating the ontology accord-
ing to the textual FEA task of the buffer tank.

Structural representation of an FEA case

Based on the ontology of the FEA task, the structural description of
the FEA problem could be represented by instantiating the
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ontology. In the instantiation process of the FEA task, the specific
entities that are contained in the textual description of the analysis
problem are added to the classes of ontology. As described in the
previous section, these classes are the leaf nodes of the ontology,
which include Equipment name, Part name, Analysis requirement,
Analysis aim, Material designation, Material characteristic, Design
condition, and Operating condition. To accurately identify the
entities in the textual description and their subordinate class,
the NER method is adopted to establish the connection between
the entity and the class of the ontology.

In this study, the Bert-BiLSTM-CRFmodel (Xie T et al., 2020) is
adopted to instantiate the FEA task ontology. Initially, the labeled
corpus is transformed into the word vector through the BERT
pretraining language model. Then the word vector is input into

the BiLSTM module for further processing. The conditional ran-
dom field (CRF) module is used to decode the output result of the
BiLSTM module to obtain a predictive annotation sequence.
Finally, each entity in the sequence is extracted and classified to
complete the entire NER process.

The BIO mode is used to label entities, that is, B (Begin)
represents the starting position of an entity, I (Inside) indicates
that the word is inside the entity, and O (Outside) indicates that the
word does not belong to any entity. For each entity, types are also
designed to describe the entity. All entity types are listed in Table 1.
These entity types are the classes corresponding to the leaf nodes in
the FEA task ontology. Specifically, the entity types in the product
information are “Equipment name,” “Part name,” and “Design
requirement.” The entity types of the material and physical data

FEA 

report
FEA 

report

FEA scheme Structural FEA task

FEA task
The  working pressure   of the  

exhaust buffer tank   of the  

compound compressor   is 2MPa, 
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Figure 1 Framework of FEA case retrieval.

Material and 

physical data

FEA task

Analysis 

aim

Working 

condition

Product 

information

Material 

characteristic

Design  

condition

Operating 

condition

Design 

requirment

Material 

designation

Equipment 

name

Part 

name

Property

Value

Concept

Value

Relationship MeasurementUnit

Figure 2 Ontology of FEA task.
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are “Material designation” and “Material characteristic.” The entity
types of the working conditions are “Design condition” and “Oper-
ating condition.”

For instance, B-PN indicates that the entity is the starting word of
theProduct name entity. For the sentence “Carrying out stress analysis
on the exhaust buffer tank”, the entity labels are shown in Table 2.

Finally, the identified and classified entities of the FEA problem
description are added as individuals to the class of the FEA task
ontology. Consider the representation of the description of the FEA
problem of the buffer tank as an example, as shown in Figure 4. The
top panel of Figure 3 shows the FEA task ontology. Additionally, the

bottom panel of Figure 4. shows the textural description of the FEA
problem of the buffer tank (part). After NER, the entities are
identified, as shown in the green box, and the value of the entity
is shown in the orange box.

Semantic comparison method

After the FEA task description is instantiated according to the FEA
ontology, the tree-structured representation of the task description
is obtained. To obtain the semantic similarity comparison between
two task descriptions, a comparison method is proposed based on
the multi-tree structure (Hajian B et al., 2011).

Suppose that two given trees T1 and T2, as shown in Figure 5a
and Figure 5b, respectively, represent two FEA task descriptions.
The main steps in comparing the similarity of the two trees are as
follows:

(1) Merge T1 and T2 into tree Tm, as shown in Figure 5c.
(2) Obtain the similarity of T1 and T2 according to the relation-

ship between each node of tree Tm.

The algorithm for merging two trees is shown in Algorithm 1.
First, treeTm is createdwith empty nodes. Then, each nodeNi

1 inT1
is selected from bottom to top, andNi

1 is compared with each node
in tree T2. If Nj

2 is the same as Ni
1 in T2, nodes Ni

1 and Nj
2 are

combined into a new node. The new node and its child nodes are
added to tree Tm. Finally, the merged tree Tm is returned, as shown
in Figure 5c dotted (solid) white nodes only come from T1 (T2), and
blue nodes belong to the two trees.
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Figure 3 Semantic representation of the FEA task of a buffer tank.

