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The Role of Event-Based Representations

and Reasoning in Language

James Pustejovsky

Abstract. This chapter briefly reviews the research conducted on the rep-
resentation of events, from the perspectives of natural language processing,
artificial intelligence (AI), and linguistics. AI approaches to modeling change
have traditionally focused on situations and state descriptions. Linguistic
approaches start with the description of the propositional content of sentences
(or natural language expressions generally). As a result, the focus in the
two fields has been on different problems. Namely, linguistic theories try to
maintain compositionality in the expressions associated with linguistic units,
or what is known as semantic compositionality. In AI and in the planning
community in particular the focus has been on maintaining compositionality
in the way plans are constructed, as well as the correctness of the algorithm
that searches and traverses the state space. This can be called plan compo-
sitionality. I argue that these approaches have common elements that can be
drawn on to view event semantics from a unifying perspective, where we can
distinguish between the surface events denoted by verbal predicates and what
I refer to as the latent event structure of a sentence. Latent events within a
text refer to the finer-grained subeventual representations of events denoted
by verbs or nominal expressions, as well as to hidden events connoted by
nouns. By clearly distinguishing between surface and latent event structures
of sentences and texts, we move closer to a general computational theory
of event structure, one permitting a common vocabulary for events and
the relations between them, while enabling reasoning at multiple levels of
interpretation.

1.1 Introduction

Reasoning about events and their temporal properties is a capability that all
humans possess and a hallmark of intelligent behavior in any cognitive system.
Our knowledge of actions and events in the world, as well as our thoughts,
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fears, and intentions in our mental lives, are essential for modeling causation,
constructing complex plans, hypothesizing possible outcomes of actions, and
almost any higher order cognitive task. It is not surprising, therefore, that
temporal and event reasoning has been a central area of research in artificial
intelligence (AI), linguistics, and natural language processing (NLP) for
decades.

Event reasoning requires temporal reasoning, which is itself concerned with
representing and reasoning about such anchoring and ordering relationships.
This is not surprising, because one of the most difficult problems in reasoning
about events is locating them temporally. Consider the following simple
discourse illustrating this distinction.

(1) a. Yesterday, John fell while running.

b. He broke his leg.

Temporally situating the events in this example involves two independent
strategies: establishing a relative ordering of the events to each other and a
temporal anchoring of each event relative to a fixed time, such as the overt
temporal expression, yesterday, or Reichenbach’s speech time (Reichenbach,
1947). For this example, we may wish to temporally anchor the falling,
running, and breaking events to the particular time (yesterday) or to the
speech time (these are past events), as well as order the events relative to
each other; e.g., the running precedes the falling, which precedes the breaking.
Reasoning with even such a simple narrative requires identifying at least the
three following temporal constraint sets, as shown in (2c).

(2) a. fall ⊆ yesterday, run ⊆ yesterday, break ⊆ yesterday

b. fall < speech, run < speech, break < speech

c. run < fall < break

How these pairwise relations are identified and what constitutes the arguments
of these relations, however, has been a major research problem for years, in
both AI and linguistics, and is also addressed in detail in Chapter 7.

Using commonsense inference, for example, we would expect the falling
event to occur before the breaking event, that the falling terminates the
running, and that all three occurred yesterday. On the other hand, reasoning
linguistically from the grammatical tense and aspect associated with the verbs,
we can only conclude that the events are in the past relative to the speech
time, that the falling overlapped the time of the running, and that the event
of breaking is unordered relative to the others in the past. Further reasoning
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from the lexical aspect of the verbs could suggest that both falling and
breaking are not compatible event types with running, but this would be a
fairly sophisticated linguistic inference. Perhaps even more significant, these
inferences already assume that appropriate events can be defined, identified,
and packaged as input to subsequent inference procedures.

In the next section, I review what assumptions these fields have made with
respect to the recognition of events and how to model them. We will identify
two approaches that have figured prominently in event inferencing, the first
from linguistics and the second from AI:

• Verbal predicates and some nominals in language are associated with
individual events in the logical representation of a sentence.

• Verbal predicates are associated with fluents occupying begin and end states
that are formally linked in a model to indicate change of state.

Which approach one adopts depends to a large extent on what kinds of
inferences are being addressed; e.g., sentential semantics, discourse infer-
ences, or reasoning about larger narratives and story understanding. The
methodology employed in linguistics, where semantic compositionality is a
prominent concern, has generally been a better fit for sentence-based event
descriptions, and the approach taken in AI has some distinct advantages for
narrative understanding and planning. I then discuss computational resources
for event semantics, such as VerbNet, and how data structures reflect the
linguistic approach to modeling events. Finally, I present some recent devel-
opments within event semantics from generative lexicon (GL), which can
be seen as attempts to integrate these two methodologies, where the state-
change model from AI is embedded within the compositional model of
semantics adopted in the linguistic approach. We will see how this change-
of-state (update semantics) model of events can be encoded in VerbNet,
thereby providing a computational semantic resource to both the AI and
NLP communities.

