
Preliminaries

Anyone familiar with `p spaces can follow a healthy 50 percent of this book; if
familiar with Lp spaces, the percentage rises to 75 percent. All the rest can be
found in the text. Anyway, since once a man indulges himself in murder. . . ,
a reasonable list of prerequisites that could help smooth reading would be
some acquaintance with classical Banach space theory; lack of fear when local
convexity disappears; a certain bias towards abstraction; calm when non-linear
objects show off and some fondness for exotic spaces. Better yet, perhaps,
would be if, when in doubt, the reader is reminded about:

Sets and Functions

If S is a set, 1S denotes the identity on S , while 1S stands for the characteristic
function of S . If S = {s} is a singleton, we write 1s instead of 1{s}. We write |S |
for the cardinality of S . Sometimes 2 denotes the set {0, 1}. The power set of
S is denoted P(S ) or 2S , and if |S | = ℵ then |2S | = 2ℵ. We will write Pn(S ) =

{a ∈ 2S : |a| = n} and fin(S ) =
⋃

n Pn(S ) for the family of all finite subsets of
S , while P∞(S ) denotes the family of all infinite subsets of S . The axiomatic
system in which we work is ZFC, the usual Zermelo–Fraenkel axioms for set
theory, including the axiom of choice. CH is the continuum hypothesis (2ℵ0 =

ℵ1), and GCH is the generalised continuum hypothesis (2ℵ = ℵ+ for all infinite
cardinals ℵ). Wherever additional axioms are assumed for some statement, the
axioms appear in square brackets before the corresponding statement. Given a
function f : A −→ B, its domain is dom f = A, and its codomain is codom f =

B. Given functions f : A −→ B and g : C −→ D, we write f × g : A×C −→
B × D for the function ( f × g)(a, c) = ( f a, gc). If f : A −→ B and g : A −→ D,
then ( f , g) : A −→ B×D is the function ( f , g)(a) = ( f a, ga). If f : A −→ B and
g : C −→ B then f ⊕ g : A × C −→ B is the function ( f ⊕ g)(a, c) = f a + gc
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2 Preliminaries

when this makes sense. Two functions f , g : S −→ R+ will be called equivalent
if there are constants C, c > 0 such that cg(s) ≤ f (s) ≤ Cg(s) for all s ∈ S .

Boolean Algebras

An algebra of sets is a non-empty subfamily of the family P(X) of all subsets of
a set X which contains the sets ∅ and X and is closed under finite unions, finite
intersections and taking complements. A Boolean algebra is a set B endowed
with two abstract binary operations of ‘union’ ∨ and ‘intersection’ ∧, an
operator of ‘complementation’ A 7→ Ac and two distinguished elements 0 and
1 which satisfy the same laws of the union, intersection and complements as
algebras of sets, with 0 in place of the empty set ∅ and 1 in place of the ambient
set X. More precisely, it is required that union and intersection be commutative
and associative, that each is distributive with respect to the other and that the
absorption laws A∨ (A∧B) = A and A∧ (A∨B) = A and the complementation
laws A ∧ Ac = 0 and A ∨ Ac = 1 are satisfied for every A, B ∈ B. The simplest
Boolean algebras are algebras of sets, and in fact, every Boolean algebra is iso-
morphic to some algebra of sets. A Boolean homomorphism f : A −→ B is a
function that preserves the Boolean operations and the distinguished elements.

The space of ultrafilters on A, denoted by ult(A), is the set of Boolean
homomorphisms A −→ 2, where 2 = {0, 1} has the obvious Boolean structure.
Clearly, ult(A) is a closed subset of 2A, hence it is a compact space, which is
called the Stone space of A.