Table 1. Labels of the FEA task description

Attribute Abbreviations Individual

Equipment name EN Reciprocating piston
compressor

Part name PN Elliptical head

Design requirement DR Designed life

Analysis aim AA Stress analysis

Material designation MD Q345R

Material
characteristic

MP Poisson’s ratio

Design condition DC Design pressure

Operating condition OC Working pressure
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Formulas for calculating node combination value
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Table 2. Example of entity labels

Sentence Carrying out stress analysis on the exhaust buffer tank

Label O O B–AA I–AA O O B–EN I–EN I– EN
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Algorithm 1. Merge two trees

Input: trees T1 and T2
Output: merged tree Tm

T1 _nodes T1.all_node()
T2_nodes T2.all_node()
T1_nids T1_nodes.identifier
T1_nids T2_nodes.identifier
Tm T1.tree()
add_node List()
FOR T1_nid in T1_nids:
IF T1_nid in T2_nids:
Tm _node Tm.get_node(T1_nid)

ELSE:
IF T1_nid not in add_node:
parent_nid T1.parent(T1_nid)

Tm _node Tm.get_node(parent_nid)
NT T1.subtree(T1_nid)
NT_nodes NT.all_node()
NT_nids NT_nodes.identifier
add_node add_node + NT_nids
Tm.paste(Tm _node, NT)

RETURN Tm

After the two trees are merged, the similarity between the FEA
task descriptions represented by the two trees can be calculated
according to the merging results of the two trees. The leaf nodes on
the merged tree are derived from the entities of the FEA task
document, and the internal nodes on the merged tree represent
the conceptual description of the FEA problem. Therefore, each
node of the merged tree can be traversed according to the bottom-
up process, and the corresponding combination value of each node
can be calculated in turn. The combination value of the root node of
the merged tree is the similarity result.

The combination value of nodes in the merged tree is calculated,
respectively, according to their node types. There are three types of
nodes in the merged tree: leaf nodes, internal nodes, and the root
node. Additionally, the value of the FEA task can be represented as
follows: vssstands for a single scalar value; vmmis a min–max scalar
value that has a maximum scalar value ( vmax

mm) and minimum scalar
value ( vmin

mm); vstr is a string-type value. The single scalar value is the
most widespread, such as pressure, temperature, and so forth The
range value represents the minimum and maximum type value
needed to describe a boundary such as 5–35 °C. The string-typed
value is used for non-dimension-related values such as material
designations.

When the type of node ni belongs to the leaf node of the merged
tree, the combination value is calculated using Eq. (1). Node ni on
the merged tree is from tree T1 and tree T2, which indicates that the
two nodes of tree T1 and tree T2 are exactly the same; hence, the
combination value of node ni is set to 1. When the nodes are
only from tree T1 and tree T2, the combination value of the node
ni is set to 0:

V1 nið Þ= 1, if ni ∈T1 andni ∈T2

0,otherwise:

n
(1)

When the type of node ni belongs to the internal node of the
merged tree, the combination value V2(ni) of node ni is calculated
using Eqs. (2) and (3). The calculation of V2(ni) includes two parts.
The first part is calculating the average of the combination values of

all the children’s nodes of ni.The second part is related to the type of
node ni; the valueV

1(ni) in Eq. (2) is given by Eq. (1). In Eq. (2), α is
the adjustment factor, in this article αwas set to e= 2.71. Theweight
between node ni and node ci is calculated using the function weight
(ni, ci) in Eq. (3), which indicates the importance of the relationship
between nodes to the similarity calculation. Intuitively, the node on
the merged tree belongs to tree T1 and tree T2, and the greater the
depth of this node, the greater the combination value of this node.
Additionally, the greater the depth of the node on the merged tree,
the smaller the average value passed to the node by each child node
of the node:

V2 nið Þ= 1� 1

αheight nið Þ

� �
A nið Þ+ 1

αheight nið Þ

� �
V1 nið Þ (2)

A nið Þ= 1
∣children nið Þ∣

X
∀cj ∈ children nið Þ

weight ni,cj
� �

V2 cj
� �

: (3)

The height function of ni in Eq. (2) recursively calculates the
height of node ni, and the calculation function is given by

height nið Þ= 0, if ni is leaf  node
max height cið Þ½ �,ci ∈ children nið Þ, otherwise:

n
(4)

When the type of node ni belongs to the root node of themerged
tree, the combination value can be obtained by calculating the
average value of the combination value of each child node of the
root node using Eq. (3). The combination value of the root node is
the similarity between tree T1 and tree T2.