1.2 Introducing Situations and Events

In the simple narrative in (1b) above the verbs are identified as events, with
the temporal orderings shown in (2c). Before we discuss how events are rec-
ognized and subsequently ordered, however, it is worth considering alternative
strategies for temporally anchoring and ordering the content associated with
our utterances, in both discourse and narratives.
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There are essentially two major approaches to the problem of temporally
anchoring the propositional content denoted by a sentence:

1. tense as modal: treat the verbal tense as a temporal modal operator over
the propositional content of the sentence; or

2. argument reification: introduce a temporally interpreted argument to
the expression denoting the propositional content.

In the tense as modal approach, a sentence such as John was hungry is
treated as a proposition scoped by a modal “past tense” operator, P (Prior,
1957; Kamp, 1968), shown in (3a) along with its interpretation.

(3) a. P(hungry(j))

b. ∃t[t < now ∧ M,t ′ |� hungry(j)]

The interpretation function for this operator introduces a time, t ′, in the model,
where t ′ < now, and the sentence John is hungry is true at t ′. Further examples
of this logic in (4) demonstrate the interpretation of sentences with richer tense
and aspect marking.

(4) a. John will have left Boston.
F(P(leave(j,b)))

∃t1,t2[now < t1 ∧ now < t2 < t1 ∧ M,t2 |� leave(j,b)]
b. John was going to leave Boston.

P(F(leave(j,b)))

∃t1,t2[t1 < now ∧ t1 < t2 ∧ M,t2 |� leave(j,b)]
c. John had already left Boston.

P(P(leave(j,b)))

∃t1,t2[t1 < now ∧ t2 < t1 ∧ M,t2 |� leave(j,b)]

The model theory for a temporal modal logic does not include a domain
of individuals denoting events; rather, the satisfaction conditions associated
with what we might identify as an event occurring are actually operations over
propositions navigating the accessibility relations in world valuations. As a
result, it is impossible to refer to events as first-class objects for purposes of
coreference and quantification.

Though this approach has been developed into a number of rich and very
expressive languages for characterizing computational properties of systems –
for example, Linear Temporal Logic (LTL; Pnueli, 1977) and Computation
Tree Logic (CTL; Emerson and Sistla, 1984) – for even a simple discourse such
as that in (2c), it is difficult to capture the temporal ordering constraints that
present themselves, since neither events nor states are treated as individually
quantified arguments in the logic.
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The argument reification method solves this problem by introducing
an additional argument or index in the object language itself, which is used
to anchor and identify the evaluation of the propositional content from the
sentence in the model. There are two traditions associated with this method,
one from the early days of AI and the other coming out of philosophical
logic and formal semantics in linguistics. From the first tradition, in order
to formalize the situations and actions associated with automated planning,
McCarthy (1963) enriched the conventional domain of individuals in first-
order logic to include situations. A situation is a snapshot of the world,
containing the propositions holding at that state. The predicates associated with
situations are called propositional fluents. Returning to the example in (3), this
method reifies the situation encompassing the propositional content of “John
being hungry” as s and anchors it to a temporal index, t .

(5) ∃s,t[hungry(j,s) ∧ time(s) = t ∧ t < now]

This method was adopted and enriched in McCarthy and Hayes (1969),
where it became known as the situation calculus, one of the most influential
event-based formalisms in logical approaches to AI and formal reasoning. By
reifying the propositional content of John’s hunger as a situation variable, it can
be referenced for planning algorithms; for example, as one of the preconditions
for someone eating food.

Addressing the same problem from the tradition of philosophical logic and
language analysis, Davidson (1967) proposed a related but distinct representa-
tion for the interpretation of action sentences in natural language. Specifically,
he proposed that events (but not states) should be included in the logical
description of certain predicates (action verbs) as an additional argument, one
that is associated with the verb rather than any overt syntactic argument. Hence,
the sentence in (6a) is paraphrased in (6b) and has the logical form of (6c).

(6) a. Brutus stabbed Caesar.

b. “There was a stabbing event between Brutus and Caesar.”

c. ∃e[stab(b,c,e)]

Davidson argued that events are concrete entities that can be perceived, located
in space and time, and, moreover, are linguistically real. In (7b), for example,
both instances of the pronoun it refer to the event “Brutus stabbed Caesar,” and
the verb witness selects this event as one of its complements.

(7) a. Brutus stabbed Caesar with a knife.

b. He did it and everyone witnessed it.
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In (7a), the prepositional phrase (PP) with a knife can be seen as modifying
this event directly, as illustrated in (8).

