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Extension of C(K)-Valued Operators

Homological and operator extension methods live in symbiosis, and the theory
of extension of C -valued operators shares their habitat. However, there are a
number of techniques for obtaining extensions of C -valued operators that are
so firmly anchored to the existence of an underlying compact space that they
cannot be translated to more general extension problems. Those techniques
depend, one way or another, on the following facts:

• The norm of C(K) is related to the order structure: ‖ f ‖ ≤ λ if and only if
−λ ≤ f (s) ≤ λ for every s ∈ K.

• An operator τ : X −→ C(K) is a family of functionals on X parametrised by
K. More precisely, if ϕ : K −→ X∗ is a weak*-continuous map, the formula
(τx)(s) = 〈ϕ(s), x〉 defines an operator, and all C(K)-valued operators on X
arise in this way.

• If g and h are functions on K such that g is upper semicontinuous, h is lower
semicontinuous and g ≤ h, then there is f ∈ C(K) such that g ≤ f ≤ h.

Each extension problem involves a class of operators to be extended
and, more or less implicitly, an often unnamed embedding. The following
definitions emphasise the role of the different elements.

C -trivial embedding. An embedding  is said to be C -trivial if every C -
valued operator τ admits an extension through . It will be called
(λ,C )-trivial if every C -valued operator admits a λ-extension.

C -extension property. A space X has the C -extension property if all embed-
dings into X are C -trivial. If all such embeddings are (λ,C )-trivial
then X is said to have the (λ,C )-extension property. A space with
the (1+,C )-extension property is said to have the almost isometric
C -extension property.
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C -extensible. A separable space X is said to be C -extensible if all embed-
dings  : X −→ C(∆) are C -trivial.

Throughout this chapter, we will only consider real separable Banach spaces:
the general non-separable case is, at the time of writing these lines, just too
difficult, even if we do make progress in the non-separable world, as recounted
in the story of the CCKY problem in Section 8.7. This chapter, devoted to
the single topic of extending C -valued operators has, notwithstanding that
and for very good reasons, a whirlpool organisation. Let us explain why.
Section 8.1 presents the global approach to the extension of operators: Zippin’s
characterisation of C -trivial embeddings by means of weak*-continuous
selectors and a few remarkable applications. Section 8.2 is devoted to the
Lindenstrauss–Pełczyński theorem, one of the cornerstones of the theory.
Two very different proofs for this important result are presented: the first
one combines homological techniques with the global approach, while the
second is Lindenstrauss–Pełczyński’s original proof. The analysis of their
proof is indispensable for understanding Kalton’s imaginative, not once but
twice, inventions that lead to the so-called (L∗) and m1-type properties and
to a decent list of C -extensible spaces that subsumes all previously known
cases. Kalton did not stop there: he further produced a no less impressive list of
non-C -extensible spaces. Kalton’s approach to the C -extension property was
primarily designed to deal with Lipschitz maps. Accordingly, in Section 8.3 we
present those points of the non-linear theory that are necessary to develop the
linear theory. Kalton’s subtle analysis crystallises into an asymptotic property
of the norm, property (L∗), which implies the almost isometric C -extension
property and is enjoyed by most classical sequence spaces . . . after suitable
renormings. The list can be found in Section 8.4. The techniques in Section 8.5
are for the most part independent of those in the rest of the chapter, although the
results are not. Section 8.6 contemplates different aspects of Zippin’s problem
about the extension of C -valued operators from subspaces of `1, a seemingly
offline question that is, however, central for this book: Zippin’s problem is
to determine which separable Banach spaces X satisfy Ext(X,C(K)) = 0,
where Ext is taken, here and for the rest of the chapter, in the category of
Banach spaces. The question admits an interesting gradation in terms of the
topological complexity of K, and so the chapter continues with a detailed
analysis of the class of Banach spaces X for which Ext(X,C(∆)) = 0 and the
larger class of those for which Ext(X,C(ωω)) = 0. In Section 8.7, we report
the complete solution of the problem of whether Ext(C(K), c0) , 0 for all non-
metrisable compacta K. The preparations for this travel conclude with a simple
and usually overlooked result:

Lemma 8.0.1 Finite-rank c0-valued operators admit compact 1-extensions.
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374 Extension of C(K)-Valued Operators

Proof We first consider the extension from finite-dimensional subspaces. Let
F be a finite-dimensional subspace of a Banach space X, and let τ : F −→ c0

be an operator. Represent τ by a pointwise null sequence (τn) in F∗. For each
n, let Tn be a Hahn–Banach extension of τn to X. The sequence (Tn) defines a
1-extension T : X −→ `∞ of τ. But since F is finite-dimensional, the pointwise
null sequence (τn) is actually norm null, as is (Tn), which makes T compact and
c0-valued. The general case follows from this, but the reader is left to discover
why: given a finite-rank operator Y −→ c0 with range F defined on a subspace
Y ⊂ X, consider the pushout diagram

Y //

��

X

��
F //

����

PO

c0

By the argumentation above, the inclusion F −→ c0 admits a compact 1-
extension to PO. And that is all. �

Our previous exposure to local injectivity in Chapter 5 now lets us indulge
ourselves in saying:

Lemma 8.0.2 Every finite-rank operator taking values in a Lindenstrauss
space admits 1+-extensions to any superspace.

8.1 Zippin Selectors

We focus here on determining when a given operator τ : Y −→ C(K) has an
extension through an embedding  : Y −→ X. We look at the situation from the
perspective provided by the adjunction in Note 4.6.1(d): the operator τ : Y −→
C(K) is associated with a weak*-continuous map ϕ : K −→ Y∗ by the formula
〈ϕ(k), y〉 = (τ(y))(k) and, if the operator T : X −→ C(K) is associated with
Φ : K −→ X∗, then T extends τ through  if and only if Φ lifts ϕ through ∗:

Y
‘inclusion’

 //

τ ##

X

T extends τ{{

Y∗ X∗
‘restriction’

∗oo

C(K) K
ϕ

bb

Φ lifts ϕ

<<

If we assume that ‖τ‖ ≤ 1 so that ϕ[K] ⊂ B∗Y , it is clear that an overwhelm-
ingly sufficient condition for τ to admit an extension is the existence of a
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weak*-continuous mapping ω : B∗Y −→ X∗ such that ∗ ◦ ω is the identity on
B∗Y . It was Zippin who introduced this ‘global approach’ idea into the business
of extending C -valued operators.

Definition 8.1.1 Let  : Y −→ X be an embedding between Banach spaces.
A Zippin selector for  is a weak*-continuous map ω : B∗Y −→ X∗ such that
∗ ◦ ω is the identity on B∗Y . If ‖ω(y∗)‖ ≤ λ for every y∗ ∈ B∗Y as well then we
call it a λ-Zippin selector.

Since weak*-compact sets are bounded, we see that each Zippin selector
can be labelled with some λ. The following proof shows that the canonical
isometry δ : Y −→ C(B∗Y ), which was shown to be the best embedding into a
C -space regarding complementation in 2.12.2, is the most difficult operator to
extend.

Proposition 8.1.2 Let  : Y −→ X be an embedding and λ ≥ 1. The following
are equivalent:

(i)  is (λ,C )-trivial.
(ii) δ : Y −→ C(B∗Y ) admits a λ-extension to X.

(iii)  admits a λ-Zippin selector.

Proof The implication (i) =⇒ (ii) is trivial. To prove (ii) =⇒ (iii), let D be an
operator making commutative the diagram

Y
 //

δ ""

X

D||
C(B∗Y )

Since D  = δ then δ∗ = ∗D∗, and thus the restriction of D∗ to B∗Y is a ‖D‖-
Zippin selector for . Note that D∗|B∗Y : B∗Y −→ X∗ is the weak*-continuous
mate of D in the adjunction, while the mate of the inclusion B∗Y −→ Y∗ is
δ : Y −→ C(B∗Y ) .

The implication (iii) =⇒ (i) has been basically proved above, but we do it
again anyway. Assume ω : B∗Y −→ X∗ is a λ-Zippin selector for , and let
τ : Y −→ C(K) be an operator with ‖τ‖ = 1. Define T : X −→ C(K) by T x(k) =

〈ω(τ∗δk), x〉 for x ∈ X and k ∈ K. Then ‖T‖ ≤ λ and T y = τy since T y(k) =

〈ω(τ∗δk), y〉 = 〈 ∗(ω(τ∗δk)), y〉 = 〈τ∗δk), y〉 = 〈δk), τy〉 = (τy)(k). �

Having built an understanding in which we are reasonably confident of
what it means to admit a Zippin selector, let us present some natural non-
trivial examples of C -trivial embeddings. A warning for the reader about these
results: some of them will become obsolete by the end of the chapter.
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376 Extension of C(K)-Valued Operators

Proposition 8.1.3 The following embeddings admit Zippin selectors:

(a) The inclusion of any subspace of `p into `p for p ∈ (1,∞).
(b) The natural embedding of `p into the Kalton–Peck space `p(ϕ) when ϕ ∈

Lip0(R) and p ∈ (1,∞).
(c) The inclusion of any finite-dimensional subspace whose unit ball is a

polyhedron into any Banach space.
(d) The inclusion of any finite-dimensional subspace into a uniformly smooth

Banach space.

Proof We shall obtain homogeneous 1-Zippin selectors in all cases except
(b). Note that in cases (a) and (b) the weak* and weak topologies coincide and
that the required selectors in (c) and (d) have to be continuous in the norm
topology. The proof of (a) depends on the unbeatable behaviour of the duality
map on `p. For a Banach space X with strictly convex dual, the duality map
(also called the support map) J : X −→ X∗ takes each x ∈ X to the only
x∗ ∈ X∗ such that ‖x‖ = ‖x∗‖ and 〈x∗, x〉 = ‖x‖ ‖x∗‖. When X = `p for
1 < p < ∞, we can identify the dual of `p with `q, where q is the conjugate
exponent of p and the duality map Jp : `p −→ `q is given by the clean formula
Jp(x) = ‖x‖2−p sgn(x) |x|p−1 and turns out to be weak (= weak*) sequentially
continuous. Let Y be a subspace of `p. Since `q is strictly convex, for each y∗ ∈
Y∗, there is a unique x∗ ∈ `q extending y∗ with ‖x∗‖ = ‖y∗‖. Let ω : Y∗ −→ `q

be the resulting map. We show that the restriction ω : B∗Y −→ B∗`p
is continuous

in the weak topology. Indeed, the map ω is the composition of three maps,

Y∗ ω //

J−1

��

`q

Y ı // `p

Jp

OO

where J : Y −→ Y∗ is the duality map of Y and ı is plain inclusion. We know
that Jp is weakly sequentially continuous, as is the inclusion ı. To see that
J−1 : BY∗ −→ BY is weak* to weak continuous, just observe that J : BY −→ BY∗

is one to one and weak to weak* continuous since J(y) = Jp(y)|Y and BY is
weakly compact, while BY∗ is weak*-compact.

To prove (b), we revisit the duality of Kalton–Peck spaces `p(ϕ) in Section
3.8 and Kalton–Peck maps (3.27) now garbed in their full-grown centralizer
clothes (Section 3.12): consider the mappings `p −→ `∞ given by

KPp,ϕ(x) = x ϕ
(
p log

‖x‖p
|x|

)
, kpp,ϕ(x) = x ϕ(−p log |x|),

and form the space `p(ϕ) = {(y, x) ∈ `∞ × `p : ‖y − KPp,ϕx‖p + ‖x‖p < ∞}

endowed with the obvious quasinorm. Consider the canonical embedding
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 : `p −→ `p(ϕ) given by (y) = (y, 0) and let us try to find a Zippin
selector ω : `∗p −→ `p(ϕ)∗ for . Identify `p(ϕ)∗ with `q(−ϕ) as in Proposition
3.8.5 through the duality pairing 〈(x∗, y∗), (y, x)〉 = 〈x∗, x〉 + 〈y∗, y〉. Since
∗(x∗, y∗) = y∗, we set the Zippin selector ω : `q −→ `q(ϕ) to be the map

ω(y∗) = (−kpq,ϕ(y∗), y∗),

which takes values in the right space and is bounded, since, by estimate (3.7),

‖ω(y∗)‖ =
∥∥∥(−kpq,ϕ(y∗), y∗)

∥∥∥
−KPq,ϕ

= ‖KPq,ϕ(y∗) − kpq,ϕ(y∗)‖ + ‖y∗‖

≤ q Lip(ϕ)‖y∗‖q log ‖y∗‖q.

Finally, ω is weak*-continuous on bounded sets because a sequence converges
in the weak (= weak*) topology of `q(−ϕ) if and only if it is bounded and
pointwise convergent, and kpq,ϕ preserves pointwise convergence (the value of
each coordinate of kpq,ϕ(x) depends on the corresponding coordinate of x in a
continuous way).

To prove (c), let ı : F ⊂ X be a finite-dimensional subspace of the
Banach space X, and let ı∗ : X∗ −→ F∗ be the restriction map. If BF is a
polyhedron (i.e., the convex hull of a finite set) then so is B∗F . Let (S i)1≤i≤k

be a triangulation of B∗F , which means that

• each S i is a simplex of the same dimension as F∗ and B∗F =
⋃k

i=1 S i,
• the intersection of any pair of them is a (possibly empty) common face.

Let V be the set of all vertices of the triangulation, and observe that not every
vertex has to be in the boundary of the ball. For each v ∈ V , let x∗v ∈ X∗ be
a norm-preserving extension of v. Now, each y∗ ∈ B∗F has a unique convex
representation as y∗ =

∑
v∈V cv(y∗)v, and the coordinate functions y∗ 7−→ cv(y∗)

are all continuous. The map ω : B∗F −→ X∗ given by

ω(y∗) =
∑
v∈V

cv(y∗)x∗v

is a 1-Zippin selector. Note that ω is piecewise linear but not necessarily
homogeneous. One can obtain a homogeneous version of ω by just taking
ω̃(0) = 0 and

ω̃(y∗) =
‖y∗‖

2

(
ω

(
y∗

‖y∗‖

)
− ω

(
−y∗

‖y∗‖

))
.

This map is again weak* continuous since F∗ is finite-dimensional.
(d) Let F be a finite-dimensional subspace of X. Then, for every n ∈ N,

there is a Zippin selector ωn : B∗F −→ (1 + 1
n )B∗X . A weak*-accumulation point
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of ωn(y∗) must be an extension of y∗, which in a uniformly smooth space is
unique. So it makes sense to define ω(y∗) as the weak*-accumulation point of
ωn(x∗), and this yields a selector ω : B∗F −→ B∗X . Again by uniform smooth-
ness, for every normalised y∗ ∈ F∗, we have ω(y∗) = limn ωn(x∗) in the norm
topology of X∗. Hence ω is weak*-continuous on the unit sphere of F∗. �

8.2 The Lindenstrauss–Pełczyński Theorem

We now present the Lindenstrauss–Pełczyński theorem, which is perhaps the
first significant result about the extension of C -valued operators. We shall
provide two (actually three) proofs for this important result. The first has a
homological flavour but ultimately depends on the simple structure of the
subspaces and quotients of c0 and comes without any explicit bound on the
norm of the extension. Here it is.

Theorem 8.2.1 Every C -valued operator defined on a subspace of c0 can be
extended to c0.

Proof The proof proceeds in several steps.

Step 1 We test our abilities when the subspace and the embedding have
the simplest conceivable form. For each integer k, let k : Ak −→ `n(k)

∞ be
an isometry and let  : c0(N, Ak) −→ c0(N, `n(k)

∞ ) be the isometry given by
((ak)k) = ( k(ak))k. For each k ∈ N, let ωk : B∗Ak

−→ `n(k)
1 be the homogeneous

1-Zippin selector constructed in the proof of Proposition 8.1.3(c). Paste
together all the maps ωk into one map ω : B`1(N,A∗k) −→ B`1(N,`n(k)

1 ) by setting
ω((x∗k)k) = (ωk(x∗k))k. This is clearly a selector for , and it turns out to be
weak*-continuous: observe that its domain is metrisable and that a bounded
sequence in the space `1(N, Ak) is weak*-null if and only if the norms of its
projections into each Ak are convergent to 0. This shows that the embedding 

is C -trivial.
Step 2 We keep the subspace isomorphic to some c0(N, Ak), with Ak finite-
dimensional, but now consider any possible embedding ı : c0(N, Ak) −→ c0.
Let us pick an almost isometric embedding  : c0(N, Ak) −→ c0(N, `n(k)

∞ ) = c0

once again. Replacing c0 by its square if necessary, we can assume that both 

and ı have infinite codimensional ranges, and so the automorphic character of
c0 comes to the rescue by providing an automorphism u that intertwines  and
ı as in the commutative diagram
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c0

u
��

c0(N, Ak)


22

ı ,,
c0(N, `n(k)

∞ ) = c0

Needless to say, an operator defined on c0(N, Ak) can be extended through ı if
and only if it can be extended through .
Step 3 Finally, if Y is any arbitrary closed subspace of c0, we use the Johnson–
Rosenthal–Zippin result in Proposition 5.3.1 to decompose Y as a twisted sum
0 −→ c0(N, Ak) −→ Y −→ c0(N, Bk) −→ 0 in which Ak and Bk are finite-
dimensional. Now we draw the pushout diagram:

0

��

0

��
c0(N, An)

ı

��

c0(N, An)

��
0 // Y

 //

ρ

��

c0

ρ

��

// c0/Y // 0

0 // c0(N, Bn)


//

��

PO //

��

c0/Y // 0

0 0

Let τ : Y −→ E be a C -valued operator. Its restriction τ ı can be extended to
c0. Let T1 : c0 −→ E be any extension of τ ı. The difference τ − T1  vanishes
on the image of ı, and thus it factors through the quotient ρ in the form τ −

T1  = τ2 ρ for some operator τ2 : c0(N, Bk) −→ E. Since every quotient of c0

is isomorphic to a subspace of c0, τ2 admits an extension, say T2, to PO. The
operator T = T1 + T2 ρ is an extension of τ since, according to our records, for
every y ∈ Y , we have T2 (ρ(y)) = T2 ( (ρ(y)) = τ2(ρ(y)) = τ(y) − T1(y). �

The statement just proved implies the existence of a constant C such that
every C -valued operator defined on any subspace of c0 has a C-extension to
c0: this follows from an obvious amalgamation argument, taking into account
that if (Hn) is a sequence of subspaces of c0 then so is c0(N,Hn), and that if
(En) is a sequence of C -spaces then so is `∞(N, En). However, there is no easy
way to follow the track of C throughout the proof since one has no control
over the parameters of the left vertical sequence in the preceding diagram nor
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380 Extension of C(K)-Valued Operators

over the norm of the automorphism in the second step of the proof. In [465,
Proposition 3], Zippin provides a complete proof for the following: every C -
valued operator defined on a subspace of c0 admits a 4+-extension. The proof
uses his global approach, very much in the spirit of the previous proof, but
without the good (homological) parts.

We will stop burdening the reader with these worries and next recover the
original proof supplied by Lindenstrauss and Pełczyński [330], which provides
sharp bounds for the norm of the extension. The ripples from this stone thrown
in the C -extension pond will spread out through the entire chapter.

Let K be a compact space, and suppose we are given two bounded (but
not necessarily continuous) functions f , g : K −→ R such that f ≤ g.
Under what circumstances can we separate them by a continuous h : K −→ R
in the sense that f (s) ≤ h(s) ≤ g(s) for all s ∈ K? The Hahn–Tong theorem
(see the proof of Lemma 2.2.2) states that this is the case if f is upper-
semicontinuous and g is lower-semicontinuous. It quickly follows that such
an h ∈ C(K) exists if and only if the upper semicontinuous envelope
f usc(s) = min

(
f (s), lim supt→s f (t)

)
of f and the lower semicontinuous enve-

lope glsc(s) = max
(
f (s), lim inft→s g(t)

)
of g satisfy f usc ≤ glsc. Enough said:

Theorem 8.2.2 Every C -valued operator defined on a subspace of c0 admits
a 1+-extension to the whole c0.

Proof Let τ : H −→ C(K) be an operator, where H is a subspace of c0 and
K is a compact space. Since every separable subset of C(K) is contained in
a separable subalgebra and these are C -spaces, we may assume that K is
metrisable and also that ‖τ‖ = 1. It is enough to prove that τ can be extended
to an operator T on H + [x] having norm at most λ for each x ∈ c0 \ H and
λ > 1. Searching for an admissible value h = T (x) means showing that there
exists h ∈ C(K) such that ‖h − τ(y)‖ ≤ λ‖x − y‖ for all y ∈ H. Using the order
structure of C(K), this is equivalent to

τ(y) − λ‖y − x‖1K ≤ h ≤ τ(y) + λ‖y − x‖1K . (8.1)

Letting

F =
∨
y∈H

(
τ(y) − λ‖x − y‖1K

)
and G =

∧
y∈H

(
τ(y) + λ‖x − y‖1K

)
,

we see that F ≤ G and that h fits in (8.1) if and only if F ≤ h ≤ G. The proof
will be complete if we show that Fusc ≤ Glsc. Here is where c0 comes into play.
If for some s ∈ K we have Fusc(s) > Glsc(s) then there are sequences (sn), (tn)
in K converging to s for which

lim
n

F(sn) > lim
n

G(tn).
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From the definition of F and G, it can easily be deduced that there exist yn, zn ∈

H such that

lim
n

(
τ(yn)(sn) − λ‖x − yn‖

)
> lim

n

(
τ(zn)(tn) + λ‖x − zn‖

)
. (8.2)

Now we consider the adjoint τ∗ : C(K)∗ −→ H∗. For each n, τ∗(δsn ) is a linear
functional on H that admits an equal norm extension to c0, which we will call
un ∈ `1. Similarly, for each n, let vn ∈ `1 be a norm-preserving extension of
τ∗(δtn ) to c0. Note that ‖un‖, ‖vn‖ ≤ 1. Passing to subsequences if necessary,
we can assume that both (un)n and (vn)n are weak*-convergent in `1. If we
denote the corresponding limits by u and v, then u|H = v|H = τ∗(δs) since τ∗

is continuous in the weak* topologies and δtn , δsn converge to δs in the weak*
topology of C(K)∗. On the other hand, if (wn)n is weak*-null in `1, it is almost
obvious that for every w ∈ `1 we have limn (‖wn + w‖ − ‖wn‖ − ‖w‖) = 0. In
particular,

lim
n→∞

(
‖un‖ − ‖un − u‖ − ‖u‖

)
= lim

n→∞

(
‖vn‖ − ‖vn − v‖ − ‖v‖

)
= 0. (8.3)

If we restrict these functionals to H then the norms of un and vn do not vary
(they are norm-preserving extensions of τ∗δsn and τ∗δtn ), while the norms of
the other functionals in (8.3) only decrease. Letting r =

∥∥∥ u|H
∥∥∥ =

∥∥∥ v|H
∥∥∥ =∥∥∥ τ∗(δs)

∥∥∥, we have lim supn ‖un − u‖ ≤ 1 − r and also lim supn ‖vn − v‖ ≤ 1 − r,
both with respect to the `1 norm. Since τ(yn)(sn) = 〈τ∗sn, yn〉 = 〈un, yn〉 and
τ(zn)(tn) = 〈τ∗tn, zn〉 = 〈vn, zn〉, we can rewrite (8.3) as

L = lim
n

(
〈vn, zn〉 − 〈un, yn〉 + λ

(
‖x − zn‖ + ‖x − yn‖

))
< 0. (8.4)

But limn〈un − u, z〉 = limn〈vn − v, z〉 = 0 for every z ∈ c0, so

L = lim
n

(
〈vn, zn〉 − 〈un, yn〉 + λ

(
‖x − zn‖ + ‖x − yn‖

))
= lim

n

(
〈vn − v, zn〉 − 〈un − u, yn〉 + 〈τ

∗(δs), zn − yn〉 + λ
(
‖x − zn‖ + ‖x − yn‖

))
= lim

n

(
〈vn−v, zn−x〉 − 〈un−u, yn−x〉 + 〈τ∗δs, zn−yn〉 + λ

(
‖x−zn‖ + ‖x−yn‖

))
= lim

n

(
αn + βn + γn

)
,

with the obvious choices

αn = 〈vn − v, zn − x〉 + (λ − r)‖zn − x‖,

βn = −〈un − u, yn − x〉 + (λ − r)‖yn − x‖,

γn = 〈τ∗(δs), zn − yn〉 + r
(
‖x − zn‖ + ‖x − yn‖

)
.