Ordinals and Cardinals

Ordinals and cardinals are generalisations of natural numbers. Cardinals
represent equivalence classes of sets under the equivalence relation: there
is a bijective map between them. Ordinals represent equivalence classes of
well-ordered sets (a well order on a set is an order such that any subset has
a first element) under the equivalence relation that there exists a bijective
order-preserving map. The axiom of choice in the equivalent form of the well
ordering principle (every set admits a well order) means that every cardinal
is an ordinal. One can identify cardinals with some ordinals as follows: the
cardinal κ corresponds to the ordinal β of a set of cardinal κ that cannot be
bijected with any set having ordinal α < β. Every set S can be bijected with
a unique cardinal |S |, called the cardinality of S : the cardinal (and ordinal) of
any set with n elements is just n, the cardinal of N is called ℵ0 and its ordinal
(in its standard order) is ω. The set N ∪ {•} endowed with the well order in
which n < • for all n has cardinal ℵ0, but its ordinal is different from ω and is
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Preliminaries 3

usually called ω + 1. The cardinal of R is called c. Even while ignoring what
they actually are, ordinals can be constructed inductively with three rules:

• 0 is an ordinal.
• Given an ordinal α, there is an ordinal α + 1 or α+ called its successor.
• Given any set of ordinals, there is an ordinal that is the supremum of the set.

Ordinals that are not successors are called limit ordinals. If one replaces the
third rule by ‘any countable set of ordinals has a supremum’, one will never
abandon the realm of countable sets. Thus 0, 1 = 0+, 2 = 1+ and 3 = 2+ are
ordinals, as well as ω = sup{n : n ∈ N}, ω + 1 = ω+, etc. Sets of ordinals are
well ordered, and thus ordinals can be used to perform inductive arguments
even on uncountable sets. Precisely, to accept that a statement P(α) is valid
for all ordinals α, it is enough to prove that P(0) is true and then that if P(α)
is true for every ordinal α < β then P(β) is also true. Analogously, to define
a function F on all ordinals, it is enough to describe how to determine F(β)
once F(α) is known for all α < β. Given a cardinal κ, there exists a minimum
cardinal κ+ greater than κ. The first infinite cardinal is clearly ℵ0. The cardinal
ℵ+

0 is denoted ℵ1, and this notation continues by declaring ℵn+1 = ℵ+
n . The

cardinal ℵω is the supremum of the ℵn for n < ω, and so on. Given a cardinal
κ, 2κ is the cardinality of the product {0, 1}κ. It is always the case that κ < 2κ.
The cardinality of the continuum R is c = 2ℵ0 . The cofinality of a limit ordinal
α is the least cardinal λ for which there is a subset of α of cardinality λ whose
supremum is α. Thus, ℵω has cofinality ℵ0. The cofinality of c is strictly greater
than ℵ0.

Compact Spaces

Each compact space has an associated important cardinal, its weight, and an
important ordinal, its height. The weight is the smallest cardinal of a base of
open sets. To define the height, we explain the derivation process: the derived
set S ′ of a topological space S is the subset of its accumulation points. Given a
compact K, its αth derived space Kα is defined by transfinite induction K0 = K,
Kα+1 = (Kα)′ and Kβ =

⋂
α<β Kα for a limit ordinal β. The height is the

smallest ordinal (if it exists) α such that the αth derived set Kα is empty.
A compact space satisfying K′ = K is called perfect. A compact is said to be
scattered if each subset admits a relatively isolated point. When K is scattered,
its height exists and is always a successor ordinal. Ordinals can be viewed as
compact spaces when endowed with the order topology, defined as follows: a
fundamental system of neighbourhoods of α is formed by the sets (γ, α] for
γ < α. Limit ordinals are accumulation points, while successor ordinals are
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isolated points. The ordinal β has weight |β|, while the ordinals ωN have height
N +1 and ωω has height ω+1. A compact space is said to be zero-dimensional
or totally disconnected if its clopen (closed and open) subsets form a base of
the topology, or, equivalently, if, for every two different points x, y ∈ K, there
exists a clopen set A such that x ∈ A, y < A. Scattered compacta are totally
disconnected, while the Cantor set is totally disconnected and perfect. The
topological structure of zero-dimensional compacta is completely described by
the algebraic structure of their family of clopen sets through Stone duality: if
K is a compact space, then its clopen sets cl(K) form a Boolean algebra whose
Stone space is naturally homeomorphic to K itself when K is zero-dimensional.
See Note 4.6.1 for more on this duality.