(8) a. Brutus stabbed Caesar with a knife.
b. ∃e,x[stab(b,c,e) ∧ knife(x) ∧ with(e,x)]

After the adoption of Davidson’s event variable in Parsons (1989), it
became a standard method of interpretation for events in formal semantics
and eventually in linguistics more broadly (Pustejovsky, 1991; Tenny and
Pustejovsky, 2000). In neo-Davidsonian accounts, the event argument does
not augment the valency of the verb but is linked to the event participants
through semantic roles, such as agent (ag), patient (pat), location (loc),
and instrument (inst), as in (9):

(9) ∃e,x[stab(e) ∧ ag(e,b) ∧ pat(e,c) ∧ knife(x) ∧ inst(e,x)]

Parsons (1990) developed an interpretation of events that introduces a distinc-
tion between an event culminating (Cul) versus an event holding (Hold). This
makes it possible to distinguish the telicity associated with a sentence. Hence,
for an event, e, and a temporal interval, t , the following relations hold:

(10) a. telic events (achievements, accomplishments): Cul(e,t)
b. atelic events (processes, states): Hold(e,t)

Returning to the sentence in (8a), we now modify the logical form in (9) to that
in (11).

(11) ∃e,t,x[stab(e) ∧ ag(e,b) ∧ pat(e,c) ∧ knife(x) ∧ inst(e,x) ∧ Cul(e,t)]

Though Davidson’s approach appears similar if not identical to the situation
calculus, there are significant differences in the way they approach the
modeling and representation of events in language (and action or behavior).
For Davidsonian models, an action or event in a natural language expression
corresponds to an individuated event quantified in the meaning representation
associated with that sentence (e.g., (8) and (12b)).

(12) a. John gave Mary a book.
b. ∃e,x[give(e) ∧ ag(e,j) ∧ goal(e,m) ∧ th(e,x) ∧ book(x)]

By reifying the propositional content of the action as a first-order individual in
the model, Davidson was able to apply standard first-order logical inference
procedures to handle entailments that had previously required higher-order
functional behavior. For example, as with the optional arguments to the event in
(8) above, both spatial and temporal prepositional phrases modify the event
directly, shown in (13b), and not the entire predicate, as seen in (13c).
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(13) a. Brutus stabbed Caesar in the Forum in the morning.
b. ∃e[stab(e) ∧ ag(e,b) ∧ pat(e,c) ∧ loc(e,f ) ∧ time(e,m)]
c. time(loc(stab(b,c),f ),m)

The template described above, where an atomic event is introduced along
with the participants playing specific semantic roles in this event, is also
adopted in the representation used in VerbNet, where it provides a compu-
tational resource for English verbs, their valencies, and detailed syntactic–
semantic descriptions of the constructions associated with each word sense
(Kipper et al., 2008).

Now consider how the example in (12ba) is treated within the situation
calculus. As mentioned previously, the focus within AI and the planning
community was originally on registering and monitoring the state of the
world and how properties (fluents) in the world change from one state to the
next. Fluents are time-varying properties of individuals. There is no single
individual event of “giving” in the situation calculus, because actions are
not state descriptions but rather are functions that map states to states and
hence act as state transformers. The action of giving, for example, has two
fluents identifying possession of an object, each associated with a state; i.e.,
the beginning and end states of the event.

(14) a. ∃s1,t1[have(j,x,s1) ∧ book(x) ∧ time(s1) = t1]
b. ∃s2,t2[have(m,x,s2) ∧ time(s2) = t2]

To model the event in (12b), the initial state, s1, is changed by the application
of a state-to-state transducer, give, which indicates the state that results from
its application; i.e., s2:

(15) λs2∃x,y,z[have(z,y,Result(give(x,y,z),s2))]

Though this adequately captures the change in state within the world, where
John had the book and now Mary has the book, there are two things missing
in this analysis: (a) there is no quantified reference to the change of state itself
in the model (i.e., the transition) and (b), there is no event variable associated
with any linguistic expression in (12b) denoting this transition. That is, the
verbal predicate give is not represented at all. This makes the situation calculus
difficult to use for modeling natural language in a compositional manner,
without some modifications or enrichments.

One such modification was made by McDermott (1982), who abandoned
the classical situation calculus notion of events as state transformers. Rather, he
defined an event as a set of intervals over which a proposition is minimally true
(i.e., it happens once): this theory subsequently became an important model for
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Figure 1.1 Allen’s (1984) temporal interval relations.

problem solving and planning paradigms in AI. This is essentially the same
intuition that Allen (1984) adopted for his definition of event. A somewhat
different approach was taken by Kowalski and Sergot (1989), where events are
assumed as primitives in the model, acting as updates on the state of the world.
In this sense they are additive information operations. More specifically, they
are seen as actions that initiate or terminate the properties of individuals (the
fluents we encountered in the situation calculus).