Now, αn and βn are non-negative for large n, while γn ≥ 0 for all n. This
contradicts (8.4), which concludes the proof. �
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We cannot usually achieve 1-extensions, as the following example shows.

8.2.3 There is a compact operator from an hyperplane of c0 into c which has
no norm-preserving extension to c0.

Proof Fix 0 < λ < 1
2 and define f =

∑∞
n=1 λ

n−1(e2n−1 + e2n). Clearly, f ∈ `1.
Treating `1 as the dual of c0 in the obvious way, we set H = ker f . Let

g =

∞∑
n=1

λn−1e2n −

∞∑
n=2

λn−1e2n−1,

and for n = 2, 3, ..., we set

gn =

n∑
j=1

λ j−1e2 j −

n∑
j=2

λ j−1e2 j−1,

hn =

n∑
j=1

λ j−1e2 j −

n∑
j=2

λ j−1e2 j−1 + λn−1(e2n−1 + e2n+2).

It is clear that g = lim gn = lim hn in the norm of `1. In particular, the
convergence is maintained in H∗. We put

Gn =
gn|H

‖gn|H‖
, Hn =

hn|H

‖hn|H‖
, G =

g|H
‖g|H‖

.

The set K = {G}
⋃
{Gn,Hn : n ∈ N} is a norm-closed subset of H∗ homeomor-

phic to αN, the one point compactification of N, and the inclusion of K into the
unit ball of H∗ is norm continuous so it induces a compact operator τ : H −→
C(K). By the considerations made at the beginning of the section, everything
we have to show is that there is no weak*-continuous map φ : K −→ B`1 that
satisfies φ(k)|H = k for all k ∈ K. To show that, it is enough to show that all
Gn and Hn have unique Hahn–Banach extensions gn and hn − f , respectively.
Since lim gn = g and lim hn − f = g− f , the proof is essentially done. To fill in
the details, observe that any extension of Gn must have the form gn + t f . Since

‖gn + t f ‖ = |t|
(
1 +

2λn

1 − λ

)
+ |1 − t|

1 − λn

1 − λ
+ λ|1 + t|

1 − λn−1

1 − λ

and the minimum of this quantity occurs only at t = 0, it follows that the unique
norm-preserving extension of Gn is gn. Also, any extension of Hn must have
the form hn + t f . Since

‖hn + t f ‖ = |t|
(
1 +

2λn+1

1 − λ

)
+ |1 − t|

1 − λn

1 − λ
+ λ|1 + t|

1 − λn−1

1 − λ
+ 2λn−1|1 − λt|

and the minimum of this quantity occurs only at t = 1, it follows that the unique
Hahn–Banach extension of Hn is hn − f . �
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8.3 Kalton’s Approach to the C -Extension Property

Kalton’s approach to the extension of C -valued operators is rooted in his
studies of Lipschitz maps in Banach spaces. Lipschitz maps have appeared
in Banach space theory since its inception, sporadically at first but occupying
an increasingly central role. The authoritative book by Benyamini and Lin-
denstrauss [41] is responsible to a great extent for this turnaround. In the
series of papers [271; 272; 273; 274], Kalton revisits the topic and, as he
always did, sets new standards. Of course, the linear and non-linear theories
are different, and thus we will present here only the facts of the non-linear
theory that are indispensable for understanding the linear part. The interested
reader can behold a more complete picture in Section 8.8.3. The following
observation helps avoid possible misunderstandings concerning the role of the
space c in the ensuing exposition.

Proposition 8.3.1 There is a 2-Lipschitz retraction of `∞ onto c.

Proof Given x ∈ `∞, set

x− = lim inf
n

x(n), x− = lim inf
n

x(n), m(x) =
x− + x+

2
, r(x) =

x+ − x−

2
,

and define x̃ : N −→ R by

x̃(n) =


m(x) if x(n) ∈ [x−, x+],

x(n) − r(x) if x(n) > x+,

x(n) + r(x) if x(n) < x−.

It is clear that x̃ ∈ c for all x ∈ `∞ and also that x̃ = x when x ∈ c, so
the mapping x −→ x̃ extends the identity of c. To prove that this map is 2-
Lipschitz, one has to check that |x̃(n) − ỹ(n)| ≤ 2‖x − y‖ for all n. This is very
easy, taking into account that |m(x)−m(y)|, |r(x)− r(y) ≤ ‖x− y‖ and reasoning
on a case-by-case basis. �

However, no Lipschitz retraction of `∞ onto c can be linear at all because
c is not injective in the category of Banach spaces (even if it is injective in
‘the Lipschitz category of Banach spaces’). Is separability the problem? Not
on its own. In fact, c is injective in both the Lipschitz and the linear categories
of separable Banach spaces, but the constants are different: c is 3-separably
injective as a Banach space, while it is 2-injective in the Lipschitz category.
So, even in this setting, the previous proposition highlights a subtle difference
between the extension of Lipchitz maps and the extension of linear operators.

Corollary 8.3.2 Let Y be a subset of a metric space X. Every Lipschitz map
τ : Y −→ c admits a 2-extension to X.
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Proof Extend a contraction τ to a contraction X −→ `∞ and then compose
with the map provided by Proposition 8.3.1. �

Extension of C -Valued Lipchitz Maps for Dummies

For a first contact with the problems we face, let us cheat a bit about the
simplest conceivable extension problem for non-linear Lipschitz C -valued
maps by picking arguably the simplest infinite compactum there is: the
one-point compactification αN of N and its associated space of convergent
sequences c = C(αN). Let Y be a subset of a metric space X, and let τ : Y −→ c
be a fixed contraction, which is not assumed to be linear for obvious reasons.
Given x ∈ X\Y and λ ≥ 1, under what conditions can τ be extended to a λ-
Lipschitz map Y ∪ {x} −→ c? As we already know by Corollary 8.3.2, this can
always be achieved when λ ≥ 2. Of course, what has to be done is to assign an
admissible value ξ ∈ c to x such that ‖ξ− τ(y)‖ ≤ λd(x, y) for every y ∈ Y . This
means, taking advantage of the order structure of c, that ξ must satisfy

τ(y) − λd(x, y)1N ≤ ξ ≤ τ(y) + λd(x, y)1N. (8.5)

We define two bounded functions τ−, τ+ on N by

τ− =
∨
y∈Y

τ(y) − λd(x, y)1N, τ+ =
∧
z∈Y

τ(z) + λd(x, z)1N,

where the supremum and the infimum are defined pointwise on N. It is clear
that τ− ≤ τ+ and also that ξ ∈ `∞ satisfy (8.5) if and only if τ− ≤ ξ ≤ τ+. Now,
the point is that some ξ ∈ c exists separating τ− from τ+ if and only if

lim sup
n→∞

τ−(n) ≤ lim inf
n→∞

τ+(n),

and this condition is clearly equivalent to:

• For every ε > 0, there is N ∈ N such that for every n, k > N and every
y, z ∈ Y , one has |τ(y)(n) − τ(z)(m)| ≤ λ

(
d(y, x) + d(z, x)

)
+ ε.

Corollary 8.3.2 says that this condition is satisfied by all Lipschitz maps on all
metric spaces when λ = 2. It is up to the reader whether to decide whether or
not this was unforeseen.

Extension of c-Valued Lipschitz Maps

Let’s keep up our steady trotting pace with a slight modification to the previous
problem: we now want to fix a λ and extend all contractions Y −→ c to one
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more point while keeping the Lipschitz constant of the extension bounded by
λ. This will be the key step in the extension of C -valued Lipschitz maps.

Lemma 8.3.3 Let Y be a separable subset of a metric space X, x ∈ X\Y and
λ ≥ 1. The following are equivalent:

(i) Every Lipschitz map τ : Y −→ c admits a λ-extension to Y ∪ {x}.
(ii) Given sequences (yn), (zn) in Y and ε > 0, there is u ∈ Y such that

d(u, yn) + d(u, zn) ≤ λ
(
d(x, yn) + d(x, zn)

)
+ ε (8.6)

for infinitely many n.
(iii) Every C -valued Lipschitz map on Y admits a λ-extension to Y ∪ {x}.

Proof We will work with contractions. To prove the implication (i) =⇒ (ii),
let us fix a countable dense subset (en)n≥1 of Y . The following condition is
clearly stronger than (ii):

(†) Given ε > 0, there is n ∈ N such that for any y, z ∈ Y we have

min
1≤ j≤n

(
d(e j, y) + d(e j, z)

)
≤ λ (d(x, y) + d(x, z)) + ε.

Now we establish the implication (i) =⇒ (†). If (†) fails, we can construct
sequences (yn) and (zn) in Y such that, for j < n, we have

λ (d(x, yn) + d(x, zn)) + ε < d(y j, yn) + d(y j, zn),

λ (d(x, yn) + d(x, zn)) + ε < d(z j, yn) + d(y j, zn), (8.7)

λ (d(x, yn) + d(x, zn)) + ε < d(e j, yn) + d(e j, zn).

Given e ∈ Y , the sequence (d(e, yn) − d(x, yn)) is bounded by d(e, x), and
thus, since Y is separable, by merciless diagonalisation, we can assume that
limn d(e, yn) − d(x, yn) exists for all e ∈ Y . We define now a sequence of
Lipschitz maps fn : Y −→ R. First the odd terms:

f2n−1(y) = d(y, yn) − d(x, yn),

which have Lip( f2n−1) = 1. To define the even terms, we first define new
Lipschitz maps ϕn : {yk}

n
k=1 ∪ {zk}

n
k=1 ∪ {ek}

n
k=1 −→ R by

ϕn(y j) = f2n−1(y j), j < n,
ϕn(z j) = f2n−1(z j), j < n,
ϕn(e j) = f2n−1(e j), j ≤ n,

and {
ϕn(yn) = f2n−1(yn) + λ

(
d(yn, x) + d(zn, x)

)
− d(yn, zn) + ε,

ϕn(zn) = f2n−1(zn) + λ (d(yn, x) + d(zn, x)) − d(yn, zn) + ε.
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Claim Lip(ϕn) ≤ 1.

Proof of the claim It suffices to estimate ϕn(w)−ϕn(w′) when w ∈ {yn, zn} and
w′ ∈ {y1, . . . , yn−1, z1, . . . , zn−1, e1, . . . , en}. Because if so,

ϕn(w) − ϕn(w′) ≥ f2n−1(w) − f2n−1(w′) ≥ −d(w,w′),

and the claim is proved using the inequalities (8.7) to get

ϕn(w) − ϕn(w′) ≤ d(w, yn) + d(zn,w′) − d(yn, zn) ≤ d(w,w′). �

The even term f2n can be any contractive extension of ϕn to Y . Now let
τ : Y −→ `∞ be the contractive map given by τ(y) = ( fn(y))n. Note that τ(e j) ∈
c for every j, and since the e j generate a dense subspace in Y , it turns out that τ
takes values in c. We prove that τ cannot be extended to a λ-Lipschitz mapping
τ̃ : Y∪{x} −→ c. Suppose that τ̃ = (gn)n≤1 is such an extension. Then it follows
from {

g2n(x) ≥ f2n(zn) − λd(x, zn)
g2n−1(x) ≤ f2n−1(yn) + λd(x, yn)

that g2n(x) − g2n−1(x) ≥ ε, which flagrantly contradicts our assumption that τ̃
takes values in c.

Let us prove the much easier implication (ii) =⇒ (iii). Let τ : Y −→ C(K) be
a contractive map that we want to extend to a λ-Lipschitz map on Y ∪ {x}. This
amounts to finding f ∈ C(K) such that ‖ f − τ(y)‖∞ ≤ λd(x, y) for all y ∈ Y;
that is,

τ(y) − λd(x, y)1K ≤ f ≤ τ(y) − λd(x, y)1K . (8.8)

Define F,G ∈ `∞(K) by

F =
∨
y∈Y

τ(y) − λd(x, y)1K , G =
∧
z∈Y

τ(z) + λd(x, z)1K .

Clearly, F ≤ G, and f satisfies (8.8) if and only if F ≤ f ≤ G. Thus the proof
will be complete if we show for each s ∈ K that

lim sup
t→s

F(t) ≤ lim inf
t→s

G(t).

Assume on the contrary that lim supt→s F(t) > lim inft→s G(t) for some s ∈ K.
Then there is ε > 0 and a pair of sequences (sn), (tn) converging to s such that
F(sn) > G(tn) + 2ε, and then we may choose sequences (yn), (zn) in Y such that

(τ(yn))(sn) − λd(x, yn) > τ(zn)(tn) + λd(x, zn) + 2ε.

Now we apply (ii) with these (yn), (zn) and ε to find u ∈ Y such that

d(u, yn) + d(u, zn) ≤ λ
(
d(x, yn) + d(x, zn)

)
+ ε
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for infinitely many n. Let us take a look at the function g = τ(u). We have
τ(yn) ≤ g + d(u, yn) and τ(zn) ≥ g − d(u, zn). For those n we thus obtain

g(sn) − g(sn) ≥ τ(yn)(sn) − d(u, yn) − τ(zn)(tn) − d(u, zn)

> λ
(
d(x, yn) + d(x, zn)

)
+ 2ε − d(u, yn) − d(u, zn) ≥ ε,

which contradicts the continuity of g at s. �

Back to Linear Operators

Let us see if the connections we have sown between linear and non-linear
extensions bring forth a harvest by returning to the main topic of the chapter.
First of all, we isolate the metric configuration supporting Lemma 8.3.3:

Definition 8.3.4 Let Y be a subset of a metric space X and λ ≥ 1. We say the
pair (Y, X) satisfies condition Σ1(λ) if, given sequences (yn), (zn) in Y , x ∈ X
and ε > 0, there exists u ∈ Y such that

d(u, yn) + d(u, zn) ≤ λ
(
d(x, yn) + d(x, zn)

)
+ ε

for infinitely many n.

Thus, the real content of Lemma 8.3.3 is that if Y is a subset of a separable
Banach space X then the pair (Y, X) satisfies Σ1(λ) if and only if C -valued (or
c-valued) Lipschitz maps defined on Y admit λ-extensions to one further point
in X. A simple remark provides the necessary irrigation for our seeds.

Lemma 8.3.5 Let H be a closed hyperplane of a Banach space X, and let
τ : H −→ E be a contractive operator. Let x ∈ X \ H and λ ≥ 1. If τ has a
λ-Lipschitz extension to H ∪ {x} then it has a λ-linear extension T : X −→ E.

Proof If τ̃ : H ∪ {x} −→ E is λ-Lipschitz extension, pick ξ = τ̃(x) and set
T (y + tx) = τ(y) + tξ. This T is a linear extension of τ and ‖T‖ ≤ λ since

‖T (y + tx)‖ = |t| ‖τ(y/t) + ξ‖ = |t| ‖ξ − τ(−y/t)‖ ≤ |t| λ ‖x + y/t‖ = λ‖y + tx‖. �

Time to provide some restorative shadow confirming that linear extension
properties are much more demanding than their Lipschitz counterparts.

Theorem 8.3.6 Let E be a closed subspace of a separable Banach space X
and let λ > 1. If every operator τ : E −→ c admits a λ-extension then (E, X)
has property Σ1(λ).

Proof If the pair (Y, X) does not satisfy Σ1(λ) then there are two sequences
(yn), (zn) in Y , a point x ∈ X \ Y and an ε > 0 such that for every u ∈ Y the set
of n for which
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‖u − yn‖ + ‖u − zn‖ < λ
(
‖x − yn‖ + ‖x − zn‖

)
+ 2ε

is finite. This implies that for each compact subset K ⊂ Y there is an n(K) such
that for all u ∈ K and n ≥ n(K) we have

‖u − yn‖ + ‖u − zn‖ > λ
(
‖x − yn‖ + ‖x − zn‖

)
+ ε.

Since Y is separable, there is an increasing sequence of compact subsets of Y
containing the origin, say (Km), whose union is dense in Y . It then follows that
we can choose a subsequence M = {n(1), n(2), . . . } such that when u ∈ Km,

‖u − yn(m)‖ + ‖u − zn(m)‖ > λ
(
‖x − yn(m)‖ + ‖x − zn(m)‖

)
+ ε. (8.9)

Next, observe that if A is a Banach space and V is a compact, convex subset
of A such that ‖v − a‖ > c for some a ∈ A and c ≥ 0 and all v ∈ V , then there
exists a functional a∗ ∈ A∗ with ‖a∗‖ ≤ 1 such that 〈a∗, v − a〉 ≥ c for all v ∈ V .
To see this, just apply the Hahn–Banach theorem to the effect of separating
the compact convex set V − a from the closed ball of radius c centered at
the origin. If we now interpret ‖u − yn(m)‖ + ‖u − zn(m)‖ as the norm of the
difference (u, u) − (yn(m), zn(m)) in the space X ⊕1 X, since (X ⊕1 X)∗ = X ⊕∞ X,
from (8.9), we get the existence of y∗m, z

∗
m ∈ X∗ with ‖y∗m‖, ‖z

∗
m‖ ≤ 1 such that

when u ∈ Km,

〈y∗m, u − yn(m)〉 + 〈z∗m, u − zn(m)〉 ≥ λ
(
‖x − yn(m)‖ + ‖x − zn(m)‖

)
+ ε. (8.10)

Hence, for u ∈ Km,

〈y∗m + z∗m, u〉 ≥ 〈y
∗
m, yn(m)〉 + 〈z∗m, zn(m)〉 + λ

(
‖x − yn(m)‖ + ‖x − zn(m)‖

)
+ ε

≥ 〈y∗m, yn(m)〉 + 〈z∗m, zn(m)〉 + λ
(
〈y∗m, x − yn(m)〉 + 〈z∗m, x − zn(m)〉

)
+ ε

≥ 〈y∗m, x〉 + 〈z
∗
m, x〉 + ε. (8.11)

At this point, we pass to a further subsequence L of M such that (y∗m)m∈L and
(z∗m)m∈L are weak*-convergent. Take limits in the weak* topology to set

y∗ = lim
m∈L

y∗m and z∗ = lim
m∈L

z∗m.

Using (8.11), we get that for u ∈
⋃

m Km,

〈y∗, u〉 + 〈z∗, u〉 ≥ 〈y∗, x〉 + 〈z∗, x〉 + ε,

and since (Km) has dense union in Y , we conclude that 〈y∗ + z∗, u〉 ≥ 〈y∗ + z∗,
x〉 for every u ∈ Y . Since Y is a linear subspace of X, this implies that (y∗ +

z∗)|Y = 0. We define a contractive operator τ : X −→ `∞({1,−1} × L) by

τ(z) =
(
〈y∗m, z〉 − 〈z

∗
m, z〉

)
m∈L.
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Then τ maps Y into c({1,−1} × L), and the hypothesis provides an extension
T : X −→ c({1,−1} × L), with ‖T‖ ≤ λ. Let us write T in the form

T (z) =
(
〈ỹ∗m, z〉 − 〈z̃

∗
m, z〉

)
m∈L.

For each n, we have ‖T (x − yn)‖ + ‖T (x − zn)‖ ≤ λ
(
‖x − yn‖ + ‖x − zn‖

)
. Hence,

for any n ∈ N,m ∈ L and any choice of signs, we also have

± 〈ỹ∗m, x − yn〉 ± 〈z̃∗m, x − zn〉 ≤ λ
(
‖x − yn‖ + ‖x − zn‖

)
. (8.12)

But since every value of T is a convergent sequence, we have that (ỹ∗m)m and
(z̃∗m)m converge in the weak* topology of X∗. If we let

ỹ∗ = lim
m∈L

ỹ∗m and z̃∗ = lim
m∈L

z̃∗m,

then ỹ∗ + z̃∗ = 0, ỹ∗|Y = y∗|Y , z̃∗|Y = z∗|Y . In particular,

lim
m∈L
〈ỹ∗m + z̃∗m, x〉 = 〈ỹ∗ + z̃∗, x〉 = 0.

Thus, if we take both signs in (8.12) to be negative and set n = n(m), we obtain

lim sup
m∈L

(
〈ỹ∗m, yn(m)〉 + 〈z̃∗m, zn(m)〉

)
= lim sup

m∈L

(
〈y∗m, yn(m)〉 + 〈z∗m, zn(m)〉

)
≤ λ

(
‖x − yn(m)‖ + ‖x − zn(m)‖

)
,

which contradicts (8.10) when u = 0. �

Types and the Almost Isometric C -Extension Property

While the (λ,C )-extension property seems elusive, the almost isometric C -
extension property for separable spaces can be readily characterised. It is
all a matter of showing that when Lipschitz maps extend to Lipschitz maps,
operators extend to operators. This, which was very simple for extensions to
one more dimension when done in Lemma 8.3.5, is considerably harder in the
general situation. The passage can be smoothed using the language of types.
Usually, a type on a Banach space X is defined to be a functionσ : X −→ [0,∞)
having the form σ(x) = ‖x − a‖ for some a belonging to some ultrapower
of X. However, in separable spaces, we can adopt the following equivalent
formulation:

Definition 8.3.7 A type on a separable Banach space X is a function σ :
X −→ [0,∞) having the form

σ(x) = lim
n→∞
‖x + xn‖

for some bounded sequence (xn)n of X. We will say in that case thatσ is defined
by (xn) and when (xn) ⊂ Y ⊂ X, σ is said to be supported on Y .
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It is a matter of an elementary Ramsey-like argument that every bounded
sequence (xn)n∈N in a separable space X contains a subsequence (xn)n∈M such
that limn∈M ‖x + xn‖ exists for all x ∈ X, thus defining a type on X. Condition
Σ1(λ) can be reformulated as:

Lemma 8.3.8 Let X be a separable Banach space, Y a subset of X and λ ≥ 1.
If (Y, X) satisfies condition Σ1(λ) then, for every pair of types σ, β supported on
Y, we have

inf
u∈Y

(σ(u) + β(u)) ≤ λ inf
x∈X

(σ(x) + β(x)) . (8.13)

The converse is true if λ > 1.

Proof We first remark that the reason for not having an equivalence in the
case λ = 1 is that, while sequences defining types have to be bounded, the
same is not the case for the sequences appearing in condition Σ1(λ). For λ > 1,
the inequality required in condition Σ1(λ) is automatic when (yn) or (zn) is
unbounded, and we can thus work with bounded sequences only. Now assume
that (Y, X) satisfies Σ1(λ) and let σ and β be types on X supported on Y . Then
there exist sequences (yn), (zn) of Y such that

σ(x) = lim
n→∞
‖x + yn‖ and β(x) = lim

n→∞
‖x + zn‖

for all x ∈ X. Fix ε > 0 and pick x0 ∈ X such that

σ(x0) + β(x0) < inf
x∈X

(
σ(x) + β(x)

)
+ ε.