Additionally, the measuring equations (Mun D et al., 2011)
are defined, as shown in Eq. (5), to calculate the similarity of the
values.

Sim v1,v2ð Þ
1�

vss1j j� vss2j jj j
vss1 + vss2j j if vss1 ≠ vss2

1, if vmin
mm ≤ vss ≤ vmax

mm

1, if vstr1 = vstr2
0, otherwise

8>><
>>:

(5)

Algorithm 2. Similarity of the two trees based on their merged tree

Input: trees T1 and T2, merged tree Tm

Output: similarity of T1 and T2

node ni
stack empty stack
lastNodeVisited null
while not stack.isEmpty() or node ≠ null
if node ≠ null
stack.push(node)
node node.left
else
peekNode stack.peek()
if peekNode.nextchild ≠ null and lastNodeVisited ≠ pee-

kNode.nextchild
node peekNode.nextchild
else
if peekNode == LeafNode:
if LeafNode.value ≠ null:
V[peekNode.value] = Eq. (5)
V[peekNode] = V[peekNode.value] * Eq. (1)
else:
V[peekNode] = Eq. (1)

elif peekNode == RootNode:
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V[peekNode] = Eq. (2)
else:
V[peekNode] = Eq. (3)
lastNodeVisited stack.pop()

The algorithm for the similarity of two trees based on their
merged tree is shown in Algorithm 2. The algorithm traverses each
node of the merged tree in turn according to the post-order
traversal process and then calculates the combination value. The
combination values are propagated from bottom to top in layers on
the merged tree to integrate the relationship between the entity and
the ontology into the similarity calculation; that is, if two trees
representing FEA task descriptions have different entities, but these
entities belong to the same class in the ontology, the similarity of the
two trees can be improved through the above calculation process.

The combination values and the calculation formulas of the nodes
in the merged tree Tm are shown in Figure 5c.

Example

Case study

The proposed method was validated using the typical pressure
vessel of the reciprocating piston compressor (Figure 6) as an
example. The reciprocating piston compressor is one of the most
widely used items of process equipment in the field of natural gas
compression (Ribas et al., 2008; Farzaneh-Gord et al., 2015).
Among the equipment in the reciprocating piston compressor,
the buffer tank is the most common structure used to reduce the
pulsation of gas flow. During the design process for the buffer tank
using the design-by-analysis methodology, the preliminary design

Figure 6 Geometry model of the buffer tank.
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(including the product model, material, and dimensions) needs to
be continuously adjusted according to the result of the FEA, such as
changing the material, adjusting the wall thickness, and optimizing
the structure.

The basic FEAmodeling process can be divided into three phases:
preprocessing, solving, and post-processing. Specifically, the analyst
is required to perform operations that include constructing the
geometry model, simplifying the model, ensuring the analysis
method, setting the boundary according to the working condition,
setting the material, meshing, choosing the solver, outputting the
analysis result data, evaluating the results according to standards, and
writing the analysis report. Several analytical operations are involved
in decision-making, such as simplifying the model, choosing the
analysis method, meshing, and choosing the solver. These analytical
operations require a great deal of accumulated expertise, which
makes it possible for analysts to improve efficiency and reduce the

difficulty of analysis modeling by reusing the decision knowledge of
FEA modeling in similar FEA cases. To retrieve a similar FEA case,
the method proposed in Section title “Methods” is adopted to
structurally represent the textual description of the FEA task for
the buffer tank. The textual description is shown in the bottom panel
of Figure 7. After the NER method is applied to instantiate the FEA
task ontology according to the textual description of the FEA task, a
structural FEA task of the buffer tank is generated, as shown in
Figure 8. Subsequently, the analyst can use the represented FEA task
to retrieve a similar FEA case.