One of the most influential argument reification methods to be developed
within the AI tradition is Allen’s interval temporal logic (Allen, 1983). Allen
(1984) can be seen as an attempt to model events directly in the logic, while
also considering their temporal interval properties (as shown in Figure 1.1)
for planning purposes, within general AI concerns. In this system, temporal
intervals are considered primitives and constraints (on actions, etc.) are
expressed as relations between intervals. There are 13 basic (binary) interval
relations, where 6 are inverses of the other, excluding equality.

Allen (1984) made a basic distinction between properties (fluents) and
occurrences, which are similar to Davidson’s events and Goldman’s actions
(Davidson, 1967; Goldman, 1970). As in the situation calculus, a property, p,
holds, if and only if it is true during a specified temporal interval, t . This
predicate is defined in terms of a downward monotonic subinterval property
(Allen, 1984).

(16) holds(p,t) ↔ ∀i[in(i,t) → holds(p,i)]
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Occurrences are a sort of generalized eventuality category that divide into
two classes: processes and events. Processes are characterized as occurring,
whereas events occur. This is essentially identical to Parsons’ distinction
between Hold and Cul (Parsons, 1990). As a result, Allen’s theory is able to
address one of the major issues fundamental to the linguistic approach to event
representations, namely, semantic compositionality. By differentiating the sat-
isfaction conditions between the different event types (property, process, and
event), Allen’s theory can be directly adapted as an interpretation consistent
with linguistic treatments of event semantics at the sentence level.

The other major influence in AI promoting the role of events in formal
reasoning comes from Hobbs and his colleagues (Hobbs et al., 1987). Hobbs
introduced a parsimonious method of treating events as reified first-order indi-
viduals in the logic and the model, with an operator he called nominalization
(Hobbs, 1985). For example, for any predicate, P , in the language, we can
generate its nominalized form, P Nom, as follows:

(17) ∀x∀P [P(x) → ∃e[P Nom(e,x) ∧ Exists(e)]]

The Exists predicate can be seen as a domain updating operation in the model,
ensuring that this individual has the proper extension. As with Allen’s interval
logic or Davidson’s event logic, we can restrict our reasoning to first-order
inferences and avoid complications arising from higher-order modifiers and
operators. Unlike these approaches, however, Hobbs sees nominalization as a
general operation for enriching the ontology, one that can apply to a broad
range of conceptual domains, including scales, times, materials, and so on.
This general strategy of how ontological types relate to surface realization is
given linguistic grounding in Croft (1991), where it is evidenced in language
data through a number of typologically broad constructions.

Interestingly, Hobbs’ method of reification along with Allen’s interval-
based notion of events together form the interpretive core of TimeML (Puste-
jovsky et al., 2003), ISO-TimeML (Pustejovsky et al., 2010), the multilingual
resources built on ISO-TimeML community (Im et al., 2009; Bittar et al.,
2011; Caselli et al., 2011), as well as the shared tasks based on ISO-TimeML
(Verhagen et al., 2007, 2010; UzZaman et al., 2013). ISO-TimeML treats an
event as a cover term for any linguistic predicate, as mentioned in a text, that
happens or occurs (as with Parsons’ and Allen’s distinction). A description of
the major event categories identified in ISO-TimeML is given below.

(18) a. verbal event predicates:
The missile sank the ship.
The car hit the pedestrian.
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b. nominal events:
The meal was after the speech.
An alarm went off during the workshop.

c. nominalizations:
The explosion occurred at noon.
The arrival of the train was late.

d. adjectival event predicates:
Mary closed the open door.
They observed the moving truck.

e. prepositional phrase predicates:
John is on board.
Sophie is in the house.

As is evident from this list, events can be punctual, last for a period of time,
have a logical culmination or no natural termination, or describe states or
circumstances, as in the situation calculus. The representation of events as
reified intervals with constraints can be mapped to formal calculi used in
temporal reasoning, for example DAML-Time (Hobbs and Pustejovsky, 2003),
as well as interval temporal logic (Pratt-Hartmann, 2007). This strategy also
allows one to interpret the ordering of events in discourse and narratives
as an interval constraint satisfaction problem, which has had a significant
influence on recognizing narrative event chains and identifying event schemas
(Chambers and Jurafsky, 2008, 2009), as well as more recent work on script
learning and frame induction (Cheung et al., 2013; Pichotta and Mooney,
2014).