Applying condition Σ1(λ) to (yn), (zn), x0 and ε, we obtain a point u ∈ Y such
that σ(u) + β(u) ≤ λ

(
σ(x0) + β(x0)

)
+ ε, which is enough. As for the other part,

suppose λ > 1, and let (yn), (zn) be bounded sequences of Y . Then there is an
increasing function n : N −→ N such that the functions

σ(x) = lim
k→∞
‖x + yn(k)‖ and β(x) = lim

k→∞
‖x + zn(k)‖

are correctly defined types on X. Now, if (8.13) holds then for every x ∈ X and
every ε > 0, there is u ∈ Y and N ∈ N such that for all k ≥ N we have

‖u − yn(k)‖ + ‖u − zn(k)‖ ≤ λ
(
‖x − yn(k)‖ + ‖x − zn(k)‖

)
+ ε. �

Lemma 8.3.9 Let X be a separable Banach space and λ > 1. If the pair
(H, X) satisfies Σ1(λ) for every hyperplane H of X then so does (Y, X) for every
closed subspace Y ⊂ X.

Proof If (Y, X) fails to have property Σ1(λ) then there exist types σ, τ

supported on Y , ε > 0 and xε ∈ X such that for all y ∈ Y we have

σ(y) + τ(y) > λ(σ(xε) + τ(xε)) + 2ε.
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Let D = {x ∈ X : σ(x) + τ(x) < λ(σ(xε) + τ(xε)) + ε}. Note that xε ∈ D. Since
D + εBX does not meet Y we can arrange the geometric form of the Hahn–
Banach theorem to obtain x∗ ∈ X∗ such that Y ⊂ ker x∗ and 〈x∗, x〉 > 0 for all
x ∈ D. Thus, (ker x∗, X) also fails to have Σ1(λ). �

The following result should be compared with the theorem in Section 8.8.3.

Theorem 8.3.10 Let X be a separable Banach space. The following are
equivalent:

(i) For every hyperplane H ⊂ X and every λ > 1, every operator τ : H −→ c
admits a λ-extension.

(ii) For every hyperplane H ⊂ X and every λ > 1, the pair (H, X) has property
Σ1(λ).

(iii) For every subspace Y ⊂ X and every λ > 1, the pair (Y, X) has property
Σ1(λ).

(iv) X has the almost isometric C -extension property.

Proof The proof is an assembly of previous results. The implications (iv) =⇒

(i) and (iii) =⇒ (ii) are trivial. The implication (ii) =⇒ (iii) is the content of
Lemma 8.3.9, and Theorem 8.3.6 provides both (iv) =⇒ (iii) and (i) =⇒ (ii).
Thus, it suffices to show that (iii) =⇒ (iv), which is an easy consequence of
Lemma 8.3.3 inlaid with Lemma 8.3.5. To see why, let τ : Y −→ E be a C -
valued operator, λ > 1 and let (λn) be a sequence with λn > 1 for every n and
such that

∏
n≥1 λn ≤ λ. Let (Yn)n≥0 be an increasing sequence of subspaces of X

such that Y0 = Y , each Yn has codimension 1 (or 0) in Yn+1 and
⋃

n Yn is dense
in X. Assume that τ has been extended to a linear operator τn : Y −→ E, with
‖τn‖ ≤

∏
1≤k≤n λk. Since (Yn, X) has property Σ(λn+1), Lemma 8.3.3 provides

an extension τ̃n : Yn+1 −→ E with Lipschitz constant at most
∏

1≤k≤n+1 λk.
Applying Lemma 8.3.5, we get a linear extension, say τn+1 : Yn+1 −→ E, with
‖τn+1‖ ≤

∏
1≤k≤n+1 λk. Continuing in this way, we arrive at a linear extension

on
⋃

n Yn bounded by λ, and we are done. �

Kalton’s First Reading and Property (L∗)

No matter if one is aware or not, part of c0’s dowry in the proof of the Linden-
strauss–Pełczyński theorem is that weak*-null sequences (xn)n≥1 in `1 behave
this way: for every x ∈ `1, we have

lim
n→∞

(
‖x − xn‖ − ‖xn‖ − ‖x‖

)
= 0. (8.14)

Kalton reads this condition two times. The first reading [273] is in the language
of types: if σ is a weak*-null type on `1 (that is, one realised by a weak*-null
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sequence) then one has σ(x) = σ(0) + ‖x‖, and therefore c0 (not `1!) has the
following property:

Definition 8.3.11 A Banach space X has property (L∗) if any two weak*-null
types on X∗ that agree at the origin are equal.

Thus, f ∈ X∗ 7−→ ‖ f ‖ is to be the only type on X∗ vanishing at 0, and so the
idea could cross one’s mind that f 7−→ c+‖ f ‖ is the only type taking the value c
at 0. This is false, but only because we cannot guarantee that c + ‖ · ‖ is a type
(types do not form a vector space). Property (L∗) can be stated equivalently
with inequalities, namely, if σ and τ are weak*-null types on X∗ and σ(0) ≤
τ(0) then σ ≤ τ. The proof is trivial. This property is not as innocent as it
seems: if X has property (L∗) then all types σ on X∗ are symmetric (i.e. σ( f ) =

σ(− f ) since σ( f ) = σ(0) + ‖ f ‖) and therefore all bidual types (i.e. all types
having the form σ( f ) = ‖ f + g‖ for some g in the bidual of X∗) are symmetric.
Maurey shows [357] that this implies that X∗ contains `1.

Proposition 8.3.12 Every C -valued operator defined on a subspace of a
separable space with property (L∗) admits a 1+-extension to the whole space.

Proof Let X be a separable space with property (L∗). Given two weak*-null
types σ, τ on X∗ and u∗, v∗ ∈ X∗, there exists 0 ≤ θ ≤ 1 such that

max{σ(w∗), τ(w∗)} ≤ max{σ(u∗), τ(v∗)} (8.15)

whenever w∗ = (1 − θ)u∗ + θv∗. Indeed, assume without loss of generality
‖u∗‖ ≤ ‖v∗‖. Property (L∗) and θ = 1 yield σ(v∗) ≤ τ(v∗). To conclude, use
Theorem 8.3.10 after the next lemma. �

Lemma 8.3.13 If inequality (8.15) holds, every c-valued operator defined on
a hyperplane of X admits a 1+-extension to X.

Proof With the same notation as in Lemma 1.8.4, if KM = lim supM Kn then
all we need to show is that

⋂
M KM , ∅. Since H is an hyperplane of X, it

suffices to prove that KM ∩ KN , ∅ for any two infinite subsets M,N ⊂ N.
Indeed, let C = {M : KM is convex}; by Helly’s theorem,

⋂
M∈C KM , ∅. But

the second assertion of Lemma 1.8.4 implies that also
⋂

M KM , ∅. For
every n ∈ N, pick fn ∈ Kn with ‖ fn‖ = 1. The sequence ( fn)n∈M contains a
subsequence ( fn)n∈M1 that is weak*-convergent to some point, say, x∗. Anal-
ogously, the sequence ( fn)n∈N contains a subsequence ( fn)n∈N1 that is weak*-
convergent to some point, say, y∗. By an argument ‘à la Brunel-Sucheston’,
there is no loss of generality in assuming that for every z∗ ∈ [x∗, y∗], the limits
limM1 ‖z

∗ + fn − x∗‖ and limN1 ‖z
∗ + fn − x∗‖ exist. By condition (8.15), there

exists some u∗ = (1 − θ)x∗ + θy∗ such that
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max
{

lim
M1
‖u∗ + fn − x∗‖, lim

N1
‖u∗ + fn − x∗‖

}
≤ 1.

Since y∗− x∗ ∈ H⊥, it follows that u∗− x∗ ∈ H⊥, and therefore u∗+ fn− x∗ ∈ Kn

for large n ∈ M1. Similarly, u∗ + fn − y∗ ∈ Kn for large n ∈ N1. Taking weak*-
limits, we have u∗ ∈ KM1 ∩ KN1 . �

Since c0 has property (L∗), we recover the Lindenstrauss–Pełczyński the-
orem 8.2.1 from Proposition 8.3.12 with sharp bounds. Besides, it is nearly
obvious that the `p-spaces have property (L∗): if σ : `q −→ R is a weak*
(= weak) null type and f ∈ `q then

σ( f ) =
(
σ(0)q + ‖ f ‖q

)1/q
. (8.16)

In this way, Proposition 8.3.12 implies that isometries Y −→ `p are (1+,C )-
trivial (compare with Proposition 8.1.3 (a)).

Proposition 8.3.14 Let X be a Banach space with property (L∗) whose dual
is separable. Every C -valued operator defined on a weak*-closed subspace of
X∗ admits a 1+-extension.

Proof The goal is to show that property (L∗) implies that for every weak*-
closed subspace E of X∗, the pair (E, X∗) has all properties Σ1(λ) for λ > 1. In
view of Lemma 8.3.8, it suffices to see that if σ, τ are types on X∗, supported
on E, then

inf
u∗∈E

(σ(u∗) + τ(u∗)) = inf
x∗∈X∗

(σ(x∗) + τ(x∗)) . (8.17)

Observe that since all weak*-null types σ : X∗ −→ R are symmetric (i.e. they
are even maps), given u∗, v∗ ∈ X∗, we have

σ

(
u∗ − v∗

2

)
+ σ

(
v∗ − u∗

2

)
≤ σ(u∗) + σ(v∗).

Let us show that ‘the same’ happens with any two weak*-null types σ, τ,
namely that given points u∗, v∗, there exists θ ∈ [0, 1] such that

σ
(
θ(u∗ − v∗)

)
+ τ

(
(1 − θ)(v∗ − u∗)

)
≤ σ(u∗) + τ(v∗). (8.18)

Indeed, taking θ ∈ [0, 1] such that (1 − θ)σ(0) = θτ(0), we have

σ (θ(u∗ − v∗)) = lim ‖θu∗ − θv∗ + x∗n‖

≤ lim ‖θu∗ + θx∗n‖ + lim ‖ − θv∗ + (1 − θ)x∗n‖

= lim ‖θu∗ + θx∗n‖ + lim ‖θv∗ + θy∗n‖

= θ (σ(u∗) + τ(v∗)) .
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Analogously, τ ((1 − θ)(v∗ − u∗)) ≤ (1−θ) (σ(u∗) + τ(v∗)) .We finally show that
(8.18) implies (8.17). Let E be a weak*-closed subspace of X∗ andσ, τ : X∗ −→
R arbitrary types supported on E. Since the unit ball of E is weak*-compact,
for some e∗, f ∗ ∈ E, we have that σ0(x∗) = σ(x∗ + e∗) and τ0(x∗) = τ(x∗ + f ∗)
are weak*-null types on X∗. For arbitrary x∗ ∈ X∗, taking u∗ = x∗ − e∗ and
v∗ = x∗ − f ∗, it is possible by (8.18) to find some θ ∈ [0, 1] such that

σ0 (θ( f ∗ − e∗)) + τ0 ((1 − θ)(e∗ − f ∗)) ≤ σ0(x∗ − e∗) + τ0(x∗ − f ∗).

Put w∗ = (1 − θ)e∗ + θ f ∗) to conclude that σ(w∗) + τ(w∗) ≤ σ(x∗) + τ(x∗). �

Even if our next assertion does not mean much at this moment, we want
to remark that the Johnson–Zippin theorem 8.6.2 can be derived from here.
The interest of this remark is to observe that Proposition 8.3.12 unifies most
classical results on the extension of C -valued operators. But since we did not
arrive thus far merely to reprove oldies, the next section will contain different,
and quite spectacular, applications.

8.4 Sequence Spaces with the C -Extension Property

Many familiar sequence spaces, including most Orlicz sequence spaces and
modular spaces, can be renormed to have property (L∗). This furnishes us with
a significant number of spaces having the C -extension property, something
quite remarkable when one considers how difficult it is to establish the C -
extension property for those spaces in their native norms, and more remarkable
yet when we take into account that we will actually use not property (L∗) but
instead a close relative:

Definition 8.4.1 A Banach space has property (L) if any two weakly null
types that agree at the origin are equal.

As the reader can imagine, some work is necessary to relate properties (L)
and (L∗) since, at first glance, the latter depends on the behaviour of weak*-
null sequences of X∗, while the former depends on the behaviour of weakly
null sequences in X. All the connection we need is provided by:

Proposition 8.4.2 A Banach space with a 1-unconditional shrinking basis
and property (L) also has property (L∗).

The shrinking property of the basis is necessary: the space `1 obviously has
property (L) and clearly fails (L∗). Before beginning the proof, let us isolate
the key fact linking weak*-null types on X∗ and weakly null types on X:
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Lemma 8.4.3 Assume X has a 1-unconditional, shrinking basis. Suppose that
(xn)n≥1 is weak*-null in X∗ and that u∗ ∈ X∗ is such that limn ‖u∗ + x∗n‖ exists.
Then there is an infinite M ⊂ N, a weakly null sequence (xm)m∈M in the unit
ball of X and a point u ∈ X such that ‖u + xm‖ = 1 for all m ∈M and

〈u∗, u〉 + lim
m∈M
〈x∗m, xm〉 = lim

n∈N
‖u∗ + x∗n‖. (8.19)

Proof of the lemma Let (en)n≥1 be the basis of X which we consider nor-
malised. The hypotheses guarantee that the coordinate functionals (e∗n) con-
stitute a basis of X∗. Thus, we may assume that (x∗n)n is a block sequence and
also that u∗ is finitely supported, say u∗ =

∑
1≤i≤k uie∗i . In particular, x∗n and u∗

are ‘disjoint’ for n > k. Now, using the 1-unconditional property of the basis,
for each n, we can pick a normalised vn ∈ X such that

〈u∗ + x∗n, vn〉 = ‖u∗ + x∗n‖, supp(vn) ⊂ supp(u∗ + x∗n).

Let P =
∑

1≤i≤k e∗i ⊗ ei be the projection of X onto the first k coordinates, and
let M ⊂ N be an infinite subset for which the limit u = limn∈M P(vn) exists in
the norm topology of X. Now, set xn = vn − u. Clearly, ‖u + xn‖ = 1 for all n,
while (xn)n∈M is weakly null, with ‖xn‖ ≤ 1 for all n. The proof concludes with

‖u∗+ x∗n‖ = 〈u∗+ x∗n, vn〉 = 〈u∗+ x∗n, u+ xn〉 = 〈u∗, u〉+〈u∗, xn〉+〈x∗n, u〉+〈x
∗
n, xn〉.

�

Proof of Proposition 8.4.2 It suffices to check that if (x∗n) and (y∗n) are nor-
malised weak*-null sequences of X∗ then

lim
n→∞
‖u∗ + x∗n‖ ≤ lim

n→∞
‖u∗ + y∗n‖,

as long as both limits exist. Let us apply the just proved lemma to (x∗n) and u∗

to get an infinite subset M ⊂ N, a weak*-null sequence (xn)n∈M and a u ∈ X,
such that ‖u + xn‖ = 1 for all n ∈M and

〈u∗, u〉 + lim
n∈M
〈x∗n, xn〉 = lim

n∈N
‖u∗ + x∗n‖.

Applying the lemma a second time to (y∗n)n∈M and 0 ∈ Y∗, we obtain an
infinite L ⊂ M and a normalised weakly null sequence (yn)n∈L such that
limn∈L〈y∗n, yn〉 = 1. Since (‖xn‖yn)n∈L is weakly null, the property (L) of X
yields limn∈L

∥∥∥u + ‖xn‖yn

∥∥∥ = 1. Thus,

lim
n∈L
‖u∗ + y∗n‖ ≥ lim sup

n∈L

〈
u∗ + y∗n, u + ‖xn‖yn

〉
≥ 〈u∗, u〉 + lim sup

n∈L
‖xn‖

≥ 〈u∗, u〉 + lim
n∈L
‖xn‖ ≥ 〈u∗, u〉 + lim

n∈L
〈x∗n, xn〉

= lim
n∈L
‖u∗ + x∗n‖. �
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We are ready to display Banach spaces with shrinking basis and property
(L). Start with a sequence of finite-dimensional spaces (Vk)k≥1. For each k, let
Nk be a norm on R × Vk (not Vk!) having the following properties:

F Nk(t, x) ≥ max
(
Nk(t, 0),Nk(0, x)

)
for every t ∈ R and every x ∈ Vk,

F Nk(1, 0) = 1 and Nk(−t, x) = Nk(t, x) for every (t, x) ∈ R × Vk.

Next, we define an upper triangular infinite matrix of seminorms (Nm,n)m≤n on
the space c00(Vk) as follows:

• For (n, n) on the diagonal, we set Nn,n(v) = Nn(0, vn), where v = (vk)k≥1.
• Then, if (m, n) is above the diagonal, that is, if m < n, we inductively define

Nm,n(v) = Nm(Nm+1,n(v), vm) until reaching the diagonal from above.

We define a genuine norm on c00(Vk) by taking ‖v‖L = supm≤n Nm,n(v). Let ΛL

be the completion of c00(Vk) with respect to ‖ · ‖L. It is clear that each ΛL can
be regarded as the space of all infinite sequences v = (vk)k≥1 such that

• ‖v‖L = supk ‖(v1, . . . , vk, 0, . . . )‖L < ∞,
• limk→∞ supn>k ‖(0, . . . , 0, vk, . . . , vn, 0, . . . )‖L = 0.

The time is now ripe for

Proposition 8.4.4 The space ΛL has property (L).

Proof The proof is almost trivial after realising how the norm of ΛL works.
We must see that if (yn)n≥1, (zn)n≥1 are weakly null sequences in Λ such that
the limits

σ(x) = lim
n
‖x + yn‖L and ρ(x) = lim

n
‖x + zn‖L

exist for every x ∈ ΛL and σ(0) = ρ(0), then σ(x) = ρ(x) for all x ∈ ΛL.
After a moment’s reflection, we see that it suffices to prove our statements
for finitely supported x assuming that yn and zn are finitely supported and that
the sequences (yn)n≥1, (zn)n≥1 have the property that for each k there is m such
that yn

i = zn
i = 0 for i ≤ k and n ≥ m. Besides, we may and do assume that

‖yn‖L = ‖zn‖L = σ(0) = ρ(0) for all n. In this way, property (L) falls victim
to the following property of the norm of ΛL: if x, y, z are finitely supported
vectors such that

• there is an m such that xi = 0 for i > m, while yi = zi = 0 for i ≤ m, and
• ‖y‖L = ‖z‖L,
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then ‖x + y‖L = ‖x + z‖L. Note that the crucial hypothesis is that when the
supports of y and z ‘start’, x is already null. To prove this, note that one has
Nm,n(v) ≥ Nm+1,n(v) by the very definition of the norms Nm,n when m < n, so
‖v‖L = supn N1,n(v). On the other hand, N1,n+1(v) ≥ N1,n(v), so actually,

‖v‖L = lim
n→∞

N1,n(v).

But if vn+1 = 0 then N1,n+1(v) = N1,n(v), and so, for v = (v1, . . . , vk, 0, . . . ),

‖v‖L = N1,k(v) = N1
(
N2

(
. . .Nk−1

(
Nk(0, vk), vk−1

)
. . . , v2

)
, v1

)
. (8.20)

Now, if k is so large that we can compute the L-norm of the points x, y, z, x +

y, x + z using N1,k, then

‖x + y‖L = N1
(
N2

(
. . .Nm

‖y‖L︷                              ︸︸                              ︷
(Nm+1(. . .Nk(0, yk), . . . ym+1), xm) . . . , x2

)
, x1

)
,

‖x + z‖L = N1
(
N2

(
. . .Nm (Nm+1(. . .Nk(0, zk), . . . zm+1)︸                              ︷︷                              ︸

‖z‖L

, xm) . . . , x2
)
, x1

)
,

hence if ‖y‖L = ‖z‖L then the proof is complete by showing

‖x + y‖L = N1(N2(. . .Nm(‖y‖L, xm) . . . , x2), x1)

= N1(N2(. . .Nm(‖z‖L, xm) . . . , x2), x1)

= ‖x + z‖L. �

To identify the spaces ΛL as modular sequence spaces, one can consider
the family of functions Φk : Vk −→ R+ given by Φk(x) = Nk(1, x) − 1. It is
clear that each Φk is a Young function and so it makes sense to consider the
corresponding modular space

h((Φk)k) =

v ∈
∏
k≥1

Vk :
∞∑

k=1

Φk(tvk) < ∞ for all t > 0


(see Section 1.8.2) with the Luxemburg norm

‖v‖(Φk)k = inf

t > 0 :
∞∑

k=1

Φk(vk/t) ≤ 1

 .
Proposition 8.4.5 One has ΛL = h((Φk)k), with equivalence of norms.

Proof We first prove that h((Φk)k) contains ΛL, and that the inclusion is
bounded. Assume v ∈ ΛL, with ‖v‖L ≤ 1. Then, for 1 ≤ k < n, using that
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Nk+1,n(v) ≤ 1 and the convexity of Φk, we have

Nk,n(v) = Nk(Nk+1,n(v), vk))

= Nk+1,n(v)Nk

(
1,

vk

Nk+1,n(v)

)
= Nk+1,n(v)

(
1 + Φk

(
vk

Nk+1,n(v)

))
(8.21)

= Nk+1,n(v) + Nk+1,n(v) Φk

(
vk

Nk+1,n(v)

)
≥ Nk+1,n(v) + Φk(vk).

Thus, for each n ≥ 1,

1 ≥ N1,n(v) =

n−1∑
k=1

(
Nk,n(v) − Nk+1,n(v)

)
≥

n−1∑
k=1

Φk(vk).

It quickly follows that v ∈ h((Φk)), with norm at most 1. To prove the other
inclusion, first suppose that v = (vk) is finitely non-zero and that

∑
k Φk(vk) < 1,

and let us see that ‖v‖L ≤ 2e. If ‖v‖L ≤ 2, there is nothing to prove. Note that
Nn,n(v) = Nn(0, vn) ≤ Nn(1, vn) = 1 + Φn(vn) ≤ 2, thus if ‖v‖L > 2 then
Nm,n(v) > 2 for some m < n. Let r be the smallest index such that Nr,n(v) ≤ 2.
Clearly, m < r ≤ n. We have

Nr−1,n(v) = Nr−1(Nr,n(v), vr−1) ≤ Nr−1(2, vr−1) ≤ 2(1 + Φr−1(vr−1/2)),

and then, for any m < j < r,

N j−1,n(v) = N j−1(N j,n(v), v j−1) ≤ N j,n(v)(1 + Φ j−1(v j−1/2)).

Hence,

Nm,n(v) ≤ 2
r−1∏
k=m

(1 + Φk(vk)) ≤ 2e,

as required. Now assume v ∈ h((Φk)), that is,
∑

k≥1 Φk(tvk) < ∞ for all t > 0.
Then, for every ε > 0, there is an r such that

∑
r<k Φk(2evk/ε) < ∞. Thus, for

r < k < n and v ∈ ΛL, we have ‖(0, . . . , 0, vk, . . . , vn, 0, . . . )‖L < ε. �

What have we obtained? That all modular sequence spaces and all Fenchel–
Orlicz spaces fall within the range of application of Proposition 8.4.5! We first
give the proof for modular spaces to then provide a description of the argument
for Fenchel–Orlicz spaces, which is long and winding, although not terribly
difficult.

https://doi.org/10.1017/9781108778312.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.010


8.4 Sequence Spaces with the C -Extension Property 399

Corollary 8.4.6 Let Φk : Vk −→ R+ be a sequence of Young functions, where
each Vk is a finite-dimensional space. Assume that for each k, there is a norm
Nk on R × Vk such that, for every x ∈ Vk,

• Nk(s, x) ≤ Nk(t, x) for |s| ≤ |t|,
• Nk(1, x) = 1 + Φk(x).