Quasinormed Spaces and Operators

We will work with quasi and p-normed spaces (see Section 1.1), which can
be either real or complex. If there is no need to specify whether the ground
field is R or C then it will simply be K. A map f : X −→ Y acting between
linear spaces is called homogeneous if f (λx) = λ f (x). It is called positively
homogeneous if f (λx) = |λ| f (x) for every λ ∈ K and every x ∈ X. A map
f : X −→ Y acting between quasinormed spaces is bounded if there is a
constant K such that ‖ f (x)‖ ≤ K‖x‖ for all x ∈ X. The least possible K for
which this holds is denoted by ‖ f ‖ and provides a quasinorm on the space
B(X,Y) of bounded homogeneous maps X −→ Y . Linear continuous maps
are called operators, and the space of all operators X −→ Y is denoted by
L(X,Y), or just L(X) when Y = X. A (linear) isomorphism is an operator
admitting an inverse operator. We write X ' Y when the spaces X,Y are
isomorphic, i.e., there exists an isomorphism between them. We say that
they are C-isomorphic if there is an isomorphism u : X −→ Y such that
‖u‖‖u−1‖ ≤ C. The Banach–Mazur distance between X and Y is defined as
d(X,Y) = inf

{
‖u‖‖u−1‖ : u is an isomorphism between X and Y

}
. An isometry

is an operator u : X −→ Y such that ‖u(x)‖ = ‖x‖ for all x ∈ X. Isometries are
not assumed to be surjective! However, we will say that X and Y are isometric,
X ≈ Y , if there is a surjective isometry between X and Y . An ε-isometry,
ε ∈ [0, 1), is an operator u satisfying (1 + ε)−1‖x‖ ≤ ‖u(x)‖ ≤ (1 + ε)‖x‖ for all
x in the domain of u. The range or image of an operator u : X −→ Y is denoted
by u[X], and we say that u is an embedding when it is an isomorphism between
X and u[X], in which case we also say that u[X] is a copy of X in Y . We say
that Y contains a copy of X if there is an embedding u : X −→ Y . If u : X −→ Y
is an ε-isometry then u−1 is an ε-isometry from u[X] to X. A quotient map is a
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surjective operator that is open. A quotient map u : X −→ Y is called isometric
if ‖y‖ = infy=u(x) ‖x‖ for all y ∈ Y . If Y is a closed subspace of X then the
quotient quasinorm on the quotient space X/Y is ‖x + Y‖ = infy∈Y ‖x + y‖.
Let  : Y −→ X be an embedding, and let τ : Y −→ E be an operator. An
extension of τ is an operator T : X −→ E such that T  = τ. A λ-extension of
τ is an extension T such that ‖T‖ ≤ λ‖τ‖. Given a p-normed space X, we will
denote the set of all its finite-dimensional subspaces by F (X). Sometimes we
will use F (p) to represent the class of all finite-dimensional p-Banach spaces,
with F (1) shortened to F . We will denote the set of all its separable subspaces
by S (X). Sometimes we will use S (p) to represent the class of all separable
p-Banach spaces, with S (1) shortened to S .

In this book we will use an unusual notation: by the dimension dim(X) of
a quasi-Banach space X, we shall not mean the dimension of its underlying
vector space but rather the cardinal of a smallest subset spanning a dense
subspace.

Classical Spaces

Most of the time we work with quite honest spaces. Given a set I and
p ∈ (0,∞), we write `p(I) for the space of all functions f : I −→ K such that
‖ f ‖p =

(∑
i∈I | f (i)|p

)1/p
< ∞. This is a quasi-Banach space with the obvious

quasinorm and is a Banach space when p ≥ 1. The space of all bounded
functions f : I → K endowed with the supremum norm is denoted by `∞(I),
and c0(I) is the closed subspace spanned by the characteristic functions of
the singletons of I. The isometry type of `p(I) depends only on ℵ = |I|, and
sometimes we write `p(ℵ) with the obvious meaning. Similar conventions
apply to c0(ℵ). When I = N or ℵ = ℵ0, we just write `p and c0, while
c denotes the subspace of `∞ formed by all convergent sequences. Clearly,
c0 ' c. Given a compact Hausdorff space K, we write C(K) for the Banach
space of all continous functions f : K −→ K, with the sup norm. A C -space
is a Banach space isometric to C(K) for some (often unspecified) compact K.
Given a sequence (Fn) of finite-dimensional p-Banach spaces that are dense
in F (p) in the Banach–Mazur distance one can form the by now classical
spaces C(p)