If we interpret Allen’s theory directly in terms of a Davidsonian event
variable, as with Parsons’ treatment discussed above, we can maintain syn-
tactic and semantic compositionality, but we will still lack any representation
that reflects the change of state accompanying actions, as with the situation
calculus. As it happens, most implementations of Allen’s interval calculus are
deployed for tracking state-change in planning scenarios or constraint solving
problems in NLP involving temporal intervals, rather than for sentence-level
linguistic analysis.

What this discussion reveals is that though the underlying formal mech-
anisms of the situation calculus and event semantics are quite similar, their
surface realizations are extremely different. The former focuses on the lan-
guage of change and state-based situational representations, whereas the latter
is concerned with the individuation of events that are denoted by complete
sentential expressions. In the next section, we see how these two representa-
tional approaches have been integrated into more expressive languages that can
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address the core issues in both planning and discourse as well as sentence-level
compositionality. We discuss first how to encode object properties that change,
as subevents in the meaning representations for sentences. We then show how
to track these object changes over the subevent structures themselves.

1.3 Modeling the Substructure of Events

Consider the philosophical presuppositions associated with the two perspec-
tives discussed above. From an ontological standpoint, the componential
structure of actions has been taken for granted in AI approaches to mod-
eling change: a close action brings about a change in state from open(y)
to not(open(y)). Within linguistics, the componential structure of words
(not actions or events) has been traditionally of considerable importance, in
addition to their various subclasses. To bring these two views closer together,
we need to see how words can be associated with the componential structure
of actions. But in order to represent the internal structure of events, one must
first understand how the meanings of event-denoting expressions are to be
represented.

How does this play out? In a logical framework, there are two fundamental
ways of representing meaning: (i) the meaning of an accomplishment verb, for
example close, is the predicate close, such that a sentence of the form X closes
Y is mapped to close(x,y); or (ii) the meaning of close is decomposed into the
meaning of primitive elements; e.g., cause(x,become(not(open(y)))).

As generative semanticists such as McCawley (1971) and Lakoff (1970)
demonstrated, by decomposing the meaning of accomplishment verbs into a
causative component along with a result component, we can explain a number
of apparent scope ambiguities with adverbs and other modifiers. For example,
in (19), again can take scope over the entire expression ((19b), the external
reading) or the resulting state ((19c), the internal reading).

(19) a. The astronauts entered the atmosphere again.

b. again(act(x, become(in(x,atmosphere))))

c. act(x, become(again(in(x,atmosphere))))

Dowty (1979) developed this decompositional strategy into a fully composi-
tional semantic theory, providing an elegant interpretation for a broad range
of linguistic constructions. Interestingly, however, there are still no events in
Dowty’s theory, not even at the atomic level, because he adopted a classical
model with propositional interpretation functions.
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Jackendoff (1983), on the other hand, did introduce atomic events into his
meaning representations, what he called “conceptual structures.” In Jackendoff
(1990) he also assumed that eventualities can be referenced as conceptual
categories selected by predicates or functions in the language.

Pustejovsky (1991) can be seen as an attempt to merge the event semantics
of Davidson with the structured decomposition of Dowty and Jackendoff, by
introducing the notion of subevent structure. In this approach, rather than
decomposing an atomic event into predicative primitives, the event itself is
decomposed into subevents, each with predicative content (cf. Moens and
Steedman, 1988; Pustejovsky, 1988).

(20) a. event → state | process | transition
b. state: → e

c. process: → e1 . . . en

d. transitionach: → state state
e. transitionacc: → process state

This is accompanied by meaning-forming rules for event composition, giving
rise to the relationships expressed by decomposed meanings. For example, an
accomplishment event such as close is made up of two aspectually salient parts,
a preparatory process with the meaning “act(x,y) ∧ ¬ closed(y)” and a result
state with the meaning “closed(y).” Event structure, in fact, distinguishes
the different Aktionsarten in terms of how subevents are structured (cf. (21)),
which is a central component of the lexically driven compositionality in GL
(Pustejovsky, 1995).

(21) a. State: a simple event, evaluated without referring to other events: be
sick, love, know

S

e

b. Process: a sequence of events identifying the same semantic expres-
sion: run, push, drag

P

.......ene1.......

c. Transition: an event identifying a semantic expression evaluated
with respect to its opposition: give, open; build, destroy

Two-state transition (achievement): where ¬φ ∈ S1, and φ ∈ S2
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T

S2S1

Extended transition (accomplishment): where ¬φ ∈ P , and φ ∈ S

T

SP

By making explicit reference to the subevents associated with the internal
structure of events, this approach enables event representations and the
inference systems they support to directly reference and quantify them. Hence,
unlike the primitive predicates in Dowty’s theory, subevents can be quantified
in the logical form of the sentence, in the same way that arguments can be.
Consider the inferences associated with the sentences in (22), for example.