Then ΛL((Nk)) = h((Φk)), with equivalence of norms.

Proof This is a direct consequence of Proposition 8.4.5, since the norms Nk

clearly have the properties marked withF at the begining of this section. �

Theorem 8.4.7 Every modular sequence space h((φk)k) has an equivalent
norm with property (L). If h((φk)k) has separable dual then this norm has
property (L∗) as well.

Proof We can assume that φk(1) = 1 for every k. This implies that the right
derivative of each φk at 1

2 is at most 2. Then we only need to replace the
sequence (φk) with an equivalent sequence (ϕk) where each ϕk has the form
ϕk(t) = Nk(1, t) − 1, where each Nk a is norm on R2 satisfying the hypotheses
of Corollary 8.4.6. We will choose ϕk to be convex, with (ϕk(t)+1)/t decreasing
for t > 0, say

ϕk(t) =

φk(t) for 0 ≤ t ≤ 1
2

φk( 1
2 ) + 2(t − 1

2 ) for t ≥ 1
2 .

Now we define the required norm on R2 by

Nk(s, t) =

|s|
(
1 + φk(|t|/|s|)

)
for s , 0

2|t|, for s = 0.

This concludes the proof of the first part. The second statement is implied
by Proposition 8.4.2 and James’ classical result [216] asserting that a Banach
space with unconditional basis has separable dual if and only if it does not
contain `1 and if and only if the given (or any other) basis is shrinking. �

Proposition 8.4.8 Every modular sequence space not containing `1 has the
C -extension property.

Note that degenerate Young functions have not been excluded so that c0 can
be considered as the modular space generated by the function ϕ(t) = 2(t − 1

2 )
for t ≥ 1

2 and ϕ(t) = 0 for 0 ≤ t ≤ 1
2 . Thus, finite products X1 × · · · × Xk,

where each Xi is either c0 or `p, with 1 < p < ∞, can be renormed to enjoy the
almost isometric C -extension property. Observe that there is no direct proof
for this fact because, in general, neither do the spaces `p ⊕s `r have property
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(L∗), nor is the duality map weakly continuous (even when p = s = 2, r = 4).
We conclude with the case of Fenchel–Orlicz spaces, thus providing a shallow
description of the fourth section of [12]:

Proposition 8.4.9 Every Fenchel–Orlicz space not containing `1 and built on
a non-degenerate Young function has the C -extension property.

These include the spaces `p(ϕ) for p > 1, by Theorem 10.8.1. The key point
is that each non-degenerate Young function Φ : Rn −→ R+ is equivalent near
zero to another Young function Ψ that arises as Ψ(x) = N(1, x)− 1, where N is
a norm on R × Rn satisfying the first condition of Corollary 8.4.6. The proof,
which requires considerable skill in convex geometry, goes as follows. Let B
be the Euclidean ball of Rn. Starting with a Young function Φ : Rn −→ R+

vanishing only at zero, one constructs an even, convex function Γ : B −→ R+

vanishing only at zero, which is C1 away from zero and equivalent to Φ on B.
The lion’s share of the proof consists of showing that Γ can be extended from
a neighbourhood of zero to a Young function Ψ : Rn −→ R+ such that

• for each x ∈ Rn, the map t 7−→ (1 + Ψ(tx))/t is decreasing on R+,
• the function x 7−→ limt→∞(1 + Ψ(tx))/t is a norm on Rn.

The function Ψ, which is again equivalent to Φ near zero, is finally used to
define a norm N on R × Rn through the formula

N(s, x) =

|s| (1 + Ψ (x/|s|)) , if s , 0,

limt→0 |t| (1 + Ψ (x/|t|)) , otherwise.

From this, it is clear that N(s, x) ≤ N(t, x) for |s| ≤ |t| and also that N(1, x) =

1+Ψ(x) for all x ∈ Rn. Corollary 8.4.6 then implies that h(Φ) = h(Ψ) = ΛL(N).
Whether the result remains true for families of Young functions is unclear
because the size of the neighbourhood of zero in the second step seems to
depend on the given Young function.

8.5 C -Extensible Spaces

Since, because of Lemma 1.6.2, C(∆) contains 1-complemented copies of all
separable C -spaces as well as isometric copies of all separable Banach spaces,
C -extendibility is a game played in C(∆): X is C -extensible if and only if
every operator τ : X −→ C(∆) extends to C(∆) through whatever embedding
X −→ C(∆). As we know, every separable Banach space X admits some
C -trivial embedding into C(∆): the composition of the canonical embedding
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δ : X −→ C(B∗X) with an isomorphism between C(B∗X) and C(∆). To be
C -extensible means that all embeddings into C(∆) are C -trivial. Sobczyk’s
theorem records c0 as the first C -extensible space, while the Lindentrauss–
Pełczyński theorem files all its subspaces in the list of C -extensible spaces.
The following result is, formally at least, a generalisation of both. A crucial
step in its proof is the use of a homogeneous Zippin selector. Upgrading Zippin
selectors in this manner is possible for separable Banach spaces (see Note
8.8.1) but far from trivial.

Lemma 8.5.1 If E is C -extensible then so is c0(E).

Proof Assume c0(E) has been embedded as a subspace of a separable Y , and
let πn : c0(E) −→ E be the projection onto the nth-coordinate; when necessary,
we will write En = πn[c0(E)]. Let (Fk) be an increasing sequence of finite-
dimensional subspaces of Y spanning a dense subspace and such that F1 = 0,
Fk ∩ c0(E) = 0. Let Wk = Fk + c0(E).

Claim For each k, there is n0(k) such that for all n ≥ n0(k), the operator
Tn : Wk −→ E defined as f + z 7−→ πn(z) has norm at most 2 + ε.

Proof of the claim If not, for some k, there are sequences ( fn) ⊂ Fk, (zn) ⊂
c0(E) and (m(n)) ⊂ N such that ‖ fn + zn‖ < 1 but πm(n)(zn) > 2 + ε. Since
Fk ∩ c0(E) = 0, the sequence ( fn) is bounded and it must contain a convergent
subsequence, which, after relabelling, is itself. But this is in contradiction with
the fact that ‖zm − zn‖ > 2 + ε for large m, which means ‖ fm − fn‖ > ε. �

Let Tn : Fk(n) + c0(E) −→ E be the operators Tn( f + z) = πn(z) with ‖Tn‖ ≤

2 + ε. Consider the pushout diagrams

0 // Wk(n)

Tn

��

// Y

τn

��

// Z // 0

0 // E
ın // POn // Z // 0

The open mapping theorem implies that every embedding  : E −→ C(∆)
comes with a constant

λ  = inf
{
λ : ∀τ ∈ L(E,C(∆)) ∃ T ∈ L(C(∆)) such that τ = T  , ‖T‖ ≤ λ‖τ‖

}
.

Showing that sup  λ  < ∞ is a bit trickier. Let n be a sequence of ‘uniform’
embeddings, each with constant λn. Form their (multiple) pushout PO, and
let ı : E −→ PO be the resulting embedding. Since PO is separable, pick
‘the canonical’ embedding δ : PO −→ C(∆) and then the embedding  =

δı. It is clear that λ  ≥ supn λn, which shows the assertion. Returning to
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the proof, we have obtained a constant λ such that the lower sequences in
the preceding diagram (λ,C )-split and therefore all of them admit λ-Zippin
selectors. For the time being, we will take for granted the existence of a
homogeneous λ-Zippin selector ψn for ın. With its aid, we can define a
homogeneous map φn : c0(E)∗ −→ Y∗ in the form φn(z∗) = τ∗nψn(z∗|En ). This
map is weak*-continuous on bounded sets and satisfies the estimate ‖φn(z∗)‖ ≤
(2+ε)λ‖π∗n(z∗)‖ since ‖τn‖ ≤ 1 (by the usual properties of pushouts). Moreover,
if z ∈ c0(E) and z∗ ∈ c0(E)∗ then

〈φn(z∗), z〉 = 〈τ∗nψn(z∗|En ), z〉 = 〈ψn(z∗|En ), τnz〉 = 〈ψn(z∗|En ), ınπnz〉 = 〈z∗, πn(z)〉.

Now define ω : c0(E)∗ −→ Y∗ by ω(z∗) =
∑
φn(z∗); this has ‖ω‖ ≤ (2 + ε)λ and

is a selector since ω(z∗)(z) = z∗. Moreover, it is weak*-continuous on bounded
sets: if f ∈

⋃
Fk then eventually, Tn f = 0. Thus, z∗ 7−→ ω(z∗)( f ) is weak*-

continuous on bounded sets, as well as ω. �

Now, the typical 3-space result:

Lemma 8.5.2 C -extensibility is a 3-space property.

Proof Let X be a Banach space with a C -extensible subspace Y such that
X/Y is C -extensible. Let τ : X −→ E be a C -valued operator and  : X −→ U
an embedding in which U is separable. Consider the commutative diagram

0

��

0

��
Y

��

Y

��
0 // X

π

��

 // U

π

��

// U/ [X] // 0

0 // X/Y
 //

��

U/ [Y]

��

// U/ [X] // 0

0 0

We sympathise with any reader believing this is groundhog day, since this
diagram is formally identical to those that already appeared in the proofs of
Theorem 8.2.1 and Lemma 2.14.3 (central diagram; the hypotheses now are
about sequences 2 and 4 and the thesis about sequence 1); moreover, we will
proceed exactly as we did then: we first extend τ|Y to an operator T1 : U −→ E
such that T1( (y)) = τ(y) for y ∈ Y . As the difference τ − T1  vanishes on Y ,
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there is a τ2 : X/Y −→ E such that τ − T1  = τ2 π. If T2 : U/ [Y] −→ E is an
extension of τ2 through  then T = T1 + T2 π is the required extension of τ. �

Kalton’s Second Reading and the Secret Life of `1

We now show that `1 is also C -extensible. To understand why, let us recall that
the key fact (8.14) about weak*-null sequences of `1 that appears during the
proof of the Lindenstrauss–Pełczyński theorem was transformed in Kalton’s
hands into property (L∗). In that same paper, Kalton returned to the crime scene
and read it again in a new way: let σ : `1 −→ R+ be any type defined by a
bounded sequence (xn). The sequence can be assumed to be weak*-convergent
to some point u ∈ `1, hence (xn − u) is weak*-null, and we have

lim
n→∞

(
‖x + u − xn‖ − ‖u − xn‖ − ‖x‖

)
= 0

for every x ∈ `1. Replacing x by x − u yields

lim
n→∞

(
‖x − xn‖ − ‖u − xn‖ − ‖x − u‖

)
= 0,

equivalently, σ(x) − σ(u) = ‖x − u‖. This peculiarity of `1 deserves a name:

Definition 8.5.3 A Banach space X has the m1-type property if, for every
type σ on X, there exists u ∈ X such that for all x ∈ X, we have

σ(x) = ‖x − u‖ + σ(u).

Of course, `1 has the m1-type property. It is not the first time we have
encountered something similar: recall from (8.16) that `p spaces, 1 < p < ∞,
have the analogous property that any type σ : `p −→ R+ has the form
σ(x) =

(
‖x−u‖p+σ(u)p)1/p. The exact value of p is essential because (compare

with Proposition 8.5.8):

Theorem 8.5.4 A separable Banach space with the m1-type property is C -
extensible. In particular, `1 is C -extensible.

Proof We shall proceed in two steps. The first step is a construction that
allows one to replace a given nasty enlargement by a more pleasant one. The
trick for doing that is as follows. Let Z be a Banach space with a subspace X.
An X-seminorm on Z is a convex, symmetric function ϕ : Z −→ [0,∞) such
that

• ϕ(z) ≤ ‖z‖ for z ∈ Z,
• ϕ(x) = ‖x‖ for x ∈ X.
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Observe that a minimal X-seminorm (with respect to the pointwise order)
is actually a seminorm on Z, because if 0 < t < 1 then φ(y) = t−1ϕ(ty)
defines another X-seminorm with φ ≤ ϕ. Hence φ = ϕ and since tφ(tx) =

ϕ(ttx) = φ(ttx), it follows that tφ(x) = φ(tx) for |t| < 1. For t > 1, just set
φ(tx) = φ(t−1ttx) = t−1φ(ttx) to get tφ(tx) = φ(ttx) and we are done again. So,
ϕ(tx) = |t|ϕ(x) for t real, and it is in fact a seminorm. Let ϕ be any minimal
X-seminorm on Z and let Zϕ be the completion of Z/ kerϕ with respect to the
induced norm. It is clear that there is a contractive operator Z −→ Zϕ whose
restriction to X is an isometry:

Z

contraction
��

X
inclusion

33

isometry ** Zϕ

Thus, it suffices to show that C -valued operators on X admit 1+-extensions to
Zϕ. Before going any further, let us remark that Zϕ has the property that the only
X-seminorm on Zϕ is the norm itself. Clearly, Zϕ is separable. Let (Zn)n≥0 be
an increasing sequence of subspaces of Zϕ whose union is dense, with Z0 = X
and dim Zn+1/Zn = 1 for n ≥ 1. Now, the plan is to prove that each C -valued
operator on Zn has a 1+-extension to Zn+1. To do this, it suffices to show that for
every n ≥ 0, the pair (Zn,Zϕ) has property Σ1(λ) for all λ > 1, and then to apply
Lemma 8.3.3 followed by Lemma 8.3.5. We get the idea, right? So the proof
will be complete after showing that for each n ≥ 0, the pair (Zn,Zϕ) satisfies
the inequality (8.13) of Lemma 8.3.8 for λ = 1. Fix n ≥ 0 and let σ be any
type on Zϕ that is supported on Zn. Since Zn/X is finite-dimensional, there is a
u0 ∈ Zn such that σ(z) = σ′(z − u0) for some type σ′ supported on X. Since X
has the m1-type property, there exists u1 ∈ X such that σ′(x)−σ(u1) = ‖x−u1‖

for all x ∈ X. Letting u = u0 +u1, define σ0 : Zϕ −→ [0,∞) by σ0(z) = σ(z+u).
Then, for x ∈ X, we have σ0(x) = ‖x‖ + σ(u) and, in general,

σ0(z) ≤ σ0(0) + ‖z‖ = σ(u) + ‖z‖. (8.22)

Consider the function

ψ(z) =
σ0(z) + σ0(−z) − 2σ(u)

2
.

This is an X-seminorm on Zϕ: that it is convex and symmetric is obvious;
similarly that ψ(0) = 0, and since Lip(ψ) = 1, we have ψ(z) ≤ ‖z‖ and, clearly,
ψ(x) = ‖x‖ for all x ∈ X. But every X-seminorm on Zϕ is actually the norm, and
so ψ(z) = ‖z‖ for all z ∈ Zϕ. Taking (8.22) into account, it quickly follows that
σ0(z)−σ(u) = ‖z‖ for all z ∈ Zϕ, which can be written as σ(z) = ‖z−u‖+σ(u).

https://doi.org/10.1017/9781108778312.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.010


8.5 C -Extensible Spaces 405

Finally, if β is another type on Zϕ that is supported on Zn, then one can find
v ∈ Zn such that β(z) = ‖z − v‖ + β(v). Hence,

σ(u) + β(u) = σ(u) + β(v) + ‖u − v‖

≤ σ(u) + β(v) + ‖z − u‖ + ‖z − v‖

= σ(u) + β(v) + σ(z) − σ(u) + β(z) − β(v)

= σ(z) + β(z). �

Speechless? What has actually been proved is

Corollary 8.5.5 Every C -valued operator defined on a separable space with
the m1-type property admits a 1+-extension to every separable superspace.

The 3-space argument given in Lemma 8.5.2 immediately yields that weak*-
closed subspaces of `1 are C -extensible because spaces of the form `1(N, Fn)
with each Fn finite-dimensional have the m1-type property and thus they must
be C -extensible, while each weak*-closed subspace of `1 is a twisted sum
of two subspaces of that form (Proposition 5.3.1). This argument does not,
however, provide an estimate for the norm of the extending operator; on the
other hand, that is unnecessary since Theorem 8.5.4 and Proposition 8.3.14
combine to yield 1+ in all cases! It is perhaps about time to present the carnival
parade of all C -extensible spaces currently known:

Theorem 8.5.6 The following Banach spaces are C -extensible:

• c0 and all its subspaces,
• `1 and all its weak*-closed subspaces,
• all spaces with property (L*) as well as their duals,
• every space with the m1-type property,
• c0(E) for every E in the list,
• twisted sums of two spaces in the list.

What about `p?

It is difficult not to believe that `p spaces are C -extensible too; after all, it is
true for the extreme values p = 1,∞, no matter how we interpret the case
∞: either as c0 or, bending the rules, as `∞. So, what could go wrong in the
middle? Well, what goes wrong is that `p is not C -extensible for 1 < p < ∞.

Proposition 8.5.7 Let X be a separable Banach space containing `p, where
p ∈ (1,∞). If every C -valued operator on `p can be extended to X then X
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can be given an equivalent norm | · | such that for every weakly null type σ
supported on `p and all x ∈ X, we have(

|x |p + σ(0)p)1/p
≤ σ(x). (8.23)

Proof If the embedding `p −→ X is C -trivial then there is a homogeneous
Zippin selector ω : `q −→ X∗, where q is the conjugate exponent of p and `q is
treated as the dual space of `p. We consider the following seminorm on X:

|x|0 = sup
{
〈x, ω(u∗)〉 : ‖u∗‖q ≤ 1

}
.

It is clear that |u|0 = ‖u‖ for u ∈ `p and that |x|0 ≤ ‖ω‖ ‖x‖, where, as usual,
‖ω‖ = sup

{
‖ω(u∗)‖ : ‖u∗‖q ≤ 1

}
. Assume (un) is a weakly null sequence in `p.

We want to see that

lim inf
n→∞

(
|x|p0 + ‖un‖

p)1/p
≤ lim sup

n→∞
|x + un|0 (8.24)

for each x ∈ X. Pick normalised u∗n ∈ `q such that 〈u∗n, un〉 = ‖un‖. Fix x ∈ X
and ε > 0. Take a normalised u∗ ∈ `q such that 〈x, ω(u∗)〉 = |x|0. We have〈

x + un, ω(u∗ + εu∗n)
〉
≤ ‖u∗ + εu∗n‖ |x + un|0,

hence

lim inf
n→∞

〈
x + un, ω(u∗ + εu∗n)

〉
≤ lim sup

n→∞
‖u∗ + εu∗n‖ |x + un|0. (8.25)

For the terms on the right, we have lim ‖u∗+εu∗n‖ = (1+εq)1/q as we are working
in `q. The terms on the left can be decomposed as 〈x, ω(u∗+εu∗n)〉+ 〈un, ω(u∗+
εu∗n)〉 and thus limn〈x, ω(u∗ + εu∗n)〉 = 〈x, ω(u∗)〉 = |x|0 since ω is weak*-
continuous and u∗n is weak*-null, while 〈un, ω(u∗ + εu∗n)〉 = u∗(un) + ε‖un‖

because ω is a selector. Thus (8.25) implies

|x|0 + ε lim inf
n→∞

‖un‖ ≤ (1 + εq)1/q lim sup
n→∞

|x + un|0,

and Hölder’s inequality yields (8.24). Now, we introduce a true renorming on
X as follows:

|x| = inf
{
‖x − v‖ + |x − v|0 + ‖v‖ : v ∈ `p

}
.

Note that ‖x‖ ≤ |x| ≤ (1 + ‖ω‖)‖x‖ for all x ∈ X and that |x| = ‖x‖ = ‖x‖p for
x ∈ `p. This norm has ‘the same’ property as | · |0, namely that if (un) is weakly
null in `p then

lim inf
n→∞

(
|x|p + ‖un‖

p)1/p
≤ lim sup

n→∞
|x + un|0, (8.26)

which is just a restatement of (8.23). Fix (un) and x. Passing to a subsequence
if necessary, we may assume that both |x + un| and ‖un‖ converge. Choose a
sequence (vn) of points in `p such that
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lim
n
|x + un| = lim

n

(
‖x + un − vn‖ + |x + un − vn|0 + ‖vn‖

)
.

The sequence (vn) is bounded in `p. Hence, passing to further subsequences,
we may assume it is weakly convergent to, say v ∈ `p so that

lim
n
‖vn‖ = lim

n

(
‖v − vn‖

p + ‖v‖p
)1/p

.

The relevant property of | · |0 now intervenes: assuming that all limits exist,
we have

lim
n

(
|x − v|p0 + ‖un + v − vn‖

p
)1/p
≤ lim

n
|y − v + v − vn + un|0. (8.27)

In conclusion, assuming again that all limits exist, we have

lim
n
|x + un|

= lim
n

(
‖x + un − vn‖ + |x + un − vn|0 + ‖vn‖

)
≥ lim

n

(
‖x + un − vn‖ +

(
|x − v|p0 + ‖un + v − vn‖

p
)1/p

+ ‖vn‖

)
≥ lim

n

(
‖x + un − vn‖ +

(
|x − v|p0 + ‖un + v − vn‖

p
)1/p

+
(
‖v − vn‖

p + ‖v‖p
)1/p

)
≥ lim

n

((
‖x − v‖ + |x − v|0 + ‖v‖

)p
+ ‖un‖

p
)1/p

≥ lim
n

(
|x|p + ‖un‖

p
)1/p

. �

Proposition 8.5.8 The space `p is not C -extensible for 1 < p < ∞.

Proof The idea is to construct a separable enlargement X(p) of `p for which
no renorming satisfies (8.23). Let D be the dyadic tree, whose elements are
all finite sequences a = (s1, . . . , sm) of zeros and ones, including the empty
sequence, denoted by ∅. The number m is called the depth of a. The depth of ∅
is zero. Given a = (s1, . . . , sm) and b = (t1, . . . , tn), we write a � b if m ≤ n and
si = ti for 1 ≤ i ≤ m. If a � b and a , b, are write a ≺ b. A segment of D is
a finite subset of the form {a1, . . . , ak} with a1 ≺ a2 ≺ · · · ≺ ak. The collection
of all segments of D will be denoted S . Let c00(D) be the space of all finitely
supported functions ξ : D −→ K. As usual, we use ea to denote the function
that takes the value 1 at a, and zero otherwise. We consider the natural bilinear
pairing on c00(D) given by

〈ξ, η〉 =
∑
a∈D

ξ(a)η(a).

We now introduce two mutually dual norms on c00(D). The first is

‖ξ‖∗ = max
(
‖ξ‖`q(D), sup

β∈S

∑
a∈β

|ξ(a)|
)
, (8.28)
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where q−1 + p−1 = 1. This norm will play a supporting role in the construction.
The lead role is played by

‖η‖ = sup{〈ξ, η〉 : ‖ξ‖∗ ≤ 1}.

Let X(p) be the completion of c00(D) with respect to ‖·‖. Although these norms
may remind us of that of the James tree space, they are unconditional in the
sense that if η, ξ ∈ c00(D) are such that |ξ| ≤ η, then ‖ξ‖ ≤ ‖η‖ and ‖ξ‖∗ ≤ ‖η‖∗.
Clearly, if β = {a1, . . . , ak} is a segment, then ‖1β‖∗ = k and ‖1β‖ = 1. Our
immediate task is to find a copy of `p inside X(p). To this end, given a ∈ D, let
a0, a1 be the two successors of a and set ua = ea0 + ea1; that is,

ua(b) =

1 if b is a successor of a

0 otherwise.