∞ = `∞(N, Fn), C(p)
r = `r(N, Fn) and C(p)

0 = c0(N, Fn). Let T be a
compact operator on a fixed, separable Hilbert space H. The singular numbers
of T are the eigenvalues of |T | = (T ∗T )1/2, arranged in decreasing order
and counting multiplicity. The Schatten class S p consists of those operators
on H whose sequence of singular numbers (sn(T )) belongs to `p. It is a
quasi-Banach space endowed with the quasinorm ‖T‖p = |(sn(T ))|p. Each
T ∈ S p can be represented as T =

∑
n sn(T ) xn ⊗ yn for some orthonormal
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6 Preliminaries

sequences (xn), (yn) in H. The Schatten class S p can be considered as the
non-commutative version of `p. The terms function space and sequence space
have very specific meanings in this book. The definition of function space
is in 1.1.4, while that of sequence space is in 3.2.4. This otherwise coherent
notation unfortunately introduces some points that may perplex the casual
reader: C[0, 1] is not a function space, and `∞ is not a sequence space.

Approximation Properties

Let X be a quasi-Banach space. A sequence (xn)n≥1 is a (Schauder) basis of
X if for every x ∈ X there is a unique sequence of scalars (cn)n≥1 such that
x =

∑∞
n=1 cnxn. If all these series are unconditionally convergent, then the basis

is called unconditional, and there is a constant C, called the unconditionality
constant of (xn), such that

∥∥∥∑1≤i≤k tixi

∥∥∥ ≤ C
∥∥∥∑1≤i≤k cixi

∥∥∥ provided |ti| ≤ ci for
every i. In this case an equivalent quasinorm with unconditionality constant 1
can be defined as

∣∣∣∣∣∣∣∣∣∣∣∣ ∑∞i=1 cixi

∣∣∣∣∣∣∣∣∣∣∣∣ = sup|ti |≤|ci |

∥∥∥∥∑∞
i=1 cixi

∥∥∥∥. If (xn) is a normalised 1-
unconditional basis of X, then X can be seen as a sequence space in the obvious
way. A sequence (xn) of elements of a quasi-Banach space is called a basic
sequence if it is a basis of its closed linear span. The basic constant of a basic
sequence (xn) is the smallest K > 0 such that ‖

∑N
n=1 λnxn‖ ≤ K‖

∑M
n=1 λnxn‖ for

all N ≤ M.

Basic sequence criterion If (xn) is a normalised basic sequence with constant
K in a p-Banach space and

∑
‖xn−yn‖

p < (2K)−p then (yn) is a basic sequence.

The meaning of unconditional basic sequence should be obvious. A Banach
space with unconditional basis contains c0, or `1, or a reflexive subspace, and
thus the same is true for a Banach space containing an unconditional basic
sequence. Quasi-Banach spaces with unconditional bases have (many) infinite-
dimensional complemented subspaces: if (xn) is an unconditional basis of X
and I ⊂ N, then X(I) =

{
x ∈ X : x =

∑
i∈I cixi

}
is a complemented subpace of

X. The next best thing to a basis is a finite-dimensional decomposition (FDD):
a sequence of finite-dimensional subspaces (Xn)n≥1 is a FDD if each x ∈ X has
a unique expansion of the form x =

∑∞
n=1 xn, with xn ∈ Xn for all n. If these

series converge unconditionally then the FDD is said to be an UFDD.