Based on the retrieval result, the FEA operations of the retrieved
case can provide references for the new task (Figure 8). For instance,
the solving method of the new task can consider using the sparse
director solver, and the element type of Solid82 can also be con-
sidered for the new task. Therefore, retrieving the case similar to the
current task from the existing cases” library can provide important

The  working pressure  of the  exhaust buffer 

tank  of the  compound compressor  is 2MPa,
the  minimum working pressure is   0MPa  , 
the  design life  is  10 years, ... . Please try to 
perform the  fatigue analysis  on the vessel.

A New FEA task

Decision-making in the FEA process

Axisymmetric 
model

Smart mesh; 
Solid82

Elastic stress 
analysis method

Stress 
assessment

Sparse director 
solver

FEA 
case 

retrieval

Symmetrical 
constraint

Existing solved FEA cases

 The design pressure P of the exhaust buffer tank of reciprocating  compressor is 

20.1MPa, the design temperature T is 150 , The material of the cylindrical shell 

is Q345R, ... , Please try to perform the stress analysis on the buffer tank.

Retrieval result

FEA modelling content

FEA result

Geometric 
modelling

Choosing 
analysis method

Meshing

Applying 
boundary

Solving

Post-processing

FEA model of the case

Simplifying the model

Choosing analysis method

Meshing

Applying the boundary

Choosing the solver

Checking method

Methods and 
operations

FEA modeling  
process

Figure 8 Existing solved case provides references for a new analysis task.

Table 3. The principle for scoring the similarity of FEA cases

Degree of similarity Principle Value of similarity

Similar The analysis aim is the same. The product information and the working condition are almost the
same. (Appendix case 4)

(0.75–1)

Generally similar The analysis aim is almost the same, and there are certainly differences in the content of the product
information, the working conditions or the materials, etc. (Appendix case 388)

(0.45–0.75)

Dissimilar The two FEA cases are different, especially in terms of the product information and the analysis aim.
(Appendix case 110)

(0–0.45)

Table 4. Average error of each task and total average error

Method Total case pairs Similar case pairs Generally similar case pairs Dissimilar case pairs

SBERT 0.4739 0.2705 0.2045 0.6015

VSM 0.2403 0.3919 0.0270 0.3270

Multitree 0.0790 0.3378 0.0216 0.0925

Multi–tree+weight 0.0549 0.0125 0.0702 0.0502

8 Xuesong Xu et al.

https://doi.org/10.1017/S0890060424000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000040


references for the decision-making of the FEA process.(Detailed
examples of reusing retrieved FEA cases are provided in Tables A2
to A4 of the Appendix).

Performance of the similarity between FEA cases

To validate the proposedmethod for retrieving FEA cases, 396 FEA
cases in the pressure vessel field were built, where each case con-
tained a problem description, FEA scheme, FEA model, and FEA
result. Additionally, the problem description of each FEA case was
structurally represented and used as the index of the case. The
typical FEA cases used in this study are shown in the Appendix.

Considering the difficulty of directly evaluating the pros and
cons of FEA case semantic retrieval methods, a dataset was con-
structed, which included several FEA case pairs. These FEA case
pairs were obtained by matching the FEA cases in pairs randomly.
Specifically, all the 396 FEA cases were cross-matching and dupli-
cation eliminated, and 78,210 FEA case pairs were obtained (all data
set used in this article can be downloaded from https://github.com/
song885280/FEASimData). Then, the similarity of the FEA case
pairs was scored by four graduate students in the mechanical
engineering department who had FEA capabilities. The similarity
of each FEA case pair was scored in three degrees: similar, generally
similar, and dissimilar. The degrees of similarity are scored accord-
ing to the reusability of the retrieval FEA cases. The reusability of
the FEA cases was considered to be the most relevant for the
analysis purpose, followed by product information and working
conditions. Table 3 shows the principle for scoring the similarity of
FEA cases. We use a real number between 0 and 1 to measure the
similarity of cases. That is, the number between 0.75 and 1 repre-
sents “Similar”, the number between 0.45 and 0.75 represent “Gen-
erally similar”, and the number less than 0.45 and greater than
0 represents “Dissimilar”.