We now prove that the sequence (ua)a∈D spans a subspace isomorphic to `p in
X(p). More precisely, we shall show that, for η ∈ c00(D), we actually have

‖η‖`p(D)

Cp
≤

∥∥∥∥ ∑
a∈D

η(a)ua

∥∥∥∥
X
≤ 21/p‖η‖`p(D), (8.29)

where Cp > 0 is a constant depending only on p. The right inequality is
obvious from (8.28). The left inequality follows from the following:

Claim For every η ∈ c00(D), there is ξ ∈ c00(D) such that 〈ξ, ua〉 = η(a) and
‖ξ‖∗ ≤ Cp‖η‖`q(D), where Cp = max

(
1, (2p − 2)−1/p).

Proof of the claim It suffices to consider the case in which η, ξ ≥ 0. For n ≥
0, let Dn be the subset of those points of D whose depth is at most n. For
fixed p, let Cn be the best constant such that, whenever η ≥ 0 is supported
on Dn, there is ξ ≥ 0 satisfying 〈ξ, uα〉 = η(a) and ‖ξ‖∗ ≤ Cn‖η‖`q(D). Note
that C0 = 1. We will estimate Cn in terms of Cn−1. Let us split Dn into three
disjoint subsets Dn = {∅} ∪ 0Dn−1 ∪ 1Dn−1, where, as should be obvious,
kDn−1 = {(a1, . . . , an) : a1 = k}, for k = 0, 1. If η is supported on Dn and we
call η(k) = η1kDn−1 for k = 0, 1 then η = η(∅)e∅ + η(0) + η(1). In view of the
obvious symmetries of the norms ‖ · ‖∗ and ‖ · ‖, and the definition of Cn−1, for
k = 0, 1, we can find ξ(k) ≥ 0, supported on kDn−1, such that

‖ξ(k)‖∗ ≤ Cn−1‖η
(k)‖`p∗ (D) and 〈ξ(k), ua〉 = η(a) for a ∈ kDn−1.

Note that for every a ∈ Dn different from ∅, we do have 〈ξ(0) + ξ(1), ua〉 = η(a).
Thus, we try to construct ξ by just tuning ξ(0) + ξ(1), keeping ξ(∅) = 0. To do
this, for k = 0, 1, let β(k) be the segment starting at (k) such that
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a∈β(k)

ξ(k)(a) = max
β∈S

∑
a∈β

ξ(k)(a).

Assume, without loss of generality, that
∑

a∈β(0) ξ(0)(a) ≤
∑

a∈β(1) ξ(1)(a). Thus,

• if η(∅) ≤
∑

a∈β(1) ξ(1)(a) −
∑

a∈β(0) ξ(0)(a), set ξ = η(∅)e(0) + ξ(0) + ξ(1);
• otherwise, set

ξ = η(∅)
e(0) + e(1)

2
+

( ∑
a∈β(1)

ξ(1)(a) −
∑

a∈β(0)

ξ(0)(a)
)

e(0) − e(1)

2
+ ξ(0) + ξ(1).

In either case, we have

‖ξ‖`q(D) ≤

(
η(∅)q + Cn−1‖η

(0)‖
q
`q(D) + Cn−1‖η

(1)‖
q
`q(D)

)1/q

≤ max(1,Cn−1) ‖η‖`q(D)

since, in the first case, maxβ∈S
∑

a∈β ξ(a) ≤
∑

a∈β(1) ξ(1)(a) ≤ Cn−1‖η
(0)‖`q(D);

and, in the second case,

max
β∈S

∑
a∈β

ξ(a) =
η(∅) +

∑
a∈β(0) ξ(0)(a) +

∑
a∈β(1) ξ(1)(a)

2

≤
η(∅) + Cn−1‖η

(0)‖`q(D) + Cn−1‖η
(1)‖`q(D)

2

≤

(
1 + 2Cp

n−1
)1/p

2
‖η‖`q(D) .

Hence Cn ≤ max
(
1,Cn−1,

1
2
(
1 + 2Cp

n−1
)1/p

)
. It follows that for 2p ≥ 3, we get

Cn ≤ 1, while if 2p < 3 then Cn ≤ (2p − 2)−1/p. �

The left estimate in (8.29) is now easy. Pick a finitely supported η, which
we assume positive without loss of generality. Let ξ be the output of the claim
when the input is ηp−1 so that

〈ξ, ua〉 = η(a)p−1,

‖ξ‖∗ ≤ Cp‖η
p−1‖`q(D) = Cp‖η‖

p/q
`p(D).

For the last equality, note that q(p − 1)/p = 1. Thus,∥∥∥∥ ∑
a∈D

η(a)ua

∥∥∥∥ ≥ 〈ξ,∑a η(a)ua〉

‖ξ‖∗
≥

∑
a η

p(a)

Cp‖η‖
p/q
`p(D)

≥
‖η‖

p
`p(D)

Cp‖η‖
p/q
`p(D)

=
‖η‖`p(D)

Cp
.

Up to here, we have the proof that X(p) is a separable enlargement of `p. The
remainder of the proof is to establish that the inclusion of `p into X(p) is not
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C -trivial. This is done by exploiting the criterion in Proposition 8.5.7 against
the sequence ( 1

2 ua)a∈D: if every C -valued operator on `p can be extended to
X(p), some equivalent norm | · | on X(p) should satisfy(

|η|p + 2cp)1/p
≤ lim inf

a

∣∣∣η + 1
2 ua

∣∣∣ (8.30)

for some constant c > 0 and every η ∈ X(p). One can actually take c =

|u∅|/21+1/p. In particular, for each finitely supported η and every a ∈ D, there
is a∗ � a such that (

|η|p + cp)1/p
<

∣∣∣η + 1
2 ua∗

∣∣∣. (8.31)

No norm on c00(D) having this property can be equivalent to the norm of X(p);
let us see why. If (8.31) holds then we can find, for every n, a segment β (of
cardinality n, if we want) such that |1β| ≥ cn1/p, where 1β =

∑
a∈β ea. On the

other hand, ‖1β‖ = 1 for every segment β: it is trivially true for n = 1, so we
can assume that β = {a1, . . . , an} is a segment such that |1β| ≥ cn1/p. Letting
η = 1β in (8.31), we can find a∗ � an such that

c(n + 1)1/p ≤
(
|1β|p + cp)1/p

<
∣∣∣1β + 1

2 ua∗
∣∣∣.

Since ua∗ = ea∗0 + ea∗1, either

c(n + 1)1/p <
∣∣∣1β + ea∗0

∣∣∣ or c(n + 1)1/p <
∣∣∣1β + ea∗1

∣∣∣.
In the first case, the new segment is {a1, . . . , an, a∗0}; in the second case, it is
{a1, . . . , an, a∗1}. �

We now want to obtain a superreflexive version of X(p). The idea is to
obtain an intermediate space between X(p) and `p(D). A comfortable way to
do so would be by using the complex interpolation method, which requires a
temporary lift of the ban on complex scalars. But the alleged simplification
that this way of acting brings is mostly a delusion, resulting in the reader’s
disappointment. We prefer instead to avoid that tactical move and just explain
the bare facts as they are:

Corollary 8.5.9 For each 1 < p < ∞, there is an embedding of `p into a
superreflexive space that is not C -trivial.

Proof Let X0 and X1 be two Banach lattices of functions defined on the same
set S . For 0 < θ < 1, we define the intermediate space Xθ = X1−θ

0 Xθ
1 of

functions f : S −→ R that admit a decomposition | f | = g1−θhθ for non-negative
g ∈ X0 and h ∈ X1, endowed with the norm

‖ f ‖θ = inf ‖g‖1−θ0 ‖h‖
θ
1,
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where the infimum is taken over all g, h in the decomposition above. The space
Xθ is again a Banach lattice, and it is uniformly convex if either X0 or X1 is:
this we know because a nice computation performed by Cwikel and Reisner
in [143, Theorem 1 (i)] shows that the modulus of convexity of Xθ obeys an
estimate of the form δXθ (ε) ≥ c1δX1 (c2ε

1/θ) for some c1, c2 > 0 and all 0 < ε <
2. That said, let us specialise to the case X0 = X(p) and X1 = `p(D). We claim
that any of the spaces Xθ = X(p)1−θ`p(D)θ for 0 < θ < 1 provides the required
example as a consequence of the following facts:

• Xθ is uniformly convex because `p(D) is.
• The sequence (ua)a∈D is equivalent to the unit basis of `p in Xθ since this

happens both in `p(D) and in X(p), by the very definition of the norm of Xθ.
• If β is a segment of length n, then the norm of 1β in `p(D) is n1/p, while its

norm in X(p) is 1. Therefore, the norm of 1β in Xθ is at most nθ/p.

The embedding of `p into Xθ provided by the sequence (ua) cannot be C -trivial
since it was established during the proof of Proposition 8.5.8 that for any norm
| · | on c00(D) satisfying the condition (8.30) there is a constant c > 0 such
that, for every n, there is a segment β of length n such that |1β| ≥ cn1/p. This
contradicts ‖1β‖θ being dominated by nθ/p. �

8.6 The Dark Side of the Johnson–Zippin Theorem

The Johnson–Zippin theorem has its origin in the papers [464; 465]. At the
end of [464] Zippin poses three problems; one of them, Problem 2, reads: Is
it true that every C -valued operator defined on any subspace of `1 admits a
λ-extension for some λ ≥ 2? Why has λ < 2 been ruled out? Because Zippin
shows in [465] that if E is the kernel of the sum functional on `1, the inclusion
E −→ `1, which obviously admits a 2-Zippin selector, does not admit a λ-
Zippin selector for any λ < 2. That is startling. Problem 2 is explicitly implicit
in [466, pp. 1732–1735], has a negative solution as we all know (don’t we?)
and mutates along the way into

8.6.1 Zippin’s problem Characterise the subspaces E of `1 such that every
C(K)-valued operator defined on E can be extended to `1.

We already know that C -valued operators defined on weak*-closed sub-
spaces of `1 admit extensions. The following theorem asserts the same for
L∞-valued operators. Just use Proposition 5.2.9 (b) to get

8.6.2 The Johnson–Zippin theorem L∞-valued operators defined on any
weak*-closed subspace of `1 can be extended to `1.
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Proof Ext(H∗,L∞) = 0 for any subspace H ⊂ c0. �

The original Johnson–Zippin theorem [237] yields an estimate of 3+ for
the norm of the extending operator. Under the additional assumption that
the quotient space has the AP, they reduce the estimate to an optimal 1+.
The question of whether the apparent duality between the Lindenstrauss–
Pełczyński and the Johnson–Zippin theorems is a side effect of the structure
of subspaces of c0 or, as some of the authors think, a real duality that deserves
careful consideration.

In doing so, one must take into account that the sequence 0 −→ `2 −→

C(B∗`2
) −→ ♦ −→ 0 is C -trivial (with the meaning that the embedding is

C -trivial) but has non-C -trivial dual or bidual sequences: indeed, the dual
sequence has the form 0 −→ ♦∗ −→ L1(µ) −→ `2 −→ 0 and is not C -trivial
because it is semi-equivalent to any projective presentation 0 −→ κ(l2) −→
`1 −→ `2 −→ 0 since κ(`2) is an ultrasummand by Lemma 10.4.1. Thus, either
both sequences are C -trivial or neither of them is. But a C -trivial projective
presentation of `2 means Ext(`2,C(∆)) = 0, which is simply false for many
reasons, among which is the next Proposition 8.6.4. The bidual sequence
cannot be C -trivial because the natural embedding δ : `2 −→ C(B∗`2

) cannot
extend to an operator C(B∗`2

)∗∗ −→ C(B∗`2
): the former space is injective, thus it

enjoys the Dunford–Pettis and Grothendieck properties. The latter makes every
operator from it into a separable space weakly compact; the former makes it
completely continuous. Thus, its restriction to `2 should be compact and cannot
be δ. Similar reasoning shows that while any sequence 0 −→ H −→ c0 −→

c0/H −→ 0 is C -trivial, as is its dual sequence, its bidual sequence cannot be
C -trivial. Since weak*-closed subspaces of `1 are C -extensible, the ‘converse
Johnson–Zippin theorem’ would be to decide whether weak*-closed subspaces
are the only C -extensible subspaces of `1. But even this formulation remains
fishy: does one mean subspaces isomorphic to weak*-closed subspaces? The
additional information that C -valued operators on weak*-closed subspaces
admit almost isometric extensions paves the way for a true converse:

Proposition 8.6.3 A subspace E ⊂ `1 is weak*-closed if and only if every
C -valued operator defined on E admits 1+-extensions to `1.

Proof The ‘only if’ part was proved in Proposition 8.3.14, so we prove the
‘if’ part. Let (yn) be a sequence in a closed subspace E ⊂ `1. Assume that
the sequence is weak*-convergent to some point y ∈ `1. By passing to a
subsequence, we may assume that (yn) defines a type σ on `1, which, by the
m1-type property, must have the form σ(x) = ‖x − y‖ + ‖y‖. Since the pair
(E, `1) has all properties Σ1(λ) for λ > 1, one has infu∈E σ(u) ≤ λσ(y), hence
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infu∈E σ(u) ≤ σ(y). These two things together yield infu∈E ‖u−y‖+ ‖y‖ ≤ σ(y),
which necessarily means y ∈ E. �

Subspaces of `1 that are weak*-closed with respect to other dual pairings
are not necessarily C -extensible. To show that, we anticipate from Proposition
8.6.4 that there are heavy restrictions on a subspace E of `1 in order for it to
be C -extensible: `1/E has to be at least a Schur space. Thus, given a non-
Schur separable space X and a quotient map Q : `1 −→ X, there exists an
operator ker Q −→ C(∆) that cannot be extended to `1. Now pick an isometric
embedding of Schreier’s space S into C(ωω). The kernel of the quotient map
`1 −→ S∗ is obviously weak*-closed when `1 is treated as the dual of C(ωω).
But S∗ is not Schur since S does not have the Dunford–Pettis property [102].

When Is Ext(X,C(∆)) = 0?

A reformulation of Zippin’s problem is: Characterise the Banach spaces X
such that Ext(X,C(∆)) = 0. Actually, it is not known whether there exists a
single ‘non-trivial’ example of a Banach space X for which Ext(X,C(∆)) = 0.
What do we mean by a non-trivial example? Well, something like ‘X does not
have the form `1(Fn) for finite-dimensional Fn, or is not a twisted sum of such
spaces . . . or it is not too close to `1 . . . somehow’.

Proposition 8.6.4 If Ext(X,C(∆)) = 0 then X has the Schur property.

Proof Let X be a separable Banach space. If X is not Schur then it contains
a weakly null normalised basic sequence (xn)n. By considering the basis
expansion, we obtain a map τ0 : [xn : n ∈ N] −→ c0 such that τ0(xn) = en.
Since c0 is separably injective, τ0 admits a 2-extension τ : X −→ c0. Pick the
Foiaş–Singer sequence (2.5) and draw the diagram

0 // C(∆) // D // c0 // 0

0 // C(∆) // PB

τ

OO

// X //

τ

OO

0

The pullback sequence cannot split because a linear continuous section
s : X −→ PB would produce a weakly null lifting (τs(xn))n of (en), which
is impossible by Lemma 2.2.4. �

Actually, [267, Theorem 5.1] shows that X must have a stronger version of
the Schur property, but we will not continue on that path. The paper [267]
provides, in addition to the previous one, the best available answer to Zippin’s
problem: if X is a separable space with a UFDD and Ext(X,C(∆)) = 0 then
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X is isomorphic to the dual of a subspace of c0 (see the next section). This,
in turn, provides the best evidence we have for a positive answer to the
following conjecture [271, Problem 1]: let X be a separable Banach space.
Ext(X,C(∆)) = 0 if and only if X is isomorphic to the dual of a subspace of
c0. Equivalently, a subspace of `1 is C -extensible if and only if it occupies
a weak*-closed position, that is, if there is an automorphism τ : `1 −→ `1

such that τ[E] is weak*-closed. A different approach to Zippin’s problem was
undertaken in [113] by characterising when Ext(X,C(K)) = 0 via properties
of a metric projection m : Q(1)(X,R) −→ L(X,R). The crucial point in all this
is that while Ext(X,C(∆)) = 0 imposes tight conditions on X, Ext(X, c) = 0
imposes none when X is separable. What about intermediate cases? The
simplest C -spaces intermediate between c and C(∆), or C[0, 1], are the spaces
C(α) for countable ordinals α. Since C(α) is a complemented subspace of
C(∆), it is clear that Ext(X,C(∆)) = 0 =⇒ Ext(X,C(α)) = 0. It is then
natural to look for properties of X, weaker than Schur although probably of
the same type, that might characterise Ext(X,C(α)) = 0. Brunel and Sucheston
[55] introduced the notion of a spreading model, which we will use only
as a tool, using Ramsey-style arguments to observe that each normalised
sequence in a Banach space has a subsequence (xn)n≥1 such that the limit
lim n1−→∞

n1<···<nk

∥∥∥∑k
i=1 λixni

∥∥∥ exists for every finite sequence of scalars λ1, . . . , λk.
This limit defines a norm on the space of finitely supported sequences if and
only if the subsequence (xn)n is not convergent [34, I. 1. Proposition 2]. The
spreading model generated by the sequence (xn) is the completion of that space.

Proposition 8.6.5 Let X be a separable Banach space. If Ext(X,C(ωω)) = 0
then, for some µ > 0, every weakly null normalised sequence (xn) and every
k ∈ N, there are integers n1 < n2 < · · · < nk and signs εk = ±1 such that
‖
∑k

j ε jλ jxn j‖ ≥ µ
∑k

j=1 λ j for all choices of positive scalars λ j. Therefore,
every spreading model of X generated by a normalised weakly null sequence
is isomorphic to `1.

Proof Consider the embedding of ωω into [0, 1] as in Lemma 2.2.6, form the
sequence 0 −→ C(ωω) −→ D(ωω; (ωω)′) −→ c0((ωω)′) −→ 0 and observe that
since (ωω)′ is countable, we can identify the quotient space with c0.

Let (xn) be a basic sequence in X. Proceeding as in the proof of Proposition
8.6.4, we obtain an operator τ : X −→ c0 such that τ(xn) = en, where (en) is the
unit basis of c0, and we can form the pullback diagram

0 // C(ωω) // D(ωω; (ωω)′) J // c0 // 0

0 // C(ωω) // PB

τ

OO

// X //

τ

OO

0
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Since Ext(X,C(ωω)) = 0, the pullback sequence splits and so τ admits a
bounded linear lifting L : X −→ D(ωω; (ωω)′). Place the functions L(xn) in
Lemma 2.2.7 to get, for every n, integers n ≤ n1 < · · · < nk and signs εi = ±1
such that for all positive λi, we have

‖L‖

∥∥∥∥∥∥∥ ∑
1≤i≤k

εiλixni

∥∥∥∥∥∥∥ ≥
∥∥∥∥∥∥∥ ∑

1≤i≤k

εiλiL(xni )

∥∥∥∥∥∥∥ ≥ (1 − δ)
∑

1≤i≤k

λi,

which proves the first part. A result of Beauzamy [34, I. 5. Proposition 1]
implies that the canonical basis of the spreading model constructed over a
normalised weakly null sequence is 1-unconditional, and this means that the
spreading model constructed over the sequence (xn) is isomorphic to `1. �

Ok, enough striking; we go to the ground and pound.

When Is Ext(X,C(ωω)) = 0 ?

Let X be a separable Banach space. For every N ∈ N, the space C(ωN) is
isomorphic to c0, hence it is separably injective and Ext(X,C(ωN)) = 0. On the
other hand, the space ωω can be represented as the one-point compactification
of the disjoint union

⋃
N ω

N , hence C0

(⋃
N ω

N
)

is a hyperplane of C(ωω) and

C(ωω) ' C0

(⋃
N ω

N
)

= c0

(
N,C(ωN)

)
.

Thus, Corollary 5.2.6 yields Ext(X,C(ωω)) = 0 if and only if Ext
(
X,C(ωN)

)
=

0 uniformly on N, and the existence of non-trivial elements of Ext(X,C(ωω))
therefore depends on quantitative aspects of the diagram

0 // C(ωN) // `∞(ωN) // QN // 0

0 // C(ωN) // · //

OO

X

OO

//

cc

0

The upper sequence is the ‘obvious’ injective presentation of C(ωN), and
we have written QN = `∞(ωN)/C(ωN) for the sake of simplicity. The lower
sequence splits, and therefore every operator X −→ QN admits a lifting to
`∞(ωN), as the dotted arrow reminds us.

We will focus on the ratio between the norms of the operators X −→ QN and
the norms of their liftings to `∞(ωN). Since there is not much we can say about
the structure of QN , we will proceed the other way a round (taking advantage,
let us say it once more, of the fact that all such operators have liftings): we
start with an operator τ : X −→ `∞(ωN) and obtain, after composition with the
quotient map, an operator τ′ : X −→ QN . This operator might have a much
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smaller norm, and we then study the norms of its liftings to `∞(ωN). All of
them have the form τ − τ′′, with τ′′ ∈ L(X,C(ωN)).

If K is a compact space, operators τ : X −→ `∞(K) and (not necessarily
continuous) bounded mappings ϕ : K −→ X∗ correspond one to each other
in the obvious way’s (τx)(a) = 〈δa, τx〉 = 〈ϕ(a), x〉. Identification of a with
the corresponding evaluation functional δa on C(K) means that ϕ(a) = τ∗(δa)
can be interpreted as ‘ϕ is the restriction of τ∗ to K’, and we can just write
ϕ(a) = τ∗(a).

It is thus clear that ‖τ‖ = supa∈K ‖τ
∗(a)‖. If τ′ is the composition of τ with

the quotient map `∞ −→ `∞/C(K) then ‖τ′‖ = sup‖x‖≤1 dist(τ(x),C(K)), and
Lemma 2.2.2 immediately yields

2‖τ′‖ = sup
‖x‖≤1

oscK〈τ
∗(·), x〉.

We will informally refer to the right-hand member of the preceding equation
as the oscillation of τ. The operator τ takes values in C(K) if and only if it
has oscillation 0; equivalently, τ∗ is weak*-continuous on K (notice that the
canonical inclusion K −→ `∞(K)∗ is not weak*-continuous).

Returning toωN andωω, it is true that, using the constants K(1)[·, ·] of (3.20),
we have Ext(X,C(ωω)) = 0 if and only if supN∈N K(1)[X,C(ωN)] < ∞, but this
does not fit very well with our current approach via operators. The following
parameters provide more ‘computable’ forms for K(1)[X,C(ωN)]:

8.6.6 Let πN(X) (resp. σN(X)) be the smallest constant such that if

0 // C(ωN)
 // Z

ρ // X // 0 (8.32)

is an isometrically exact sequence of Banach spaces and ε > 0 then there is a
linear projection P through  with ‖P‖ ≤ πN(X) + ε (resp. a linear section S of
the quotient map with ‖S ‖ ≤ σN(X) + ε).