(22) a. The destroyer is sinking the boat.
∃e1,x,y[sink act(e1,x,y) ∧ destroyer(x) ∧ boat(y)]

b. The destroyer sank the boat.
∃e1,e2,x,y[sink act(e1,x,y) ∧ destroyer(x) ∧ boat(y) ∧ sink result
(e2,y) ∧ e1 < e2]

c. The boat sank.
∃e2,e1,y,x[sink result(e2,y)∧boat(y)∧ sink act(e1,x,y)∧ e1 < e2]

There are distinct advantages to encoding state change directly in event
structure. Notice that the logical form of the causative (22b) differs from
the inchoative (22c) only in the explicit identification of a specific causer.
The introduction of an unspecified causer allows the event to be linked in a
discourse, where an antecedent or subsequent event might identify the agent.
Furthermore, such a representation is essential for recognizing any temporal
sequencing that occurs within an event and any changes in state that might
have occurred (Pustejovsky, 2005; Mani and Pustejovsky, 2012).

Explicit subevent representations have proved useful, if not crucial, for
some types of textual inference, such as recognizing textual entailment
(RTE; Dagan et al., 2013) and the more recent natural language inference
(NLI) challenge (Bowman et al., 2015).1 For example, in order to identify
the appropriate discourse relations in a narrative or discourse, it is helpful to

1 The importance of subevent representation and tracking is discussed in Chapter 3 and the
relevance of larger narrative event structures to inference is detailed in Chapters 4 and 6.
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know how the events relate to each other semantically and therefore causally.
Consider the discourse below.

(23) a. The vase broke.
∃e2,e1,x,y[broken(e2,y) ∧ vase(y) ∧ break act(e1,x,y) ∧ e1 < e2]

b. John pushed it off the shelf.
∃e3,e4,z[push act(e3,j,z) ∧ vase(z) ∧ push result(e4,z) ∧ e3 < e4]

In (23), because of the state resulting from the pushing event, we can conclude
that e2 = e4; further, because e1 = e3, we have an explanation relation
between (23b) and (23a) (Hobbs, 1982; Asher and Lascarides, 2003; Im and
Pustejovsky, 2010).

The discussion above has focused on the identification and encoding of
subevent structure for predicative expressions in language. In subsequent
work within GL (Pustejovsky and Moszkowicz, 2011; Mani and Pustejovsky,
2012), event structure is enriched to not only encode but dynamically track
those object attributes modified in the course of the event (the location of
the moving entity, the extent of a created or destroyed entity, etc.). The
resulting event structure representation is called a dynamic event structure
(Pustejovsky, 2013). Starting with the view that subevents of a complex event
can be modeled as a sequence of states (containing formulae), a dynamic event
structure explicitly labels the transitions that move an event from state to state
(i.e., programs).2

A dynamic approach to modeling updates makes a distinction between
formulae, φ, and programs, π . A formula is interpreted as a classical propo-
sitional expression, with assignment of a truth value in a specific state in the
model (Harel et al., 2000). For our purposes, a state is a set of propositions
with assignments to individual variables at a specific frame. We can think
of atomic programs as input/output relations, that is relations from states to
states, and hence interpreted over an input–output state–state pairing. The
model encodes three kinds of representations: (i) predicative content of a
frame; (ii) programs that move from frame to frame; and (iii) tests that must
be satisfied for a program to apply. These include pretests, while-tests, and
result-tests.

2 Each event can be seen as a traced structure over a labeled transition system (van Benthem,
1995). The approach is similar in many respects to that developed in Fernando (2009, 2013) and
Naumann (2001).
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In this model, there are only two primitive event types: states, which are
simply propositions describing a snapshot in time, and transitions, which are
pairs of states connected by a function that moves from the first state to the
second state (in some ways similar to the situation calculus representation).
These two event types are illustrated in (24).3

(24) a. State
ei

ϕ

b. Simple Transition

e[i,i+1]

e1
i e2

[i+1]

ϕ ¬ϕ

α

The structure in (24a) represents a state as a snapshot of the world in time,
ei , with the propositional content, ϕ. The event structure in (24b) illustrates
how the program α takes the world from the state in ei with content ϕ, to the
adjacent state, ei+1

2 , where the propositional content has been negated, ¬ϕ.
This structure corresponds directly to achievements. From these two types
the other two Vendlerian classes can be generated, as we now demonstrate.
Processes can be modeled as an iteration of simple transitions, where two
conditions hold: the transition is a change in the value of an identifiable
attribute of the object; every iterated transition shares the same attribute being
changed. This is illustrated in (25a).

Finally, accomplishments are built up by taking an underlying process
event, e:p, denoting some change in an object’s attribute, and synchronizing
it with an achievement (simple transition); that is, e:p is unfolding while ψ is
true, until one last step of the program α makes it the case that ¬ψ is now true.
This can be seen in the event structure in (25b).

