Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:55:18.244Z Has data issue: false hasContentIssue false

Heinrich Events

Published online by Cambridge University Press:  26 May 2021

Dominik Faust
Affiliation:
TU Dresden, Institut für Geographie, Heisenberg-Professur für Physische Geographie mit Schwerpunkt Paläoumweltforschung, Dresden, Germany
Pierre Antoine
Affiliation:
CNRS-Université Paris I & UPEC, Laboratoire de Géographie Physique, Meudon, France
Hartmut Heinrich
Affiliation:
10°E maritime consulting Hamburg, Hamburg, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Thematic Set: Heinrich Events
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T., Ganopolski, A., 2011b. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes. Climate of the Past 7, 12971306.CrossRefGoogle Scholar
Alvarez-Solas, J., Ramstein, G., 2011a. On the triggering mechanism of Heinrich events. Proceedings of the National Academy of Sciences 108, 13591360, doi:10.1073/pnas.1116575108.CrossRefGoogle Scholar
Andrews, J.T., Jennings, A.E., MacLean, B., 2001. Late Quaternary stratigraphy of Hatton and Resolution basins, east of Hudson Strait. In: MacLean, B. (ed.), Marine Geology of Hudson Strait and Ungava Bay, Eastern Arctic Canada; Late Quaternary Sediments, Depositional Environments, and Late Glacial–Deglacial History Derived from Marine and Terrestrial Studies. Geological Survey of Canada Bulletin 566, 5764.Google Scholar
Andrews, J., Völker, A., 2018. “Heinrich events” (& sediments): a history of terminology and recommendations for future usage. Quaternary Science Reviews 187, 3140, doi.org/10.1016/j.quascirev.2018.03.017.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesh, S., Hatté, C., Lang, A., Tissoux, H., Zöller L, ., 2009. Rapid and cyclic aeolian deposition during the last glacial in European loess: a high resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 119.CrossRefGoogle Scholar
Bond, G.C., Broecker, W.S., Johnsen, S., McManus, J.F., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Broecker, W.S., Bond, G., McManus, J., Klas, M., Clark, E., 1992. Origin of the Northern Atlantic's Heinrich events. Climatic Dynamics 6, 265273.CrossRefGoogle Scholar
Domínguez-Viullar, D., Krklec, K., López-Sáez, J.A., Sierro, F.J., 2021. Thermal impact of Heinrich stadials in cave temperature and speleothem oxygen isotope records. Quaternary Research 101, 37–50.CrossRefGoogle Scholar
Faust, D., Pachtmann, M., Mettig, G., Seidel, P., Bouaziz, M., Recio Espejo, J.M., Diaz del Olmo, F., et al. , 2020. Sandy soils in silty sediments: the loess system of Matmata (Tunisia). Quaternaire 31, 175186.CrossRefGoogle Scholar
Fuhrmann, F., Seelos, K., Sirocko, F., 2021. Eolian sedimentation in central European Auel dry maar from 60 to 13 ka. Quaternary Research 101, 4–12.Google Scholar
Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 142152.CrossRefGoogle Scholar
Heinrich, H., Schmidt, C., Ziemen, F., Mikolajewicz, U., Roettig, C.-R., 2021. Massive deposition of Sahelian dust on the Canary Island Lanzarote during North Atlantic Heinrich events. Quaternary Research 101, 51–66.CrossRefGoogle Scholar
Hemming, S. R., 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'Homme, C., Rousseau, D.-D., 2017. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences 114, 62096214, doi:10.1073/pnas.1614751114.CrossRefGoogle ScholarPubMed
Pérez, L., Correa-Metrio, A., Cohuo, S., Macario González, L., Echeverría-Galindo, P., Mark Brenner, M., Curtis, J., Kutterolf, S., Stockhecke, M., Schenk, F., Bauersachs, T., Schwalb, A., 2021. Ecological turnover in neotropical freshwater and terrestrial communities during episodes of abrupt climate change. Quaternary Research 101, 26–36.CrossRefGoogle Scholar
Pérez-Mejías, C., Moreno, A., Bernall-Wormull, J., Cacho, I., Osácar, M.C., Edwards, R.L., Cheng, H., 2021. Oldest Dryas hydroclimate reorganization in the eastern Iberian Peninsula after the iceberg discharges of Heinrich event 1. Quaternary Research 101, 67–83.CrossRefGoogle Scholar
Porter, S., An, Z.S., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.CrossRefGoogle Scholar
Roettig, C.-B., Varga, G., Sauer, D., Kolb, T., Wolf, D., Makowski, V., Recio Espejo, J.M., Zöller, L., Faust, D., 2019. Characteristics, nature, and formation of palaeosurfaces within dunes on Fuerteventura. Quaternary Research 91, 423, doi:10.1017/qua.2018.52.CrossRefGoogle Scholar
Rousseau, D.-D., Svensson, A., Bigler, M., Sima, A., Steffensen, J.P., Boers, N., 2017. Eurasian contribution to the last glacial dust cycle: how are loess sequences built? Climate of the Past 13, 11811197, doi:10.5194/cp-13-1181-2017.CrossRefGoogle Scholar
Sánchez Goñi, M. F., Desprat, S., Fletcher, W., Morales-Molino, C., Naughton, F., Oliveira, D., Urrego, D. H., Zorzi, C., 2018. Pollen from the deep-sea: a breakthrough in the mystery of the Ice Ages. Frontiers in Plant Science 9, PMC5790801, doi:10.3389/fpls.2018.00038.CrossRefGoogle ScholarPubMed
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M., Weinbruch, S., 2013. Bulk composition of northern African dust and its source sediments—a compilation. Earth-Science Reviews 116, 170194.CrossRefGoogle Scholar
Sinnesael, M., de Vleeschouwer, D., Zeeden, C., Batenburg, S.J., da Silva, A.C., de Winter, N.J., Dinarès-Turell, J., et al. , 2019. The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth Science Reviews 199, 102965, doi:10.1016/j.earscirev.2019.102965.CrossRefGoogle Scholar
Skonieczny, C., Paillou, P., Bory, A., Bayon, G., Biscara, L., Crosta, X., Eynaud, F., et al. ., 2015. African humid periods triggered the reactivation of a large river system in Western Sahara. Nature Communications 6, 8751, doi:10.1038/ncomms9751.CrossRefGoogle ScholarPubMed
Velay-Vitow, J., Peltier, W.R., Stuhne, G.R., 2021. An investigation of the possibility of non-Laurentide ice stream contributions to Heinrich event 3. Quaternary Research 101, 13–25.CrossRefGoogle Scholar
Vidal, L., Schneider, R.R., Marchal, O., Bickert, T., Stocker, T.F., Wefer, G., 1999. Link between the North and South Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15, 909919.CrossRefGoogle Scholar
Wolf, D., Kolb, T., Ryborz, K., Heinrich, S., Schäfer, I., Calvo, R., Sanchez, J., Hambach, U., Zech, R., Zöller, L., Faust, D., 2021. Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period. Quaternary Research 101, 84113.CrossRefGoogle Scholar