It is clear that the sequences (πN(X))N , (σN(X))N and (K(1)[X,C(ωN)])N are
equivalent: actually |πN(X) − σN(X)| ≤ 1 for all N by the discussion pre-
ceding Definition 2.1.6, while the argument in Corollary 3.3.8 implies that
σN(X)≤ 4K(1)[X,C(ωN)] and the proof of Proposition 3.6.7 shows that K(1)[X,
C(ωN)]≤ 2σN(X). Any other estimates the reader may find are welcome.

Given a separable Banach space X, we set

ρN(X) = sup dist (τ,L(X,C(ωω)) , (8.33)

where the supremum is taken over all bounded operators τ : X −→ `∞(ωN)
satisfying d(τx,C(ωN)) ≤ ‖x‖ for all x ∈ X. A brief reflection suffices to
realise that ρN(X) is the infimum of those constants % such that every operator
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X −→ QN admits a %-lifting to `∞(ωN). We must be Gandalf on this: you
should not pass from here without assimilating this fact.

The sequences (ρN(X))N and (πN(X))N are equivalent too:

Lemma 8.6.7 For any Banach space X, one has | ρN(X) − πN(X) | ≤ 1.

Proof Consider an isometrically exact sequence as in (8.32), let I : Z −→
`∞(ωN) be an extension of the identity of C(ωN) with ‖I‖ = 1 and form the
commutative diagram

0 // C(ωN)
 // Z

ρ //

I
��

X //

I′

��

0

0 // C(ωN) // `∞(ωN) // QN // 0

in which ‖I′‖ ≤ 1. If L : X −→ `∞(ωN) is a lifting of I′ with ‖L‖ ≤ ρN(X) + ε,
then I − Lρ is a projection along  of norm at most 1 + ρN(X) + ε. Hence
πN(X) ≤ ρN(X) + 1. The other inequality is clear after the following remark,
which is nothing but the pullback trick in disguise:

Claim Let τ : X −→ `∞(ωN) be a linear map such that dist(τ(x),C(ωN) ≤ ‖x‖
for all x ∈ X. For every ε > 0, there is a linear map τ′′ : X −→ C(ωN) such that
‖τ − τ′′‖ ≤ σN(X) + ε. Moreover, if τ is bounded then τ′′ is bounded.

Indeed, let Z[τ] be the space C(ωN) × X normed by ‖( f , x)‖ = max
(
‖ f −

τ(x)‖, ‖x‖
)

and consider the sequence 0 −→ C(ωN) −→ Z[τ] −→ X −→ 0
with embedding f 7−→ ( f , 0) and quotient map ( f , x) 7−→ x. The sequence is
isometrically exact by the hypothesis on τ: if ‖x‖ < 1 then there is f such that
‖ f − τ(x)‖ < 1 and therefore the point ( f , x) is in the open unit ball of Z[τ].
By definition, there is a section S : X −→ Z[τ] of the quotient map with ‖S ‖ ≤
σN(X) + ε. This S must have the form S (x) = (τ′′(x), x) for some linear map
τ′′ : X −→ C(ωN), and since ‖S (x)‖ = ‖(τ′′(x), x)‖ = max

(
‖τ′′(x)− τ(x)‖, ‖x‖

)
,

it follows that ‖τ′′ − τ‖ ≤ σN(X) + ε. �

Consequently:

Proposition 8.6.8 Let X be a separable Banach space. Ext(X,C(ωω)) = 0 if
and only if supN ρN(X) < ∞.

Amir [8; 9] and Baker [28] proved that given an isometrically exact sequence
0 −→ C(ωN) −→ Z −→ X −→ 0 with X separable, there is always linear
projection with norm at most 2N + 1. Moreover, if X = C(ωN−1) then for every
ε > 0, there is an exact sequence as above such that any projection has norm at
least 2N + 1− ε. Corollary 2.2.8 yields σN(c0) ≥ N (hence πN(c0) ≥ N − 1 and

https://doi.org/10.1017/9781108778312.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108778312.010


418 Extension of C(K)-Valued Operators

ρN(c0) ≥ N − 2 by Lemma 8.6.7), while a more precise estimate [73, Theorem
3.5] yields πN(c0) = 2N+1, as in the Amir–Baker result, and thus ρN(c0) ≥ 2N.
Let us continue with the general case.

When dealing with ordinals or with trees, as we are soon to do, we must
not be stark and lose our heads (with unnecessary details): recall that despite
its ordinal pedigree, the space ωN was declared in Section 1.6 to be the only
countable compact whose Nth derived set is a singleton, no matter which
peculiar representation of it we choose.

To simplify the analysis of the oscillation of the involved operators, we
choose the following disguised σN(2N) form: ωN is the set whose points are
subsets of N with at most N elements (including the empty set) with the
topology inherited from 2N. We write the elements of ωN in increasing order:
a = (n1, . . . , nk) with n1 < n2 < · · · < nk. We define an order on ωN as follows:
if b = (m1, . . . ,ml) then a ≤ b means that k ≤ l and n j = m j for 1 ≤ j ≤ k. In
particular, ∅ ≤ b for all b ∈ ωN . Observe that this is a mere partial order,
making our particular ωN a tree, but not order isomorphic to any ordinal.
Given a as above, a− = (n1, . . . , nk−1) and a+ = {b : a ≤ b : |b| = |a| + 1} =

{(n1, . . . , nk,m) : m > nk}. And in case of doubt, limb∈a+ b = a and lim a = ∅ as
min a→ ∞.

Definition 8.6.9 A map g : ωN −→ X∗ is a weak*-null tree map if g(∅) = 0
and limb∈a+ g(b) = 0 in the weak*-topology for all |a| < N.

Definition 8.6.10 An operator τg : X −→ `∞(ωN) is said to be tree generated
by a map g : ωN −→ X∗ if

〈τgx, a〉 =

〈∑
b≤a

g(b), x
〉
.

Observe that all linear maps τ : X −→ C0(ωN\{∅}) are tree generated by
weak*-null tree maps: set g(∅) = 0 and 〈g(a), x〉 = 〈τx, a〉 − 〈τx, a−〉. If τγ
is tree generated, then since ‖τgx ‖ is essentially attained at the isolated points
|a| = N of ωN , we have ‖τg‖ = sup|a|=N

∥∥∥∑b≤ag(b)
∥∥∥ .

Given a separable Banach space X, we introduce the parameter

αN(X) = sup
g

inf
|a|=N

∥∥∥∥∥∥∥∑b≤a

g(b)

∥∥∥∥∥∥∥ , (8.34)

where the supremum is taken over all weak*-null tree maps g : ωN −→ B∗X .

Lemma 8.6.11 If X is a Banach space with a monotone shrinking basis then

ρ2N(X) ≤ 4αN(X) ≤ 4ρN(X).
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Proof Let (e j) j be the basis so that x =
∑

j〈e∗j , x〉e j for all x ∈ X, and
let Pn(x) =

∑n
j=1〈e

∗
j , x〉e j be the canonical projection. Since the basis is

(monotone and) shrinking, (P∗n) is a sequence of (contractive) operators on X∗

that is pointwise convergent to the identity. We prove the first inequality. Let
τ : X −→ `∞(ω2N) be a linear operator with oscillation at most 2. Our plan is
to find a linear ` : X −→ C(ω2N) such that ‖τ − `‖ ≤ 4αN(X); or, what is the
same, ‖τ∗(a) − `∗(a)‖ ≤ 4αN(X) for all a. Fix ε > 0. A compactness argument
used in combination with the definition of oscillation yields for each finite-
dimensional subspace F ⊂ X and a− an index ψ(F, a) ≥ a− such that for all
a− ≤ b, c ≤ ψ(F, a), we have ‖ (τ∗(b) − τ∗(c)) |F‖ = supx∈BF

|〈τ∗(b)−τ∗(c), x〉| ≤
2 + ε. Choose the spaces Pn[X] as F and let ν(a) = max{n : ψ(Pn[X], a−) ≥ a}.
Thus, for b ≤ a, we have

‖P∗ν(a)
(
τ∗(b) − τ∗(a−)

)
‖ ≤ 2 + ε. (8.35)

Fix λ. We proceed by reverse induction to define what is a λ-acceptable set
{ f1, . . . , fk} ⊂ B∗X of cardinality 0 ≤ k ≤ N. The set { f1, . . . , fN} ⊂ B∗X is λ-
acceptable if ‖ f1 + · · · + fN‖ ≤ λ. For k ≤ N − 1, the set { f1, . . . , fk} ⊂ B∗X
is λ-acceptable if there is a weak*-neighbourhood V of 0 such that for each
f ∈ V ∩ B∗X , the set { f1, . . . , fk, f } is λ-acceptable. Our interest in this notion is
that if λ > αN(X) then ∅ is λ-acceptable. A collection of k ≤ N block subspaces
{G1, . . . ,Gk} is λ-good if, for some µ < λ, every set {x∗1, . . . , x

∗
k} with x∗j ∈ G j

is µ-acceptable. At this moment, the magical function g : N −→ N appears.

Claim There is a function g : N −→ N such that if k < N and {G1, . . . ,Gk}

is a λ-good family of block subspaces of P∗n[X∗] then for any block subspace
Gk+1 ⊂ (1 − Pg(n))∗[X∗], the collection {G1, . . . ,Gk,Gk+1} is λ-good.

Proof of the claim The family of block subspaces of P∗n[X∗] is finite; there-
fore, there is µ < λ such that every λ-good collection {G1, . . . ,Gk} of block
subspaces is µ-good. Pick ε > 0 such that µ+N/ε < λ, and choose in each block
subspace G an ε-net for BG. This produces a finite collection G of µ-acceptable
sets so that whenever {G1, . . . ,Gk} is a λ-good collection of block subspaces
of P∗n[X∗] and g j ∈ BG j , there then is { f1, . . . , fk} ∈ G with ‖g j − f j‖ ≤ ε

for all 1 ≤ j ≤ k. Find g(n) such that for every x∗ ∈ P∗g(n)[X
∗] ∩ B∗X and

every { f1, . . . , fk} ∈ G , the set { f1, . . . , fk, x∗} is µ-acceptable. A perturbation
argument yields that for every λ-good family {G, . . . ,Gk} of block subspaces
of Pn[X∗] with k < N and any block subspace G ⊂ 1 − P∗g(n)[X], the collection
{G1, . . . ,Gk,G} is (µ + N/ε)-good, hence λ-good. �

For the rest of the proof, set λ = αN + ε and set g to be the corresponding
function. Define ϕ : ω2N −→ N by
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ϕ(a) =


g(∅), if a = ∅,

ϕ(a−), if ν(a) < g(ϕ(a−)),
ν(a), if ν(a) ≥ g(ϕ(a−)).

To get ` : X −→ C(ω2N), we define a weak*-continuous map `∗ : ω2N −→ X∗

by setting `∗(∅) = τ∗(∅) and

`∗(a) =
∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗
τ∗(b−) +

(
1 − Pϕ(a)

)∗
τ∗(a)

for a , ∅. The map `∗ is weak*-continuous because if c ∈ a+,

`∗(c) − `∗(a) =
(
Pϕ(c) − Pϕ(a

)∗
τ∗(a) +

(
1 − Pϕ(c)

)∗
τ∗(c) −

(
1 − Pϕ(a)

)∗
τ∗(a)

=
(
1 − Pϕ(c)

)∗
τ∗(c) −

(
1 − Pϕ(c)

)∗
τ∗(a)

=
(
1 − Pϕ(c)

)∗
(τ∗(c) − τ∗(a)) ,

and thus

lim
c∈a+
〈`∗(c) − `∗(a), x〉 = lim

c∈a+

〈(
1 − Pϕ(c)

)∗
(τ∗(c) − τ∗(a)) , x

〉
= lim

c∈a+

〈
τ∗(c) − τ∗(a),

(
1 − Pϕ(c)

)
x
〉

= 0.

Finally, we need to estimate ‖τ − `‖ = supa∈ω2N ‖τ∗(a) − `∗(a)‖. Given a =

(n1, . . . , nk) ∈ ω2N , set m0 = ϕ(∅) and m j = ϕ(n1, . . . , n j). If we look carefully
at the family (P∗m1

− P∗m0
)[X∗], (P∗m2

− P∗m1
)[X∗], . . . , (P∗mk

− P∗mk−1
)[X∗] then we

detect that all the even and all the odd elements form one of those λ-good
families in the claim. In other words, if x∗j ∈ (P∗m j

− P∗m j−1
)[X∗] are chosen with

‖x∗j‖ ≤ 1 then ‖
∑k

j=1 x∗j‖ ≤ 2λ. We thus have

τ∗(a) − `∗(a) = τ∗(a) −
∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗
τ∗(b−) −

(
1 − Pϕ(a)

)∗
τ∗(a)

=
∑
∅<b≤a

P∗ϕ(b)τ
∗(a) +

(
1 − Pϕ(a)

)∗
τ∗(a)

−
∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗
τ∗(b−) −

(
1 − Pϕ(a)

)∗
τ∗(a)

=
∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗
τ∗(a) −

∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗
τ∗(b−)

=
∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗ (
τ∗(a) − τ∗(b−)

)
.

From (8.35), we get
∥∥∥(Pϕ(b) − Pϕ(b−)

)∗ (τ∗(a) − τ∗(b−))
∥∥∥ ≤ 2 + ε, hence

‖τ∗(a) − `∗(a)‖ =

∥∥∥∥∥∥∥ ∑
∅<b≤a

(
Pϕ(b) − Pϕ(b−)

)∗ (
τ∗(a) − τ∗(b−)

)∥∥∥∥∥∥∥ ≤ (4 + ε)αN(X).
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We pass to prove the second inequality αN ≤ ρN . Let us inform the reader
that A ⊂ ωN is a subtree if a ∈ A implies a− ∈ A.

Lemma 8.6.12 Let g : ωN −→ X∗ be a weak*-null tree map. There is a
subtree A ⊂ ωN that is order isomorphic to ωN such that limmax a→∞g(a) = 0
in the weak* topology for all a ∈ A.

Proof Let (Vn) be a countable base of weak*-neighbourhoods of 0 such that
Vn+1 + Vn+1 ⊂ Vn for all n. The subtree we need is A = {a ∈ ωN : if ∅ < b ≤
a then g (b) ∈ Vmax b}. �

Let g : ωN −→ B∗X be a weak*-null tree map such that αN(X) ≤
∥∥∥∑b≤ag(b)

∥∥∥
+ε for all |a| = N. Let σ : N −→ N be any surjective map such that for each
k ∈ N, the set σ−1(k) is infinite. Say, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . . We will set
σ{n1, . . . , nk} = {σ(n1), . . . , σ(nk)}. To make this σ a map ωN −→ ωN in the
representation we use, it is only necessary to work with sets {n1, . . . , nk} such
that σ(n j) > σ(n j−1) whenever n j > n j−1, and so we will do to keep things
tidy. We then consider the operator τgσ tree generated by gσ (which is not
a weak*-null tree map) for which τ∗gσ(a) =

∑
∅<b≤agσ(b). The operator τgσ

has oscillation at most 1 at every point x: indeed, if d ≥ c ∈ a+ then

lim sup
d→a

∣∣∣〈τ∗gσ(d) − τ∗gσ(a), x
〉∣∣∣ = lim sup

d→a

∣∣∣∣∣∣∣
〈
τ∗g(σc) +

∑
c<b≤d

τ∗g(σb), x
〉∣∣∣∣∣∣∣

≤
∣∣∣〈τ∗g(σc), x

〉∣∣∣ +

∣∣∣∣∣∣∣
〈
lim
d→a

∑
c<b≤d

τ∗g(σb), x
〉∣∣∣∣∣∣∣ ≤ 1 + 0

by the additional property of Lemma 8.6.12 that we assume g enjoys.
Therefore, by hypothesis, there exists a weak*-continuous map `∗ : ωN −→ X∗

such that ‖τ∗gσ(a) − `∗(a)‖ ≤ 1
2ρN(X) for all a. Now we just need to find some

|a| = N for which
∥∥∥∑b≤agσ(b)

∥∥∥ can be properly bounded by a multiple of
ρN(X). Begin with ∅ and find m1 such that

∥∥∥(1 − Pm1

)∗( g σ(∅) − `∗(∅)
)∥∥∥ ≤ ε,

which is possible since the FDD is shrinking; then pick |c| = 1 such that
‖P∗m1

(g(c))‖ ≤ ε, which is possible since g is weak*-null. Now pick n1 > m1

such that ‖(1 − Pn1 )∗(g(c))‖ ≤ ε. Among the infinitely many |b| = 1 with
σ(b) = c, pick one a1 such that ‖P∗n1

(`∗(a1) − `∗(∅))‖ ≤ ε. This a1 is our
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choice. Repeat the same construction inductively N times until obtaining some
|aN | = N, and keep track of the pairs (m j, n j):∥∥∥∥ N∑

k=1

gσ(ak)
∥∥∥∥

≤

∥∥∥∥∥∥∥
N∑

k=1

(Pnk − Pmk )
∗(gσ(ak))

∥∥∥∥∥∥∥ + 2Nε

≤

∥∥∥∥∥∥∥
N∑

k=1

(
(Pnk − Pmk )

∗(gσ(ak)) + (Pmk − Pnk−1 )∗(`∗σ(ak) − `∗σ(ak−1)
)∥∥∥∥∥∥∥ + 4Nε

≤

∥∥∥∥∥∥∥
N∑

k=1

(gσ(ak) + `∗σ(ak) − `∗σ(ak−1))

∥∥∥∥∥∥∥ + 6Nε

≤ ‖gσ(aN) − `∗(aN) + `∗(∅) −gσ(∅)‖ + 6Nε

≤ ρN(X) + 2Nε. �

The conclusion we get is that a Banach space X with a shrinking basis
satisfies Ext(X,C(ωω)) = 0 if and only if supN αN(X) < ∞.

Let E be a Banach space. A tree map g : ωN −→ E is said to be weakly null
if, for every a ∈ ωN , we have g(b) −→ 0 −→ weakly as b ∈ a+. Given σ > 0,
we define N(E, σ) to be the least integer N such that there exists a weakly null
tree map g : ωN+1 −→ E such that ‖g (a)‖ ≤ σ for all a and ‖

∑
b≤ag(b)‖ > 1

for |a| = N. We put N(E, σ) = ∞ if no such integer exists. We say that E has
a summable Szlenk index if there is σ > 0 such that N(E, σ) = ∞. This is not
the ‘original’ definition, which is much funnier, but an equivalent formulation;
see the equivalence between (i) and (ii) in [191, Theorem 4.10]. We see that
N(E, σ) = N means (dividing by σ) that

sup
g

inf
|a|=N

∥∥∥∥∥∥∥∑b≤a

g(b)

∥∥∥∥∥∥∥ ≤ 1
σ
, (8.36)

where the supremum runs now over the weakly null tree maps g : ωN −→

BE . By taking E = X∗, a comparison between (8.36) and (8.34) shows that
supN αN(X) ≤ λ =⇒ N(X∗, 1/λ) = ∞ (and therefore X∗ has a summable Szlenk
index). If X is moreover reflexive, the converse is also true. We have:

Proposition 8.6.13 Let X be a Banach space with a shrinking basis.

(a) If Ext(X,C(ωω)) = 0 then X∗ has a summable Szlenk index.
(b) If the basis is unconditional and Ext(X,C(ωω)) = 0 then X is reflexive.
(c) If X is reflexive, Ext(X,C(ωω)) = 0 if and only if X∗ has a summable Szlenk

index.
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Proof By classical results of James, X∗ is separable. Part (a) has already been
proved: Ext(X,C(ωω)) = 0 =⇒ supN ρN(X) < ∞ (Proposition 8.6.8) =⇒

supN αN(X) < ∞ (Lemma 8.6.11) =⇒ X∗ has a summable Szlenk index.
(b) X cannot contain c0 (otherwise, since it is separable, it would contain

it complemented, and then Ext(X,C(ωω)) , 0). Thus, the basis is boundedly
complete, and, being unconditional, X must be reflexive [334, Theorem. 1.b.5].

(c) If X is reflexive, the weak and weak* topologies of X∗ coincide, and the
implications in the proof of (a) are all reversible. �

So far, the hunt for spaces X such that Ext
(
X,C(ωω)

)
= 0 but at the same

time Ext(X,C(∆)) , 0 required us to look at non-Schur spaces whose spreading
models are all `1. We see now that we can restrict our hunt further to spaces
whose duals have a summable Szlenk index.

The property of having a summable Szlenk index goes back to [296] and
can be considered a sophisticated way of saying that the space is close to being
a subspace of c0. Indeed, spaces uniformly homeomorphic to subspaces of c0

have a summable Szlenk index [191]. But, fortunately, there are more: in [191,
Remark p. 3911], the authors claim that the original Tsirelson space T∗ has a
summable Szlenk index, as is proved in [296, p. 196]. Furthermore, since T is
reflexive, its basis is shrinking. In other (our) words,

8.6.14 Ext
(
T,C(ωω)

)
= 0, while Ext

(
T,C(∆)

)
, 0.

There is no special difficulty adapting Lemma 8.6.11 to cover the case of
spaces with shrinking FDD (see [73] for details): firstly, transform the FDD
into a bi-monotone FDD with a renorming, then prove that ρ2N ≤ 4αN and
finally obtain αN ≤ ρN when the space has a (monotone) shrinking FDD.
The interest all this has for us is it allows us to obtain a real, though modest,
improvement of Proposition 8.6.13:

Proposition 8.6.15 Let X be a separable reflexive Banach space.

(a) If X∗ has a summable Szlenk index then Ext(X,C(ωω)) = 0.
(b) If X has a FDD and Ext(X,C(ωω)) = 0 then X∗ has a summable Szlenk

index.

Proof (a) We appeal to the full force of the Johnson–Rosenthal decomposi-
tion 5.3.1 to represent X in the form 0 −→ A −→ X −→ B −→ 0 with both
A, B having shrinking FDD. Since having a summable Szlenk index passes
to subspaces and quotients, if X∗ has a summable Szlenk index then so have
A∗ and B∗, hence Ext(A∗,C(ωω)) = 0,Ext(B∗,C(ωω)) = 0 and thus also
Ext(X∗,C(ωω)) = 0.
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(b) Since X is reflexive, the FDD must be shrinking. Thus, Ext(X,C(ωω)) = 0
implies that both ρN(X) and αN(X) are uniformly bounded so that X∗ has a
summable Szlenk index. �

8.7 The Astounding Story behind the CCKY Problem

The paper [73] ended with a comment on a problem that had been ricocheting
around our heads since [79, final problem], which we will call the CCKY
problem: show that if K is a non-metrisable compact then Ext(C(K), c0) , 0.
Since Ext(c0(ℵ1), c0) , 0 by everything said in Section 2.2, while Ext(`∞, c0) ,
0 by the construction in 2.12.9, it is clear that Ext(X, c0) , 0 for every Banach
space containing a complemented copy of either c0(ℵ1) or `∞. Compacta K
for which C(K) does not contain c0(ℵ1) are characterised by the countable
chain condition (ccc in short): every family of pairwise disjoint open sets is
countable; see [413, Theorem 4.5]. No characterisation is currently known for
compacta K such that C(K) contains / does not contain `∞. Thus, the list of
compacta K for which the CCKY problem was known by then to have an
affirmative answer is:

(a) Eberlein compacta,
(b) Valdivia compacta failing the ccc,
(c) C(K) contains `∞,
(d) C(K) admits a continuous injection into C(N∗) but not into `∞,
(e) K is an ordinal space.

Assertion (a) follows from the following general statement [103, Theorem
3.4]:

Lemma 8.7.1 Every non-separable Banach space admits a non-WCG exten-
sion by c0.