(25) a. Process

e[i,j]

e1
i α αe2. . . en

j

ϕ1 ϕ2 ϕn

b. Accomplishment

e[i,j+1]

e:p1
[i,j] e2

[j+1]

ψ ¬ψ

α

3 In Chapter 2, the classical event ontology is enriched substantially to accommodate concepts
and relations required for robust processing and interpretation in NLP applications.
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1.4 Enriching VerbNet with Event Dynamics

In order to operationalize an event semantics as a computational resource, the
information needs to be encoded as frames in the meaning representations
associated with the verbal predicates in the language. For modeling predicates
with atomic event representations, VerbNet (Kipper et al., 2008) is an example
of such an encoding. VerbNet is a lexicon of around 5,200 English verbs,
organized primarily around Levin’s (1993) verb classification. Classes in
VerbNet are structured according to the verb’s syntactic behavior, describing
the diathesis alternations compatible with each verb (Bonial et al., 2011). Each
VerbNet class contains semantic representations expressed as conjunctions of
primitive predicates, such as motion or cause along with an atomic event
variable E. Event participants that have syntactic relevance are identified
with various stages of the event evoked by the syntactic frame. The manner
in which a predicate (and its argument) is temporally positioned relative to
another is accomplished through the higher-order relation path rel, which
requires reference to one of the second-order predicates, Start, During, or
End. For example, the semantics for one intransitive frame in class Run-51.3.2
is shown in (26).

(26) a. Billy ran into a cafe.

b. motion(during(E), Theme)
path rel(start(E), Theme, Initial location, ch of loc, prep)
path rel(during(E), Theme, Trajectory, ch of loc, prep)
path rel(end(E), Theme, Destination, ch of loc, prep)

Hence, what classic VerbNet provides is a rich resource for atomic event
representations associated with language predicates (i.e., English verbs).

Given our discussion from the previous section, however, there are several
things to note about what is not expressed in the VerbNet semantics: (i) the
representation is not inherently first-order; (ii) there are no reified subevents
that can be referenced in discourse models or planning algorithms; (ii) and
there is no mention of the actual change; i.e., the opposition structure that is
implicated in a change-of-state event, such as close or break.

Because there is only a single event variable, any ordering or subsetting
information needs to be performed as second-order operations. For example,
temporal sequencing is indicated with the second-order predicates start,
during, and end, which are included as arguments of the appropriate first-order
predicates. Attempts to use VerbNet in human–computer interaction concluded
that a first-order, enriched subevent representation would greatly facilitate the
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interaction between the language parsing and the planning components of the
system (Narayan-Chen et al., 2017).

Interpreting (26a) in a first-order atomic representation, where we eliminate
the path rel relation and let participant roles act as relations, takes us part of
the way, resulting in the event expression given in (27).

(27) ∃e,x,l,p[run(e)∧ Ag(e,j)∧ Init(e,l)∧ Dest(e,x)∧ Traj(e,p)∧ cafe(x)]

As the expression in (27) makes clear, the VerbNet semantic representation
includes reference to participants that can be realized syntactically but are not
always present in a specific construction. A more conventional Davidsonian
representation for (26a) would be that shown in (28).

(28) ∃e,x[run(e) ∧ Ag(e,j) ∧ Dest(e,x) ∧ cafe(x)]

This leaves the remaining issues unresolved, however. As Zaenen et al.
(2008) pointed out, VerbNet is unable to support many temporal and spatial
inferencing tasks, because the temporal ordering annotation is not complete
or consistent throughout the database; e.g., for several motion classes, End(E)
was given but not Start(E), and some classes involving change of location
of participants (e.g., gather, mix) did not include a motion predicate at all.
That is, from The diplomat left Bhagdad you cannot infer The diplomat was in
Bhagdad (Brown et al., 2018). In addition, attempts to use VerbNet in robotics
have resulted in the suggestion that the representation contain more specific
causal and temporal relations. The current method of indicating causation, for
example, simply had an Agent and the event variable E as arguments to a
Cause predicate. This is somewhat misleading in that it could imply that the
Agent causes all of E, including whatever state exists at Start(E).