The average error (Manning et al., 2010)was used to evaluate the
retrieval performance. The formula is as follows:

E =
1
N

XN
j= 1

Sj�Spj

��� ���, (6)

where E is the average error, N is the number of case pairs, j is the
index of the case pairs, j = 1, 2, 3,…, N; S is the case similarity
obtained by the algorithm; and Sp is the case similarity scored by
the 4 graduate students in Mechanical Engineering. They all have
obtained the qualification of FEA granted by the Zhejiang Univer-
sity of Technology.

In order to compare the retrieval performance, three types of
retrieval methods were performed: (1) the VSM (Figueiras et al.,
2012); (2) the method of sentence BERT (SBERT) 2013 and (3) the
method of multitree without weight. The performance of these
methods is shown in Table 4, and the relative performance of each
retrieval model is compared graphically in Figure 9. The average
errors demonstrate that the VSM outperforms the SBERT and the
multi-tree outperforms theVSM. The proposedmethod (multi-tree
with weight) outperforms the method of multi-tree without weight.
The weights (Eq. 3) of four sub-nodes of the root node are set as
follows: 0.25, 0.5, 0.075, and 0.175. The main reason for the high
performance of themulti-tree is themethod’s ability tomeasure the
similarity between FEA cases at the semantic level. The semantic
representation of FEA cases can be expressed by instantiating FEA
ontology. On the other hand, this result points out the limitation of
keyword-based searches of FEA cases. In addition, the Bert-based
method cannot achieve a better method when three are no large-
scale training corpus.

Discussion

This article proposed to index the textual description of the analysis
problem to retrieve the FEA cases. Compared with the existing
retrieval methods, VSM and SBERT, our method can not only
improve the efficiency of FEA case retrieval but also improve the
accuracy of FEA case retrieval. VSM is a widely usedmethod for text
retrieval in the engineering domain (Figueiras et al., 2012; Hu et al.,
2013; Ke et al., 2020; Sang et al., 2019). With the development of
natural language processing technology, The STOAmodel of SBERT
(Reimers andGurevych, 2019) has achieved superior performance in
many tasks.The SBERTcan embed the text into the vector,which can
be used to measure the similarity of text. However, the SBERT does

Figure 9 The average error of eachmethod for the similarity measurement of FEA cases. VSM represent themethod of vector spacemodel; SBERT represent themethod of sentence
BERT; Multi_Tree represent the method of muilt-tree without weight; Multi_Tree_Weight represent the method of muilt-tree with weight.
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not work well in this article. The reason is that the SBERT model
needs a large-scale training corpus, whereas the domain covered in
this article lacks the training corpus. That is why we implement an
ontology-based method to measure the similarity of FEA cases. To
avoid the complexity of the ontology for the complete FEA cases,
which include analysis problem, geometric model, and analysis
report, we build the ontology of the FEA problem description. The
FEA problem descriptionmainly includes the analysis objectives, the
materials, and the working conditions (Wriggers et al., 2007; Khan
and Chaudhry, 2015). The text description of analysis problems can
be expressed semantically by instantiating FEA ontology. This rep-
resentation method can accurately extract the key variables that
describe the FEA analysis process contained in the text description,
and form a tree structure index according to the FEA ontology. Some
related research (Han et al., 2008; Morinaga et al., 2005; Kallmeyer
and Osswald, 2013; Plank and Moschitti, 2013) has shown that the
tree structure can fuse semantic information. The tree structure of the
FEA case not only contains the keywords but also represents the
relation between the keywords. Certainly, if the data of the CAD
model can be integrated into the index description, we believe it can
improve the accuracy of FEA case retrieval.