Proof We assume that X is WCG, since the result is trivial otherwise.
According to [400, pp. 336–337], the space X admits a Markuševič basis
(xγ, fγ)γ∈Γ, which means a biorthogonal system in X × X∗ for which (xγ)γ∈Γ
separates the points of X∗ and ( fγ)γ∈Γ separates the points of X. One may
assume without loss of generality that ( fγ)γ∈Γ is bounded. Thus, the map
T : X −→ c0(Γ) defined by T x = ( fγ(x))γ∈Γ is easily checked to be an operator
with dense range. Consider any non-trivial sequence 0 −→ c0 −→ X −→
c0(Γ) −→ 0 in which X is not WCG, as in Section 2.2. The pullback space in
the diagram

0 // c0 // X // c0(Γ) // 0

0 // c0 // PB //

T

OO

X //

T

OO

0
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cannot be WCG because T has dense range by Lemma 2.1.8. �

Thus, the lower sequence cannot split because X is WCG, so (a) is true.
We prove (b): compacta failing ccc contain c0(ℵ1). Use [16, Theorem 1.2] –

if c0(Γ) ⊂ C(K) for a Valdivia compact K then there is a subset J ⊂ Γ such that
|J| = |Γ| and c0(J) is complemented in C(K) – to get a complemented copy of
c0(ℵ1) inside C(K), which is enough.

Assertion (c) is clear since the copy of `∞ is necessarily complemented.
To get (d), form the pullback diagram

0 // c0 // `∞ // C(N∗) // 0

0 // c0 // PB //

OO

C(K) //

ı

OO

0

in which ı is the continuous injection claimed in the hypothesis. Instances of
(d) appear when K contains a dense set of weight at most ℵ1 but C(K) is not
a subspace of `∞, by Parovičenko’s first theorem mentioned in Section 1.6,
example 6, or else C(K) spaces with non-weak*-separable dual, but admitting
continuous injections into C(N∗), such as C[0, ω1].

The uncountable ordinal cases of (e) can be reduced to [0, ω1].

Now the story goes that [73, p. 4539–4540] claims that Corson compacta
can also play the role of Eberlein compacta just using ‘similar arguments’.
However, Correa and Tausk noticed that a ‘similar argument’ cannot work (an
explanation of why can be found in [93, p. 115]), amended the situation in
[136, Theorem 3.1] and obtained a result of general interest in passing:

Proposition 8.7.2 Ext(X, c0) , 0 for every Banach space X admitting a
biorthogonal system (xn,γ, fn,γ)n∈ω,γ∈c such that ( fn,γ(x)) ∈ c0(ω × c) and

sup

∥∥∥∥∥∥∥
k∑

i=1

xni,γi

∥∥∥∥∥∥∥ < ∞,
where the sup is taken over all finite sets of ω × c .

Proof The idea is to obtain an operator τ : X −→ `∞/c0 that cannot be lifted
to `∞, which is clearly enough to conclude that the lower pullback sequence

0 // c0 // `∞ // `∞/c0 // 0

0 // c0 // PB //

τ

OO

X //

τ

OO

0

does not split. The operator τ will appear as a composition τ = uv with
v : X −→ c0(ω × c) and u : c0(ω × c) −→ `∞/c0, where v is obviously v(x) =

( fn,γ(x)), while u is u(en,γ) = 1An,γ +c0 for (An,γ)n∈ω,γ∈c, an almost disjoint family
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of subsets of N with the following property: for every family (Bn,γ)n∈ω,γ∈c with
Bn,γ ⊂ An,γ cofinite, we have supm∈N

∣∣∣{n ∈ ω : m ∈
⋃
γ∈c Bn,γ

}∣∣∣ < ∞. The
existence of such a family is shown in [136, Lemma 2.1]. Assume that τ
admits a lifting T . The set Bn,γ = {m ∈ An,γ : δmT (xn,γ) ≥ 1

2 } is cofinite in
An,γ, so for each k ≥ 1, there exists p ∈ ω, n1, . . . , nk ∈ N pairwise distinct
and γ1, . . . , γk ∈ c such that p ∈ Bni,γi for i = 1, . . . , k. Therefore, we get a
contradiction with

k
2
≤ δp

 k∑
i=1

xni,γi

 ≤ sup

∥∥∥∥∥∥∥
k∑

i=1

xni,γi

∥∥∥∥∥∥∥ ‖T‖. �

A simple way to satisfy the conditions of Proposition 8.7.2 in a C(K)
space is to have a bounded weak*-null biorthogonal system (xn,γ, fn,γ)n∈ω,γ∈c

(a biorthogonal system (xi, fi)i∈I is bounded if supi
(
‖xi‖, ‖ fi‖

)
< ∞ and weak*-

null if ( fi(x)) ∈ c0(I) for all x ∈ X) such that xn,αxm,β = 0 provided
(n, α) , (m, β) in ω × c. This situation occurs under the following condition,
which is satisfied by Corson compacta [136, Lemmata 2.8 and 3.2] under CH:
there is a sequence (Fn)n∈ω of closed subsets of K and a bounded biorthogonal
weak*-null system (xn,γ, fn,γ)n∈ω,γ∈c in C(K) such that Fn ∩

⋃
n,m Fm = ∅ and

supp fn,γ ⊂ Fn for all n ∈ ω and all γ ∈ c. Therefore,

Proposition 8.7.3 [CH] If K is a non-metrisable Corson compact then

Ext(C(K), c0) , 0.

In the meantime, one more offspring emerged. During the final stages of the
writing of [22], Avilés asked: if a C(K) space is itself a twisted sum of c0 and
c0(I) and c0, does it admit a non-trivial twisted sum with c0?

The intended purpose of [93] was to answer with a consistent yes. In a sense,
the paper proves more than announced: any space that is a twisted sum of
two c0(I) can be twisted against c0 under CH; the same is true for the newly
obtained twisted sums, and for the new twisted sums and so on. The proof
waddles between homology and cardinal set theory, with not much left to
C(K)-spaces. Its formulation in C(K) terms could, however, be as follows:

Proposition 8.7.4 [CH] If K is a non-metrisable compact space of finite
height then Ext(C(K), c0) , 0.

The proof goes as follows. Since K must be infinite, K′ , ∅. If K(2) = ∅

then K′ is finite, C(K) is isomorphic to a finite product c0(I1)× · · · × c0(In) and
the assertion is true. So our first serious concern is with compacta K having
K(2) , ∅ and K(3) = ∅. The natural exact sequence 0 −→ C0(K\K′) −→
C(K) −→ C(K′) −→ 0 becomes 0 −→ c0(I) −→ C(K) −→ c0(J) −→ 0. Now,
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if J is countable, the sequence splits, and C(K) is isomorphic to c0(c), so the
conclusion follows. Otherwise, the following result applies:

Lemma 8.7.5 If X fits into an exact sequence 0 −→ c0(I) −→ X −→

c0(c) −→ 0 then Ext(X, c0) , 0.

Proof If |I| ≤ c, there is a pushout diagram

0 // c0(c) //

ı

��

X0 //

��

c0(c) // 0

0 // c0(I) // X // c0(c) // 0

(8.37)

and the same if |I| ≥ c using Lemma 3.9.4. Apply homology with target c0 to
the lower exact sequence in (8.37) to get an exact sequence

L(c0(I), c0)
connecting
−−−−−−−→

morphism
Ext(c0(c), c0) −−−−−−→ Ext(X, c0).

If Ext(X, c0) = 0, the connecting morphism is surjective, which by composition
with the map ı in (8.37) in turn yields a surjective map L(c0(c), c0) −→
Ext(c0(c), c0), something that cardinal arithmetics will show to be impossible.
Indeed,

∣∣∣L(c0(c), c0)
∣∣∣ < ∣∣∣ Ext(c0(c), c0)

∣∣∣. To prove this, fix a Banach space Y
and observe that |L(Y, c0)| ≤ |L(`1,Y∗)|: since L(`1,Y∗) is the set of bounded
sequences of Y∗, there are |(Y∗)N| countable subsets of Y∗ and each of them
admits c bounded sequences, we get

|L(Y, c0)| ≤
∣∣∣R × (|Y∗|ℵ0 )ℵ0

∣∣∣ .
Therefore, if |Y∗| ≤ c, as is the case when Y = c0(c), one gets |L(Y, c0)| ≤ cℵ0 =

c. On the other hand, Marciszewski and Pol show in [355, Proposition 7.4] (see
Proposition 8.7.18 below) that there exist 2c non-equivalent exact sequences
0 −→ c0 −→ · −→ c0(c) −→ 0; i.e. |Ext(c0(c), c0)| ≥ 2c. �

It is easy now to believe, even if this sounds like the shoulder on which
mathematicians come to cry after making a gaffe, that the ideas above can be
inductively continued. Full details are in [93].

The point that is relevant in this tale is that no CH has been used so far, and
the reader has our word that it was not used for the rest of the proof in [93].
So the question is unavoidable: does that mean that we have proved that any
non-metrisable finite height compact K is such that Ext(C(K), c0) , 0? No. The
reason is cardinal arithmetics. What has been proved is that any non-metrisable
compact K with height at most 3 and such that |K′| ≥ c has Ext(C(K), c0) , 0;
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at the end of the day, the proof worked because cℵ0 < 2c. But the inequality
ℵℵ0 < 2ℵ does not necessarily hold for all cardinals. Indeed, see [221, Theorem
5.15]: assuming GCH, if ℵ has cofinality greater than ℵ0 then ℵℵ0 = ℵ, but
ℵℵ0 = 2ℵ if ℵ has cofinality ℵ0. In particular, ℵℵ0

1 < 2ℵ1 does not necessarily
hold. On the other hand, even the Marciszewski–Pol argument could not work
for ℵ1 without CH: if c < 2ℵ1 then the same proof as in [355] yields that there
are 2ℵ1 different exact sequences 0 −→ c0 −→ X −→ c0(ℵ1) −→ 0. However, if
2ℵ1 = c then the method in [355] does not decide. Summing up, the proof works
when c is the first step, something that happens under CH. In fact, Proposition
8.7.4 can be formulated as a theorem in ZFC [25, Theorem 6.2]:

8.7.6 Ext(C(K), c0) , 0 for every compact space of finite height and weight
at least c .

In this scenario, Marciszewski and Plebanek [354] show that that first step
cannot actually be done for ℵ1 < c under Martin’s axiom. Let us briefly sketch,
but we are just a hunchback digging on a hill of gold, how their ideas go. The
key property behind the Marciszewski–Plebanek construction is the following:

Definition 8.7.7 Let K be a compact space. A countable discrete extension
of K is a compact space L containing (a homeomorphic copy of) K whose
complement is countable and discrete. A compact space K has the ∗-extension
property if, whenever L is a countable discrete extension of B∗C(K) (not K!),
the canonical embedding δ : C(K) −→ C

(
B∗C(K)

)
lifts to C(L) through the

restriction map.

The kernel of the restriction map arising from any countable discrete
extension is isometric to c0. We have:

Proposition 8.7.8 If K has the ∗-extension property then Ext(C(K), c0) = 0.

Proof We show that every exact sequence 0 −→ c0
ı
−→ X

ρ
−→ C(K) −→ 0

actually fits into a commutative diagram

0 // c0 // C(L) r

restriction
// C

(
B∗C(K)

) // 0

0 // c0 // X //

OO

C(K) //

δ

OO

0

(8.38)

Construction of L : there is no loss of generality assuming that ı : c0 −→ X is
an isometric embedding and ρ : X −→ C(K) is an isometric quotient. Then let
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x∗n be Hahn–Banach extensions of the coordinate functionals of c0 through ı so
that

M = ρ∗
[
B∗C(K)

]
∪ {x∗n : n ∈ N},

equipped with the weak*-topology is a countable and discrete extension of
ρ∗

[
B∗C(K)

]
since all accumulation points of {x∗n : n ∈ N} vanish on c0. Now we

form a countable discrete extension of B∗C(K) taking

L = B∗C(K) ∪ {x
∗
n : n ∈ N},

topologised to be homeomorphic with M via the obvious bijection h : L −→ M
given by h(µ) = ρ∗(µ) and h(x∗n) = x∗n. This yields Diagram (8.38), whose lower
sequence must split. �

The lower sequence in (8.38) splits if and only if there is an extension
operator E : C(K) −→ C(L), i.e. a lifting of δ. Since we can assume without
loss of generality that X is the pullback space, f 7−→ (E f , f ) is a linear
continuous selection for the lower sequence and thus (g, f ) 7−→ (g − E f , 0)
defines a projection X −→ c0. This means that whenever g ∈ C(L) is
such that rg = δ f , g − E f ∈ c0, namely limn(g(n) − E f (n)) = 0. Since
E f (n) = 〈E∗(δn), f 〉, it turns out that a lifting E exists if and only if there
is a bounded sequence (νn) ∈ C(K)∗ such that

lim
n→∞

(g(n) − νn( f )) = lim
n→∞

(E f (n) − νn( f )) = 0 (8.39)

for every f ∈ C(K) and every g ∈ C(L) such that rg = δ f .
The next natural step towards the solution of the CCKY problem is to find

a way to arrive at a bounded sequence (νn) as above. So, the authors place the
action in the duality between Boolean algebras A and their Stone compacta
ult(A) as described in Note 4.6.1. Concatenation of the functors Boolean
algebras  Stone compacta  C(K)-spaces yields the correspondence a  
a◦  a◦◦, taking Boolean homomorphisms to continuous functions and then
to operators. It is clear that when an arrow at a ‘lower level’ (Boole, compact)
has a (left, right) inverse then the same is true for the induced arrows at ‘higher
levels’ (compact, Banach), but not the converse. In particular, if a : A −→ B
and b : B −→ A are Boolean morphisms such that ab = 1B then a◦◦b◦◦ =

1C(ult(B)). An especially important case is that of a Boolean algebra A ⊂ P(N)
containing the finite subsets: if ρ : A −→ A/fin(N) is the natural quotient map,
then ρ◦◦ = r is the restriction operator C(ult(A)) −→ C(ult(A/fin(N))). It turns
out then that if s is a right inverse for ρ, s◦◦ is an extension operator for r.

We will set M(A) = C(ult(A))∗ to both simplify notation and stress the fact
that elements C(ult(A))∗ and bounded additive functions µ : A −→ R can be
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identified via µ(A) = 〈µ, 1A〉. It will also simplify the notation to write M1(A)
for the unit ball of M(A) . Given a subalgebra B ⊂ A, we define a seminorm
for bounded functions ϕ : A −→ R by

‖ − ϕ‖B = sup
B∈B
|ϕ(B)|,

which induces, via the identification above,

distB(ϕ,M1(A)) = inf
µ∈M1(A)

‖ϕ − µ‖B.

Definition 8.7.9 A Boolean algebra A has the approximation property (a.p.)
if, given any sequence ( fn) of functions fn : A −→ [−1, 1] such that for any
finite subalgebra B ⊂ A,

lim
n

distB( fn,M1(A)) = 0,

there is a bounded sequence (νn) ⊂ M(A) such that lim( fn(a) − νn(a)) = 0 for
all a ∈ A.

The approximation property of the Boolean algebra A is crying out: the
associated Stone compact ult(A) enjoys the ∗-extension property!

Lemma 8.7.10 If K is a totally disconnected space whose Boolean algebra
of clopen sets has the a.p. then K has the ∗-extension property.

Proof Let A = cl(K) so that K = ult(A). For each A ∈ A, consider the
evaluation map M1(A) −→ [−1, 1] that sends µ to µ(A). Given a countably
discrete extension L of M1(A), obtain a continuous extension θA : L −→

[−1, 1], and then form the sequence of functions fn : A −→ [−1, 1] given
by fn(A) = θA(n). Since L is a countably discrete extension of M1(A), all
accumulation points of the elements of the countable discrete addition are in
M1(A), thus limn distB( fn,M1(A)) = 0 precisely because B is finite. So, there
is a bounded sequence (νn) such that lim(νn(A) − fn(A)) = 0 for every A ∈ A;
that is,

lim
n→∞

(νn(A) − θA(n)) = 0,

which implies (8.39) for functions f = 1A with A ∈ A: if rg = 1A then
necessarily lim(g(n) − θA(n)) = 0 and thus

lim (g(n) − νn(1A)) = lim (g(n) − θA(n) + θA(n) − νn(A)) = 0.

Finally, if (8.39) holds for all functions 1A with A ∈ A then it holds for all
functions f ∈ C(ult(A)). �
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What else has to be done? Oh, yes, to construct a Boolean algebra A with
the a.p.! And this is where Martin’s axiom, which is a statement about certain
partially ordered sets, has a leading role. A strong antichain (downwards) in a
partially ordered set P is a subset in which no two elements have a common
lower bound. P is said to satisfy the countable chain condition (ccc) if every
strong antichain is countable. A subset D ⊂ P is dense if, for every p ∈ P,
there is d ∈ D such that d ≤ p; a subset F ⊂ P is said to be a filter (on P) if it
is directed (∀ f , g ∈ F ∃ h ∈ F : f , g ≤ h) and downwards closed (if g ≤ f and
f ∈ F then g ∈ F). Consider the following statement for a cardinal ℵ0 ≤ ℵ ≤ c :

8.7.11 MA(ℵ) Given a partially ordered set P satisfying the ccc, for every
collection D of dense subsets of P such that |D| ≤ ℵ, there is a filter on P
meeting all the elements of D.

Assertion MA(ℵ0) is a theorem in ZFC (the Rasiowa–Sikorski lemma), while
MA(c) is false. Martin’s axiom MA is the statement that MA(ℵ) holds for all
ℵ < c. As Levy mentions [321, p. 280], MA is a formal consequence of
CH that, instead of necessarily denying the existence of cardinals between
ℵ0 and c, asserts that, if they exist, they behave like ℵ0; moreover, it adds
no information about the value of c, and it is therefore consistent with any
reasonable specification of which value for c one assumes. We only need
Martin’s axiom at the first level, namely MA(ℵ1):

Lemma 8.7.12 [MA(ℵ1)] Let M be an almost disjoint family of subsets of N
of size ℵ1. The Boolean algebra AM generated by the sets in M and the finite
sets has the a.p.

The proof is by no means simple: Marciszewski and Plebanek introduce
[354, Definition 4.6] the complicated notion of the local extension property of
order r (LEP(r)) for Boolean algebras, which turns out to be the fulcrum on
which the lever of MA is placed.

And with this we arrive at the awful truth: the space that Marciszewski and
Plebanek show as impossible to twist against c0 is the same space of continuous
functions on 4M we know so well from 2.2.10 and which was the first one we
twisted against c0 in Lemma 8.7.5 to answer Avilés question: the Johnson–
Lindenstrauss space JL∞ of Diagram (2.37) – the reason is that the Stone
compact corresponding to AM is 4M. We have:

Theorem 8.7.13 Given an almost disjoint family M of size ℵ1,

• [CH] Ext(C(4M), c0) , 0.
• [MA(ℵ1)] Ext(C(4M), c0) = 0.
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Funny, isn’t it? Thus, the CCKY problem cannot be solved in ZFC! And
more nails have been hammered into the CCKY problem’s coffin: [25; 134;
135; 136; 137; 354]. So, all’s well that ends well? Well, Avilés, Marciszewski
and Plebanek decided this was the ideal place to be an apple tree [25]:

Theorem 8.7.14 [CH] If K is a non-metrisable compact, Ext(C(K), c0) , 0.

The proof contains a stab at the heart of [93] in the form of an incredibly
clever counting lesson plus some general results of independent interest:

Proposition 8.7.15 If X is a Banach space of density ℵ1 such that |X∗| < 2ℵ1

then Ext(X, c0) , 0.

This result depends only on the following general estimate [25, Lemma 4]: if
K is a compact space of weight ℵ1 then |C(N∗,K)| ≥ 2ℵ1 . The proof then goes
smoothly once the implicationX is established in the following chain:

dim(X) ≤ ℵ1 ⇒ weight(B∗X) ≤ ℵ1 ⇒ |C(N∗, B∗X)| ≥ 2ℵ1
X
⇒ Ext(X, c0) , 0.

This implication is simultaneously impossible to figure out and easy to see in
light of the following definition:

Definition 8.7.16 Let K be a compact subspace of another topological space
H. We say that a countable discrete extension L of K can be realised in
H if there is a homeomorphic embedding L −→ H making a commutative
diagram

K

%%

// L

zz
H

Avilés, Marciszewski and Plebanek [25, Theorem 3.1 and Corollary 4.3]
then show the following:

8.7.17 Let X be an infinite-dimensional Banach space. The following are
equivalent:

(i) Ext(X, c0) = 0.
(ii) Every countable discrete extension of B∗X can be realised in (X∗,weak*).

(iii) Every weak*-continuous function N∗ −→ X∗ extends to a weak*-
continuous function βN −→ X∗.

It is then clear that implication X holds: Ext(X, c0) = 0 is impossible since
otherwise, using (iii),

2ℵ1 ≤ |C(N∗, B∗X)| ≤ |X∗|ℵ0 = |X∗| < 2ℵ1 .
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We continue to sketch the proof of Theorem 8.7.14. The first task is to settle
the case in which K has weight ℵ1 = c. This requires the counting lesson
mentioned above but also the pièce de résistance [25, Corollary 5.6]: [CH] if
Ext(C(K), c0) = 0 then there is a finite set F ⊂ K such that for every closed
subspace L ⊂ K of weight c L \ F is locally metrisable. Having the case c
in hand, the authors appeal to Juhász’s theorem [239]: [CH] if K has weight
greater than c then there is a compact subspace of K of weight c. This, and a lot
of know-how, will result in the final contradiction: if Ext(C(K), c0) = 0 then
K must be metrisable. Ok this is the end of the line (see Note 8.8.5 if it is not
immediately clear why).

Or maybe not. Koszmider posed [298] five problems on the spaces C(4M):

(1) Is there a separable Banach space X not isomorphic to c0 whose only non-
trivial decompositions are of the form c0 × X?

(2) [ZFC] Are there almost disjoint families M such that every decomposition
of C(4M) into two factors has one separable factor?

(3) [MA] Is it true that if |M| = |N| < c, then C(4M) ' C(4N)?
(4) [MA] Is it true that if |M| < c then C(4M) is isomorphic to its square?
(5) [ZFC] Are there two almost disjoint families M and N of the same

cardinality such that C(4M) and C(4N) are not isomorphic?

These problems are relevant to our discussion. Koszmider himself gives
a partial solution to (2) by showing that under either CH or MA, there is a
family M, constructed ad hoc, such that if C(4M) = A ⊕ B with A and B
infinite-dimensional, then A ' c0 and B ' C(4M), or vice versa. Argyros
and Raifkotsalis [20] showed the existence of separable spaces AR(p) for
1 ≤ p < ∞ such that if AR(p) = A ⊕ B then A ' `p and B ' AR(p) (or
vice versa). Problem (5) is about how many different C(4M) spaces exist: it
was solved by Marciszewski and Pol [355], who showed that there exist 2c

non-isomorphic spaces with |M| = c; we already used this during the proof of
Proposition 8.7.4. The proof in [355], or at least a large share of its three lines,
could well be considered implicit. An explicit proof has been produced in [74].
Question (3) is the same question (5), but under MA plus |M| < c. Koszmider’s
questions have surprising answers:

Proposition 8.7.18

(a) There exist 2c almost disjoint families M of size c such that the Banach
spaces C(4M) are pairwise non-isomorphic.