Definition 0.0.1 A quasi-Banach space X is said to have the λ-approximation
property (λ-AP) if for each finite-dimensional subspace F ⊂ X and each ε > 0
there is a finite-rank operator T ∈ L(X) such that ‖T‖ ≤ λ and ‖ f −T f ‖ ≤ ε‖ f ‖
for each f ∈ F. The space is said to have the bounded approximation property
(BAP) if it enjoys the λ-AP for some λ.
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One could alternatively require that the operator fix F, that is, T f = f for
f ∈ F, transferring the error to the norm of the operator so that we can just ask
for ‖T‖ ≤ λ + ε. When X is separable, the BAP (resp. the λ-AP) is equivalent
to the existence of a sequence of finite-rank operators Tn ∈ L(X) converging
pointwise to the identity (resp. with supn ‖Tn‖ ≤ λ). A Banach space X is said
to have the uniform approximation property (UAP) when it has the λ-AP and
there exists a ‘control function’ f : N −→ N such that, given F and λ′ > λ,
we can choose T such that rk(T ) ≤ f (dim F) and T f = f for all f ∈ F,
with ‖T‖ ≤ λ′. This means exactly that every ultrapower of X has the BAP. A
sequence (En) of spaces is said to have the joint-UAP if all the spaces En have
the λ-UAP with the same control function. This occurs if and only if `∞(N, En)
has the λ-UAP. Since X∗∗ is complemented in some ultrapower of X, when
X has the UAP, then all even duals have the UAP. And since the BAP passes
from the dual to the space, when X has the UAP, all its duals have the UAP.
See either [227, p. 60] or [83, Section 7] for details.

Selected Operator Ideals

Many interesting classes of operators between Banach spaces are operator
ideals, classes A such that (a) finite-rank operators are in A, (b) A+A ⊂ A and
(c) The composition of any operator with an operator in A is in A. Following
Pietsch’s traditional notation, we use “fraktur” types for operator ideals. The
fundamental operator ideals that appear often in these pages are:

• The ideal L of all operators.
• The ideal F of finite-rank operators: an operator T : X −→ Y is in F if

T [X] is finite-dimensional; finite-rank operators can be represented as T =∑
n≤N x∗n ⊗ yn, where xi ∈ X∗, yi ∈ Y and N ∈ N.

• The ideal Np of p-nuclear operators, 0 < p ≤ 1: those admitting a represen-
tation T =

∑∞
n=1 x∗n ⊗ yn, with

∑
n ‖x∗n‖

p‖yn‖
p < ∞.

• The ideal K of compact operators: those transforming the unit ball of X into
a relatively compact subset of Y .

• The idealB of completely continuous operators: those transforming the unit
ball of X into a relatively compact subset of Y .

• The ideal W of weakly compact operators between Banach spaces: those
transforming the unit ball of X into a weakly compact subset of Y .

• The ideal S of strictly singular operators: those whose restriction to an
infinite-dimensional closed subspace is never an isomorphism.

0.0.2 An operator T : X −→ Y acting between Banach spaces is strictly
singular if and only if, for every ε > 0, every infinite-dimensional subspace
A ⊂ X contains an infinite-dimensional subspace B ⊂ A such that ‖T |B‖ ≤ ε.
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The result fails for quasi-Banach spaces, as explained in Note 9.4.4.

• The ideal Pp of p-summing operators: T : X −→ Y is p-summing if it trans-
forms weakly p-summable sequences (sequences (xn) such that (〈x∗, xn〉)n ∈

`p for all x∗ ∈ X∗) into absolutely p-summable sequences (sequences (yn)
such that (‖yn‖)n ∈ `p).

The Grothendieck–Pietsch domination / factorisation theorem establishes that
T is p-summing if and only if there is a factorisation

X T //

��

Y // Y∗∗

L∞(µ) // Lp(µ)

<<

for some measure µ on BX∗ so that L∞(µ) −→ Lp(µ) is the canonical inclusion.
When p = 2, the right upwards arrow goes L2(µ) −→ Y . This means that
2-summing operators factorise through Hilbert spaces (operators that factorise
through a Hilbert space are sometimes called 2-factorable) and that they extend
anywhere [153, 4.15]. Grothendieck’s theorem [153, Theorem 3.7] establishes
that every operator between an L1 and an L2 space is 2-summing.
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