We also designed a simple algorithm to calculate the similarity
between two FEA cases based on the multi-tree data structure. The
multi-tree measures similarity based on hierarchical relations that
exist between attributes of the entities in an ontology. This method
provides a useful tool to embed the domain knowledge of domain
engineers into the retrieval model. The main reason that our
method can improve retrieval performance is that the key factors
affecting the similarity of FEA cases are embedded in the weight of
multi-tree nodes. It should be noted that these weights are currently
given by domain experts. In the follow-up study, we will consider
using the machine learning algorithm to automatically calculate
these weights. In addition, although the source language is assumed
as Chinese, the proposed method is language-independent. We
have translated all the corpus of FEA cases into English and given
the results of case similarity to verify the generalizable of our
method. The experiment results (Figure 9b) show that our method
has also obtained good performance in these English datasets.

The purpose of FEA case retrieval is to reuse the cases. The
existing research on FEA case reuse was focused on automatic FEA
modeling by the method of CBR (Wriggers et al., 2007; Numthong
and Butdee, 2012; Khan and Chaudhry, 2015). However, the appli-
cation of these methods is highly dependent on the relevance of the
case to themodeling task. For example, it is difficult to construct the
FEA model by CBR if the geometric models of the case and the
modeling task are highly dissimilar, which has prevented the appli-
cation of the FEA case reuse methods. Therefore, this article
proposes to improve the reusability of FEA cases by retrieving the
FEA cases efficiently and accurately. In a retrieved FEA model,
many components can be reused, such as model simplification
methods, meshing methods, and post-processing methods, and
so forth After obtaining the relevant case, the analyst can quickly
complete the current FEAmodeling task by consulting the reusable
information in the cases. The proposed approach not only exploits
the value of the knowledge contained in the FEA cases but also can
offer support to less experienced simulation users.

Conclusion

This article proposed an approach for FEA case retrieval by taking
the textual description of the analysis problem as the index. The

analysis problem document generated in the early analysis stage
contains abstract analysis descriptions. The structural analysis
problem is expressed semantically by instantiating the FEA ontol-
ogy. Based on the tree structure of the analysis problem, the
similarity between two FEA cases is calculated by using the multi-
tree-based similarity comparison algorithm. The experimental
results clearly show that the proposed approach outperforms the
compared existing retrieval methods. This demonstrated that the
semantic representations of the text description of analysis prob-
lems can be captured accurately by instantiating FEA ontology.

Although the proposed method has significant advantages in
FEA case retrieval, some limitations remain, such as (1) the textual
description of the analysis problem does not include the geometric
model, and (2) the ontologies involved in the experiment in the
study were constructed manually. Therefore, in follow-up research,
the retrieval of the geometric model will be integrated into case
retrieval to further improve the retrieval accuracy. Furthermore, the
automatic construction of structured FEA case ontology, as well as
conducting CBR or parameterizing FEA modeling on the retrieved
cases, are both areas worthy of in-depth research.
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Appendix

Table A1. Example of FEA case retrieval

Analysis object FEA cases Similarity

Compound compressor exhaust
buffer tank, the working pressure
is 2 MPa, the minimum working
pressure is 0MPa, the design life is
10 years, the container material is
Q345R, the density is 7850 kg m3,
the elasticity modulus is
2.1 × 1011 Pa, Poisson’s ratio is
0.3, yield strength 325 MPa,
tensile strength 510 MPa, fatigue
strength factor 0.8. Please carry
out the fatigue analysis of the
vessel based on the JB4732–1995
“Steel pressure vessel – Analytical
Design”.

Case 4: The maximum working pressure of the pressure–swing absorber is 0.25 MPa,
the minimumworking pressure is�0.1 MPa, the maximumworking temperature is
200 °C, the matter in the vessel is alcohol, and the equipment is insulated. The
material of the vessel is 0Cr18Ni9, the elasticity modulus is 2.0 × 105MPa, the
Poisson’s ratio is 0.3, the stress cycle of the adsorption tower is 1200s and the
design life is 15 years. Please carry out the fatigue analysis of this variable pressure
adsorption tower based on the ASME Boiler and pressure vessel Code Volume VIII–2
– Another Code for pressure vessel Construction.