(b) Under MA(ℵ), all the spaces C(4M) with |M| = ℵ are isomorphic and
isomorphic to their squares.
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Proof Part (a) is the result of Marciszewski and Pol [355] already mentioned.
Part (b) is a formal consequence of Theorem 8.7.13: Let M,N be almost dis-
joint families of size ℵ< c. Since Ext(C(4M), c0) = 0 and Ext(C(4N), c0) = 0,
the two exact sequences in the diagram

0 // c0 // C(4M) // c0(ℵ1) // 0

0 // c0 // C(4N) // c0(ℵ1) // 0

are semi-equivalent; thus, the diagonal principle in Theorem 2.11.6 yields

C(4M) ' c0 ×C(4M) ' c0 ×C(4N) ' C(4N)

since it is plain that C(4M) ' c0 × C(4M). The last assertion is clear since
for every ℵ0 ≤ ℵ ≤ c, there exist families M of size ℵ such that C(4M) is
isomorphic to its square. �

We can polish the idea behind the argument above as follows:

Lemma 8.7.19 Given two exact sequences

0 // c0 // Z // c0(ℵ) // 0

0 // c0 // Z′ // c0(ℵ) // 0

if Ext(Z, c0) = 0 and Ext(Z′, c0) = 0 then Z ' Z′.

Proof Working as above, one gets Z× c0 ' Z′× c0, and we just need to check
that both Z,Z′ contain c0 complemented, which is obvious since both quotient
maps are invertible on every separable subspace of c0(ℵ). �

8.8 Notes and Remarks

8.8.1 Homogeneous Zippin Selectors

One might wonder which additional properties a Zippin selector could enjoy
and also which classes of Banach spaces could play the role of C -spaces
throughout this chapter. Both questions are somehow connected since there
are simple correspondences between certain types of Lindenstrauss spaces and
certain types of Zippin selectors.

Consider homogeneous Zippin selectors (i.e. ω(λy∗) = λ(y∗) for |λ| ≤ 1)
and positively homogeneous Zippin selectors (only for 0 ≤ λ ≤ 1). They
correspond to two well-known types of Lindenstrauss spaces. A G -space is
a Banach space X for which there exists a compact space K and a set of
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triples {k1
α, k

2
α, λα}α∈A with k1

α, k
2
α ∈ K and λα ∈ K such that X = { f ∈ C(K) :

f (k1
α) = λα f (k2

α) ∀α ∈ A}. An M -space is a G -space with λα ≥ 0 for all α,
equivalently, a sublattice of a C -space.

Lemma An embedding is G -trivial (resp. M -trivial) if and only if it admits
a homogeneous (resp. positively homogeneous) Zippin selector.

Proof We prove the case of G -spaces, and the other is similar. Form the G -
space G(B∗Y ) = { f ∈ C(B∗Y ) : f (λy∗) = λ f (y∗), ∀|λ| ≤ 1, ∀y∗ ∈ B∗Y } and
observe that the natural embedding δ : Y −→ G(B∗Y ) has the universal property
that every G -valued operator on Y factors through δ. Now, let  : Y −→ X be an
embedding. There is a correspondence between homogeneous Zippin selectors
for  and extensions D of δ through  as in the diagram

Y
 //

δ ""

X

D||
G(B∗Y )

(8.40)

given by D(x)(y∗) = 〈ω(y∗), x〉. The universal property of δ yields, then, the
extension of any G -valued operator defined on Y . �

The following result was instrumental in the proofs of Propositions 8.5.1
and 8.5.7.

Proposition Let Y be a separable Banach space and let  : Y −→ X be an
embedding. If  admits a Zippin selector then it admits a homogeneous Zippin
selector.

Proof Everything rests on Benyamini’s magical result [38] that separable
G -spaces are actually isomorphic to C -spaces. However, to control the bound
of the homogeneous selector, we need to go inside [38, Proof of the Theorem]
where it is shown that if G is a separable G -space then there is a metric
compactum K and an operator u : G −→ C(K) whose range is 1-complemented
and such that for all g ∈ G, one has 1

2‖g‖ ≤ ‖u(g)‖ ≤ 3
2 ‖g‖. Now, if  admits

a λ-Zippin selector then  is C -trivial, and there is a commutative diagram as
(8.40) with ‖D‖ ≤ 3λ that yields a homogeneous 3λ-Zippin selector. �

Therefore, most of the material of this chapter for C -spaces could be
adapted for G -spaces just multiplying by 3 here and there. Does this deliver
all answers with it? For that, you’re going to need a bigger boat: Kalton shows
in [274, Proposition 4.5] that, for 1 < p < ∞, the canonical embedding
δ : `p −→ C(B∗`p

), which obviously admits a 1-Zippin selector (and therefore
a homogeneous 3-Zippin selector), does not admit a homogeneous λ-Zippin
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selector for any λ < (1 + (q − 1)q−p)1/q, where q−1 + p−1 = 1. Moreover, in
the non-separable case, the existence of a Zippin selector does not guarantee
at all the existence of a homogeneous one: in [39], Benyamini constructs a
non-separable M -space M that is not complemented in any C -space. The
embedding M −→ C(B∗M) is C -trivial but not M -trivial and therefore cannot
be G -trivial. Moreover, as we already know, an embedding can be C -trivial
without being L∞-trivial: in fact, the identity on the Gurariy space G cannot
be extended through the canonical embedding G −→ C(B∗G) since G is not
complemented in any C -space [22, Theorem 3.34]. It is an open question
whether there exists a global approach to the extension problem for arbitrary
Lindenstrauss-valued operators.

8.8.2 Lindenstrauss-Valued Extension Results

We will show in Section 10.6 that C -valued extension results do not auto-
matically pass to L∞-valued results, except the Johnson–Zippin theorem
8.6.2, of course. Let us focus here on results for operators with values in
Lindenstrauss spaces. The proof of the Lindenstrauss–Pełczyński theorem
presented in Theorem 8.2.2 is a slightly edited version of the original proof
in [330]. In that paper, the authors suggest that a version for Lindenstrauss
spaces should also hold and give some hints about how to proceed: by using a
generalisation of Edwards’ separation theorem for Lindenstrauss spaces [319,
Theorem 2.1] instead of the naive Hahn–Tong insertion trick. The version of
the separation theorem that best suits our needs seems to be the following due
to Olsen; see [371, Theorem 4.1] or [316, Theorem 1 on p. 220]:

Lemma A Banach space L is a Lindenstrauss space if and only if, for every
lower semicontinuous, concave function G : B∗

L
−→ R such that G(e∗) +

G(−e∗) ≥ 0 for all e∗ ∈ B∗
L

, there exist ξ ∈ L such that 〈ξ, e∗〉 ≤ G(e∗) for
every e∗ ∈ B∗

L
.

We are ready to prove:

Theorem Every operator from a subspace of c0 to a Lindenstrauss space has
a 1+-extension to c0.

Proof Let L be a Lindenstrauss space. The proof treads in the footprints of
that of Theorem 8.2.2, with B∗

L
in the role of the underlying compact space.

Lindenstrauss spaces are exactly the L∞,1+-spaces, and so each separable
subspace of L is contained into a separable Lindenstrauss subspace. Thus we
may assume that L is separable and that ‖τ‖ = 1. We prove that, for each λ > 1
and for each x ∈ c0 \ H, τ can be extended to an operator on H + [x] having
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norm at most λ. This amounts to showing that there exists ξ ∈ L such that
‖ξ − τy‖ ≤ λ‖y − x‖ for all y ∈ H. This ξ has to satisfy

〈e∗, τy〉 − λ‖y − x‖ ≤ 〈e∗, ξ〉 ≤ 〈e∗, τy〉 + λ‖y − x‖ (8.41)

for all e∗ ∈ B∗
L

and all y ∈ H. We define two functions on B∗
L

as follows:

G(e∗) = inf
y∈H

(
〈e∗, τy〉 + λ‖y − x‖

)
,

F(e∗) = sup
y∈H

(
〈e∗, τy〉 − λ‖y − x‖

)
.

It is clear that F(e∗) = −G(−e∗) and so ξ satisfies (8.41) if and only if 〈e∗, ξ〉 ≤
G(e∗) for every e∗ ∈ B∗

L
. Keeping an eye on Lemma 8.8.2, notice that G is

concave since it is a pointwise infimum of affine functions. Form its lower
semicontinuous envelope Glsc, which is also concave. Thus, to apply Olsen’s
lemma, we only have to see that Glsc(e∗) + Glsc(−e∗) ≥ 0 for every e∗ in the
ball of L∗. Assuming, on the contrary, that there exists some e∗ ∈ B∗

L
such

that −Glsc(−e∗) > Glsc(e∗), then there also exist sequences (sn), (tn) converging
to e∗ in B∗

L
such that limn F(sn) > limn G(tn) and, therefore, there exist points

yn, zn ∈ H such that

lim
n

(
〈sn, τ(yn)〉 − λ‖x − yn‖

)
> lim

n

(
〈tn, τ(zn)〉 + λ‖x − zn‖

)
.

Now, switch to the part of the proof of Theorem 8.2.2 starting at (8.2), with e∗

replacing δs, until reaching a contradiction. �

The C -extensibility of `1 also passes without modification to Lindenstrauss-
space extensibility:

Proposition Every operator from `1 to a Lindenstrauss space admits 1+

extensions to any separable superspace.

Proof Let L be a Lindenstrauss space, and let τ : `1 −→ L be an operator.
We can assume that L is separable by the same argument as in the previous
proof. Johnson and Zippin [234] proved that there is an isometric quotient map
Q : C(∆) −→ L. Pick a 1+-lifting t of τ through Q and then a 1+-extension T
of t. The operator QT is a 1+-extension of τ. �

8.8.3 The Last Stroke on the Extension of C -Valued
Lipschitz Maps

As we have already mentioned, the material contained in Section 8.3 originates
in Kalton’s studies about the extension of C -valued Lipschitz maps, which
we have avoided in its full generality as much as possible thus far. Oh well,
in for a penny, in for a pound: it is time to explain why the non-linear
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context yields even better results. Suppose we are given a metric space X,
not necessarily normed, and a Lipschitz map τ : Y −→ C(K), where Y is
a subset of X and K is a metrisable compact space. If we want to extend
τ to X to one more point x ∈ X \ Y , we typically generate two bounded
functions g, h : K −→ R, depending on x, in such a way that g is upper
semicontinuous, h is lower semicontinuous and g ≤ h in order to then use
the Hahn–Tong sandwich theorem to insert a continuous f between g and h.
We choose this f as the value of the extension of τ at x. If, moreover, we
could almost preserve the Lipschitz constant of the extension then we could
proceed through an enumeration of a dense subset of X \ Y to get a global
extension to X, as in Theorem 8.3.10. Otherwise, when no almost-isometric
preservation of the Lipschitz constant can be done, one instead needs to control
the Lipschitz constant of the extension by means of the distances between
the semicontinuous functions entering into the Hahn–Tong theorem. All this
is treated by Kalton in a rather unexpected way. Before proceeding, let us
make our lives easier by recalling that, in our current separable setting, all
problems about extensions of C -valued maps can be reduced to the case where
the underlying compactum is the Cantor set, as Lemma 1.6.2 clearly explains.
Now, consider SUB(∆), the subset of those pairs (g, h) ∈ `∞(∆) × `∞(∆) such
that g is upper semicontinuous, h is lower semicontinuous and g ≤ h. We
measure distances in SUB(∆) just using the restriction of the norm:

d((g1, h1); (g2, h2)) = max
(
‖g1 − g2‖∞, ‖h1 − h2‖∞

)
.

We have (we skip the proof):

Proposition There is a contraction θ : SUB(∆) −→ C(∆) such that, for every
(g, h) ∈ SUB(∆), we have g ≤ θ(g, h) ≤ h.

The task now at hand is to give a metric characterisation of those pairs (Y, X)
for which every C -valued contraction on Y has a λ-Lipschitz extension to
X (for fixed λ!). It is clear from Lemma 8.3.3 that (Y, X) satisfies condition
Σ1(λ) if and only if every contraction Y −→ c admits a λ-Lipschitz extension
to one more point, no matter which point one chooses. It seems like magic
that this suffices to get a global, coherent extension with the same bound,
but it does:

Theorem If Y ⊂ X is a separable subset of a metric space and λ ≥ 1, the
following are equivalent:

(i) Every C -valued Lipschitz map on Y admits a λ-extension to X.
(ii) The pair (Y, X) verifies condition Σ1(λ).
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Proof The implication (i) =⇒ (ii) is contained in Lemma 8.3.3. To prove the
converse, it suffices to consider the case in which the target space is C(∆).
So, let τ : Y −→ C(∆) be a contraction. We define two λ-Lipschitz maps
τ−, τ+ : X −→ `∞(∆) by means of

τ−(x) =
∨
y∈Y

(
τ(y) − λd(y, x)1∆

)
,

τ+(x) =
∧
z∈Y

(
τ(z) + λd(z, x)1∆

)
,

where the order refers to `∞(∆), a complete lattice. Clearly, τ−(x) ≤ τ+(x)
for every x ∈ X, and τ−(y) = τ+(y) = τ(y) for y ∈ Y . Now, with an eye
on Proposition 8.8.3, we define G,H : X −→ `∞(∆) by G(x) = τ−(x)usc and
H(x) = τ+(x)lsc. It is easy to check that these are again λ-Lipschitz and that
G(y) = H(y) = τ(y) for y ∈ Y . The core of the argument is contained in the
following:

Claim For every x ∈ X \ Y , one has G(x) ≤ H(x).

Proof of the claim Following the proof of Lemma 8.3.3, assume that there
are x ∈ X \ Y, s ∈ ∆ and ε > 0 such that G(x)(s) > H(x)(s) + 2ε. Then there are
sequences (sn), (tn) in ∆, both converging to s, such that τ−(x)(sn) > τ+(x)(tn)+

2ε. For each n, we may select yn and zn in Y such that τ(yn)(sn) − λd(yn, x) >
τ(zn)(tn) + λd(zn, x) + 2ε. Applying condition Σ1(λ) to the sequences (yn), (zn)
and ε, we get u ∈ Y such that d(u, yn) + d(u, zn) ≤ λ

(
d(x, yn) + d(x, zn)

)
+ ε

for infinitely many ns. Let us set η = τ(u) and see what happens. We have
τ(yn) ≤ η + d(u, yn) and τ(zn) ≥ η − d(u, zn) and, in particular,

τ(yn)(sn) ≤ η(sn) + d(u, yn) and τ(zn)(tn) ≥ η(tn) − d(u, zn).

Combining these, we obtain that for infinitely many n,

η(sn) − η(tn) ≥ τ(yn)(sn) − d(u, yn) − τ(zn)(tn) − d(u, zn)

> λ
(
d(x, yn) + d(x, zn)

)
+ 2ε − d(u, yn) − d(u, zn) ≥ ε,

which contradicts the continuity of η at s. �

Thus, the λ-Lipschitz map x ∈ X 7−→ (G(x),H(x)) ∈ `∞(∆)× `∞(∆) actually
takes values in SUB(∆). Composing with the contraction θ : SUB(∆) −→ C(∆)
provided by Proposition 8.8.3, we obtain the required λ-Lipschitz extension of
τ, concluding the proof. �

This provides a complete characterisation of the separable subsets Y of a
metric space X for which all C -valued Lipschitz maps admit λ-extensions. Of
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course, it includes the case in which X is a Banach space. Compare to Theorem
8.3.10. A version of Lindenstrauss’ classic comes as a bonus:

Corollary Every separable C -space is an absolute 3-Lipschitz retract.

8.8.4 Property (M) and M-Ideals

Properties (L) and (L∗) are the ugly mates of properties (M) and (M∗)
introduced by Kalton in his study of M-ideals [264]. A Banach space X is said
to have property (M) if every weakly null type on X is a function of the norm,
and X is said to have property (M∗) if every weak*-null type on X∗ is a function
of the norm. It is clear that c0 and the spaces `p for 1 < p < ∞ have properties
(M) and (M∗). The Yellow Book [209] incorporates most of the discoveries of
[264], although not the ultimate connections between properties (M∗), (M) and
M-ideals of compact operators, which came later [370; 287; 322]. Namely

• A Banach space X has property (M∗) if and only if it has the metric compact
approximation property (obvious meaning) and K(X) is an M-ideal in L(X)
– see [264, Theorem 2.4] and [287] for separable X and [370; 322] for the
general case.

• Property (M∗) implies (M) for separable spaces [264, Proposition 2.5], and
Property (M) implies (M∗) for separable spaces containing no copy of `1

[287, Theorem 2.6].

The paper [287] contains a bunch of examples (and counterexamples)
concerning these properties too. Regarding the topic of this chapter, separable
spaces having property (M∗) have the almost isometric C -extension property
[273, Theorem 7.5]. One could actually develop Section 8.4 focusing on
properties (M) and (M∗) instead of (L) and (L∗). In some sense, this is what
Kalton did in [264, Section 4] and [273, Section 3]. We decided to present
the results in their L-version only because the M-version of Proposition 8.4.2
(which is a particular case of [273, Proposition 3.4]) is much harder to prove.

8.8.5 Set Theoretic Axioms and Twisted Sum Affairs

Cardinal axiomatics have made an essential irruption in homological affairs.
We list the places where they played or will play a role, if not for better, at
least for good:

• The CCKY-problem has different solutions under CH or MA.
• Under CH, there are 2ℵ1 non-isomorphic spaces C(4M) for |M| = ℵ1. All of

them are isomorphic under MA.
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• Under CH, every 1-separably injective Banach space contains `∞, while
under MA + ℵ2 = c, there exists a 1-separably injective C -space that does
not contain `∞ [24] .

• Under CH, universal separable injectivity is not a 3-space property (Theo-
rem 10.5.6 (c)).

• Under CH, there exist non-trivial sequences 0 −→ C(N∗) −→ C(N∗) −→
C(N∗) −→ 0 (Theorem 10.5.6 (b)). In particular, Ext(C(N∗),C(N∗)) , 0
[23]. It is apparently unknown whether the same holds in ZFC.

• Under CH, there is just one space of separable universal disposition and
dimension c, the Kubiś space F1. Under different axiomatics (see after
Corollary 7.3.5), there is a continuum of mutually non-isomorphic spaces
of that type.

Sources

The material in this chapter is classical, old and new, all at once. It is classical
because some parts can be already found in Semadeni’s book [430]; it is as old
as the 1970s [330] and as new as 2007 because a large part of it develops
Kalton’s extraordinary series of four papers [271; 272; 273; 274]. Weak*-
continuous selectors are among the extremely nice contributions of Zippin
[463; 464; 465], who coined the term global approach. The four ‘elementary’
examples in Proposition 8.1.3 have different origins. Example (a), embeddings
into `p, is from Zippin, although the simple proof we present was the idea
of Yost and appeared in [76]. Example (b), the embedding `p −→ `p(ϕ),
is a particular case of the C -extensibility of the spaces `p(ϕ), although the
argument presented is original. Example (c) and its proof are a reworking of
some parts of Kalman’s paper [245]; however, the use of triangularisations
to prove Kalman’s theorem was suggested to us by Francisco Santos. The
Lindenstrauss–Pełczyński theorem is one of the beautiful contributions in
[330]. As mentioned in the text, Zippin [464; 465] produced his own proof;
the homologically flavoured proof in Theorem 8.2.1 is from [76], and the
Lindenstrauss-valued extension à la Lindenstrauss–Pełczyński in Section 8.8.2
is from [129]. The result remained isolated until Johnson and Zippin [236]
obtained an extension to subspaces of c0(I) and later in [237] to weak*-closed
subspaces of `1, which is the Johnson–Zippin theorem. It involves L∞-valued
operators and is, in fact, a characterisation of them [118, Proposition 3.1]: X
is an L∞-space if and only if every X-valued operator defined on a weak*-
closed subspace of `1 can be extended to `1. The Ext-version of this result is
Proposition 5.2.9 (b). The paper [76] contains the first example showing that
L∞-spaces cannot replace C -spaces in the Lindenstrauss–Pełczyński theorem
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and answers Zippin’s problem 6.15 in [466]. The existence of such ‘rare’ L∞-
spaces sparked the theory of Lindenstrauss–Pełczyński spaces, to be developed
in Section 10.6. The nice unexpected example in 8.2.3 has been taken from
[236]. The concept of a type on a Banach space was introduced by Krivine
and Maurey [307]. That `2 is not extensible and all that comes with it was
Kalton’s response (see [271, Section 4]) to the final comments in [109]. In
this paper, the connection between the C -extensibility property of X and
the X-automorphic character of C[0, 1] was established (Proposition 7.4.15),
something that Kalton reformulates as [271, Theorem 4.1] or else as [274,
Proposition 2.5]. The connection between the two properties was established
while studying [237, Problem 4.2]: if E is a reflexive subspace of X, does
every C -valued operator on E extend to X? After that initial impetus, Kalton’s
imagination ran free. He considered the question of when Ext(X,C[0, 1]) = 0
in [267], obtaining Proposition 8.6.4 and much more, and then again [113]
following a different approach. The problem was revisited in [73] considering
also the case C(ωω). The reader is warned that the reading of [73] is difficult
at some points, and quite difficult for the rest of the time; it is advisable
to have [191] at hand. In [73], the parameter αN defined in (8.34) is rather
associated with X∗, or with some of its subspaces, and the role of X is to
define the weak* topology in X∗. In the text, we have treated αN as a constant
associated with X that is computed on its dual. Very recently, Causey, Fovelle
and Lancien have shown that having a summable Szlenk index is a 3-space
property [131]. Zippin’s problem 8.6.1 still remains open. All adventurous
episodes of the astounding story have been told during Section 8.7. But there
remain outrageous possibilities: Proposition 8.7.2 has been generalised in [25,
Proposition 8.2] to:

Proposition Let X be a Banach space and let cn, dn > 0 be two sequences
such that lim n dn c−1

n = ∞. Suppose that, for every n, there exist Φ1, . . . , Φn ⊂

B∗X and Ψ1, . . . ,Ψn ⊂ BX such that

•
∥∥∥∑n

i=1 xi

∥∥∥ ≤ cn for any choice of vectors xi ∈ Ψi;
• for every i and x∗ ∈ Φi, there is x ∈ Ψi such that x∗(x) > dn;
• the sets ΦF are pairwise disjoint and |Φi| ≥ c ;
• Φ1 ∪ · · · ∪ Φn is discrete, and its weak*-closure is its one-point compactifi-

cation.

Then there is a non-trivial twisted sum of c0 and X.

What the proposition says, in its somewhat technical formulation, is that
biorthogonality is not essential in Proposition 8.7.2. The assumption CH on
Proposition 8.7.3 can be relaxed to MA; see [25, Corollary 4.2]. The problem
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of whether the assertion holds in ZFC is, however, open. What the whole story
teaches us is that it is by now clear that ‘there are nonmetrisable compacta
K for which the question of whether Ext(C(K), c0) , 0 is undecidable within
the usual axioms of set theory’ [25]. Which compacta those are and for which
ones there is a plain answer in ZFC is an entire world of research. Many more
results about good-natured compacta not mentioned in the astounding tale can
be found in [25; 134; 135; 136; 137; 354]. A few additional steps towards
8.7.6 are worth mentioning: Correa [135] proves it under MA and, in private
communications long before [25] was available, she informed us that the result
was true in ZFC for metrisable height 3 compacta. Property LEP(r) has been
reconsidered in [137] for finite height compacta. The results in Sections 8.8.1
and 8.8.2 are from [129], and those in Section 8.8.3 are from [272] and [273].
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