A further step toward a proper subeventual meaning representation was
proposed in Brown et al. (2018, 2019), where it was argued that, in order
to adequately model change, the VerbNet representation must track the
change in the assignment of values to attributes as the event unfolds. This
includes making explicit any predicative opposition denoted by the verb.
For example, simple transitions (achievements) encode either an intrinsic
predicate opposition (die encodes going from ¬dead(e1,x) to dead(e2,x)) or
a specified relational opposition (arrive encodes going from ¬loc at (e1,x,y)

to loc at (e2,x,y)). Creation predicates and accomplishments generally also
encode predicate oppositions. As we will describe briefly, GL’s event struc-
ture and its temporal sequencing of subevents solves this problem trans-
parently, while consistent with the idea that the sentence describes a single
matrix event, E.
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With the introduction of GL’s event structure, the biggest change to VerbNet
is the move from a tripartite division of the temporal span of any event to
a model with explicitly quantified (and indexed) subevents, which can be
increased or decreased to accommodate the complexity of the event and are
ordered using Allen’s relational calculus (Allen, 1983). This also eliminates
the needs for second-order logic of Start(E), During(E), and End(E), allowing
for more nuanced temporal relationships between subevents. The default
assumption in this new schema is that e1 precedes e2, which precedes e3, and so
on. When appropriate, however, more specific predicates can be used to specify
other relationships, such as meets(e2,e3), to show that the end of e2 meets the
beginning of e3, or while(e2,e3) to show that e2 and e3 are cotemporal. The
latter can be seen in Section 5.1 with the example of accompanied motion.

The second significant change is how causation is represented. Previously
in VerbNet, the semantic form implied that the entire atomic event was caused
by an Agent; i.e., cause(Agent, E). In the revised VerbNet-GL, adopting the
GL event structure and assumptions consistent with our discussion above
from AI and robotics, “events cause events.” Thus, something an agent does
(e.g., do(e2, Agent)) causes a state change or another event (e.g., motion(e3,
Theme)), which would be indicated with cause(e2,e3). This is seen in (29).

(29) a. The lion tamer jumped the lions through the hoop.

b. motion(during(E), Theme)
path rel(start(E), Theme, ?Initial location, ch of loc, prep)
path rel(during(E), Theme, Trajectory, ch of loc, prep)
path rel(end(E), Theme, ?Destination, ch of loc, prep)
cause(Agent, E)

To illustrate this change, consider the revised representation in (30) (Brown
et al., 2018, 2019).

(30) The lion tamer jumped the lion through the hoop.

has location(e1,Theme,?Initial Location)
do(e2,Agent)
motion(e3,Theme,Trajectory)
cause( e2,e3)
has location(e4,Theme,?Destination)

Notice that the predicate has location now has three arguments: an event, e1;
a Theme argument for the object in motion; and an Initial location argument.
The motion predicate is underspecified as to the manner of motion in order
to be applicable to the 97 verbs in this VerbNet class. A final has location
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predicate indicates the Destination of the Theme at the end of the event. Any
uninstantiated roles in a frame are preceded by ?, such as Initial location and
Trajectory.

Another way in which VerbNet has accommodated to incorporate an
enriched event structure is the encoding of an event-based opposition struc-
ture to help track the change in object properties over time. This is best
illustrated in the revised representation for the VerbNet class change-of-
state. The representations for changes of state have two basic patterns,
depending on whether the change is between absolute states or along a value
continuum or scale. The first is illustrated in (31b), the representation for the
Die-42.4 class.

(31) a. John died.

b. cause(e2, e3)
alive(e1, Patient)
¬alive(e3, Patient)

c. e
<

ē2◦
e2

act (x,y)

e1

alive(y)

α e3

¬ alive(x,y)

The same event template for relational opposition applies to transfer verbs;
e.g., VerbNet class give-13.1-1. For example, sentence (32a) has the semantic
representation in (32b) and event structure seen in (32c).

(32) a. Mary gave the book to John.

b. transfer act(e2,x,y)
have(e1,x,y)
¬have(e1,z,y)
have(e3,z,y)
¬have(e3,x,y)

c. e
<

ē2◦
e2

transf er act (x,y)

e1

have(x,y)
¬have(z,y)

α e3

¬have(x,y)
have(z,y)

https://doi.org/10.1017/9781108854221.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108854221.003


42 Pustejovsky

Other modifications to VerbNet semantic representations also include the
reinterpretation of accomplishments such as build and write in terms of GL’s
dynamic event semantics (Brown et al., 2019).

1.5 Conclusions

In this chapter, I have discussed the distinct but related paths taken toward the
interpretation of events by the AI and linguistics communities. An early focus
on planning and goal satisfaction in many of the major areas of interest in AI
led to a concern with plan compositionality, for which the situation calculus
became a major representational vehicle for reasoning and inference. Plans
were viewed as traversals from state to state; hence, the primitive units in
the language were situations describing state behavior and content. From the
philosophically inspired linguistic community, Davidson’s notion of event was
motivated by a concern to model propositional content of a sentence, rather
than an abstract plan. Hence, the focus over the past 50 years in linguistics
has been on semantic compositionality. I describe how recent work in event
semantics has attempted to bridge this cultural and representational divide.
The approach taken in dynamic event semantics incorporates the language of
state-change from AI with the compositional constraints on linguistic behavior
from linguistics.
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