Similar

Case 260: The working pressure is �0.098~0.40.4 MPa, the design pressure is
�0.1~0.60.6 MPa, the working temperature is 150°C, the design temperature is 180°
C, the corrosion margin is 0.15 mm, the material of the cylinder head is
0Cr18Ni916MnR, the material of the connection tuber is 0Cr18Ni920G, the
equipment is subjected to alternating load, the number of operations is 1 time 24 h,
the annual operation time is 8000 h. The strength calculation conditions are 180°C,
�0.1 MPa for external pressure and 0.6 MPa for internal pressure, and the Poisson’s
ratio is 0.3. Please use the JB4732–1995 Steel pressure vessels – Analytical Design to
carry out the fatigue analysis of the tar tank.

Similar

Case 388: The highest working pressure of the adsorption tower is 0.25 MPa, the
lowest working pressure is�0.1 MPa, the highest working temperature is 200°C, the
equipment material is 0Cr18Ni9, its elastic modulus is 2e5 MPa, Poisson’s ratio is
0.3, the material is ethanol. Adsorption tower pressure cycle time for 1200 s,
according to a year of work 360d calculation, the service life of 15 years, the number
of load cycle for 3.888 × 105 times. Please carry out the fatigue analysis of the
adsorption tower equipment based on the “ASME Boiler and pressure vessel Code
Volume VIII–2 – Another Code for pressure vessel Construction.”

Generally similar

Case 110: The material of the tank is set as Q235 steel with the following mechanical
properties: yield limit of 235 MPa, Poisson’s ratio of 0.25, elasticity modulus of
200 GPa and tensile strength of 370 MPa. wind speed of 36 ms for a 12–magnitude
typhoon is the basic wind speed. Based on the JB4732–1995《Steel pressure
vessels—Design by Analysis》, please perform the stress analysis and analyze the
effect of wind load, self–weight and internal oil pressure on the tank structure.

Dissimilar

12 Xuesong Xu et al.

https://doi.org/10.1017/S0890060424000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000040


Table A2. Example 1 of reusing retrieved FEA case

New FEA task Retrieved FEA case Similarity: similar

FEA task description: 

The pressure vessel is designed to operate within a pressure range of 0 to 3MPa and at a temperature 

of 150°C. It is subjected to 5000 cycles per year, with a design lifespan of 10 years. The vessel 

specifications are as follows: The material used for the vessel is Q345R, with a density of 7850kg/m³, 

an elastic modulus of 2.1 x 10¹¹Pa, a Poisson's ratio of 0.3, a yield strength of 325MPa, and a tensile 

strength of 510MPa. Conduct the stress assessment.

FEA 

task

The head nozzle of a certain pressure vessel operates at a pressure of 2.5MPa, with a design 

pressure of 2.75MPa. The hydraulic test pressure is set at 3.54MPa. It functions within a 

temperature range of 10 to 250°C, with a design temperature of 280°C. The materials used 

for the head, shell, and nozzle are all S30408 austenitic stainless steel, with the nozzle 

being a forged pipe. The elastic modulus of S30408 austenitic steel is 1.95e105MPa. The 

average linear expansion coefficients are respectively 1.725e-5/°C. The Poisson's ratio is 

0.3. Conduct the stress assessment and strength analysis of the structure.

Reusable analysis methods and operations:

Geometric Modeling: Symmetry Simplification

Analysis method: Elastic stress analysis method

Meshing: Smart partitioning using hexahedral elements with an element size control of 10mm.

Applying constraints: Apply constraints in the symmetric region of the vessel cross-section based 

on symmetry. Apply displacement constraints on the end face of the pipe joint.

Applying Loads: Apply internal pressure. Apply balanced loads on the end face of the pipe joint.

Post-processing: Generate stress distribution contour plots, equivalent von Mises strain distribution 

contour plots, and temperature distribution contour plots. Also, employ stress categorization 

methods, analyze stress paths, and assess stress classifications.

Assessment methods: Stress classification, primary stress intensity assessment, secondary stress 

intensity assessment, total stress intensity assessment.

FEA 

model/ 

FEA 

report
Comparison of analysis results:

Analysis result based on case resuing Original alalysis result
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Table A3. Example 2 of reusing retrieved FEA case

New FEA task Retrieved FEA case Similarity: similar

FEA task description:

The large opening of a pressure vessel cylinder adopts thick-walled forged pipe. The operating pressure 

of the equipment is 2.01MPa, the operating temperature is 220 , the design pressure is 2.35MP, and the 

design temperature is 265 . The body diameter of the cylinder is 3550mm, the wall thickness is 54mm, 

and the material is S30408. The elastic modulus of S30408 at the design temperature of 265 degrees 

Celsius is 1.781×105MPa, Poisson's ratio is 0.31, and the allowable stress of the material is 119.6MPa. 

Utilize the analysis and design method to analyze and check the large opening hole of the cylinder.

FEA 

task

This analysis pertains to an opening nozzle on a pressure vessel, featuring a vessel 

inner diameter of 2000mm and a wall thickness of 30mm. The nozzle has an outer 

diameter of 530mm, a wall thickness of 15mm, and an inner extension length of 

195mm. The outer transition has a fillet radius of 30mm, while the inner transition has 

a fillet radius of 15mm. The vessel is subjected to an internal pressure of 1.2MPa. The 

material used is 16Mn, with an elastic modulus of 2.0e5MPa and a Poisson's ratio of 

0.3. Performing the stress distribution within the opening nozzle region of the vessel.

Reusable analysis methods and operations:

Geometric modeling: Axisymmetric model

Analysis method: Elastic stress analysis method

Mesh: Smart mesh, Solid82

Applying constraint: symmetrical constraint, fixed constraint, displacement constraint

Solving: Sparse director solver

Post-processing: stress assessment, stress evaluation path, equivalent stress, stress Intensity, maximum 

principal stress

Assessment methods: Stress classification, primary stress intensity assessment, secondary stress intensity 

assessment, total stress intensity assessment.

FEA 

model

/ FEA 

report
Comparison of analysis results:

Analysis result based on case reusing Original alalysis result
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Table A4. Example 3 of reusing retrieved FEA case

New FEA task Retrieved FEA case Similarity: similar

FEA task description:

The tar tank is a horizontal, tilted, thin-walled, semi-jacketed container. The working pressure 

(inner cylinder / jacket) ranges from -0.098 to 0.4 MPa / 0.4 MPa. The materials for the 

cylinder body / heads are 0Cr18Ni9 / 16MnR, and the material for the nozzle is 0Cr18Ni9 / 

20G. The material's Poisson's ratio is assumed to be 0.3. The equipment is subjected to 

alternating loads, operating once every 24 hours, with an annual operating time of 8,000 hours. 

Strength calculations are based on a temperature of 180°C, and the calculated pressures are -

0.1 MPa for external pressure and 0.6 MPa for internal pressure. Using the finite element 

analysis method to conduct fatigue analysis on the tar tank, and evaluate the analysis results.

FEA 

task

The exhaust buffer tank of a certain reciprocating compressor has the following structural 

parameters: Temperature effects are not considered. The tank operates at a pressure of 2MPa, 

with a minimum operating pressure of 0MPa. The design lifespan is 10 years, taking into account 

maintenance and other factors, with operation planned for 360 days per year. The electric motor 

runs at a speed of 250 revolutions per minute, resulting in 2 compressions per rotation. The tank 

is constructed from Q345R material, with a density of 7850kg/m³, an elastic modulus of 2.1 x 

10¹¹Pa, a Poisson's ratio of 0.3, a yield strength of 325MPa, and a tensile strength of 510MPa. 

The fatigue strength factor is 0.8. The objective is to determine the tank's fatigue life, stress 

amplitude, safety factor within the design life, damage, and stress amplitude conditions.

Reusable analysis methods and operations:

Analysis method: Elastic stress analysis method

Mesh: smart mesh, hex dominant method

Applying boundary: fixed constraint

Solving: Sparse director solver

Post-processing: stress assessment, total deformation deformation maximum principal stress, 

stress Intensity

Fatigue analysis: life, damage, safety factor, biaxiality indication, equivalent alternating stress, 

fatigue sensitivity

Assessment methods: Stress classification, primary stress intensity assessment, secondary 

stress intensity assessment, total stress intensity assessment

FEA 

model/ 

FEA

report

Comparison of analysis results:

Analysis result based on case reusing Original alalysis result
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