Poisson and Other Discrete Distributions

The Poisson distribution arises as a limit of the binomial distribution. This
chapter contains a brief discussion of some of its fundamental properties as
well as the Poisson limit theorem for null arrays of integer-valued random
variables. The chapter also discusses the binomial and negative binomial
distributions.

1.1 The Poisson Distribution

A random variable X is said to have a binomial distribution Bi(n, p) with
parameters n € Ny :={0,1,2,...} and p € [0, 1] if

P(X = k) = Bi(n, p: k) := (Z)pk(l oy k=0,...,n, (LD
where 0° := 1. In the case n = 1 this is the Bernoulli distribution with
parameter p. If X, ..., X, are independent random variables with such a

Bernoulli distribution, then their sum has a binomial distribution, that is
Xi++X, 2 X, (1.2)

where X has the distribution Bi(n, p) and where £ denotes equality in dis-
tribution. It follows that the expectation and variance of X are given by

E[X] = np, Var[X] = np(1 - p). (1.3)

A random variable X is said to have a Poisson distribution Po(y) with
parameter y > 0 if

k
P(X = k) = Po(y; k) := %e-y, k € Ny, (1.4)

If y = 0, then P(X = 0) = 1, since we take 0° = 1. Also we allow v = oo,

in this case we put P(X = c0) = 1 so Po(o0; k) = 0 for k € Nj,.
The Poisson distribution arises as a limit of binomial distributions as
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2 Poisson and Other Discrete Distributions

follows. Let p, € [0,1], n € N, be a sequence satisfying np, — 7y as
n — oo, with y € (0, o). Then, for k € {0, ...,n},
k

n\ ko Nk _ (npn) @ -k _ NPn " 'y_ _
(k)p,,a poyt = 28 A=pr*(1-"2) 5 Zev, (19)

as n — oo, where
Me:=nn-1---n—-k+1) (1.6)

is the k-th descending factorial (of n) with (n), interpreted as 1.
Suppose X is a Poisson random variable with finite parameter y. Then
its expectation is given by

ok o k-1
— Y 1 — Y Y —
E[X] = e Zkk! =e yz(k_l)!—y. (1.7)
=0 k=1
The probability generating function of X (or of Po(y)) is given by
_ oY o O e
_p Z =t se0l. (8)

It follows that the Laplace transform of X (or of Po(y)) is given by
E[e™®] = exp[—y(1 —e™)], 1>0. (1.9)

Formula (1.8) is valid for each s € R and (1.9) is valid for each t € R. A
calculation similar to (1.8) shows that the factorial moments of X are given
by

E[(X)] =9, ke, (1.10)
where (0)o := 1 and (0), := 0 for k > 1. Equation (1.10) implies that
Var[X] = E[X?] - E[X]?* = E[(X),] + E[X] - E[X]* = y. (1.11)
We continue with a characterisation of the Poisson distribution.

Proposition 1.1 An Ny-valued random variable X has distribution Po(y)
if and only if, for every function f: Ny — R,, we have

E[Xf(X)] = yE[f(X + D). (1.12)

Proof By a similar calculation to (1.7) and (1.8) we obtain for any func-
tion f: Ny — R, that (1.12) holds. Conversely, if (1.12) holds for all such
functions f, then we can make the particular choice f := 1y, for k € N, to
obtain the recursion

kPX =k)=yP(X=k-1).
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This recursion has (1.4) as its only (probability) solution, so the result fol-
lows. O

1.2 Relationships Between Poisson and Binomial Distributions

The next result says that if X and Y are independent Poisson random vari-
ables, then X +Y is also Poisson and the conditional distribution of X given
X + Y is binomial:

Proposition 1.2 Let X and Y be independent with distributions Po(y) and
Po(9), respectively, with O < y+6 < co. Then X+Y has distribution Po(y+0)
and

PX=k|X+Y=n)=Bin,y/(y+9d8);k), neNyk=0,...,n

Proof ForneNjyandke€{0,...,n},
k 6}l—k

_ Cm=PX=kY=n-k="Le
PX=kX+Y=m=PX =kY=n-k = 7e =

(P )

= Po(y + 0;n) Bi(n, y/(y + 6); k),

6—6

and the assertions follow. ]

Let Z be an Ny-valued random variable and let Z;, Z, ... be a sequence
of independent random variables that have a Bernoulli distribution with
parameter p € [0,1]. If Z and (Z,),>; are independent, then the random
variable

z
X := Z Z; (1.13)
=1
is called a p-thinning of Z, where we set X := 0 if Z = 0. This means that
the conditional distribution of X given Z = n is binomial with parameters
n and p.

The following partial converse of Proposition 1.2 is a noteworthy prop-

erty of the Poisson distribution.

Proposition 1.3 Let p € [0,1]. Let Z have a Poisson distribution with
parameter y > 0 and let X be a p-thinning of Z. Then X and Z — X are
independent and Poisson distributed with parameters py and (1 — p)y, re-
spectively.
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Proof We may assume thaty > 0. The result follows once we have shown
that

P(X =m,Z — X = n) = Po(py;m)Po((1 — p)y;n), m,neNy (1.14)

Since the conditional distribution of X given Z = m + n is binomial with
parameters m + n and p, we have

PX=mZ-X=n=PZ=m+nPX=m|Z=m+n)

ey "\ (m+n\ ;
:((m+n)!)( m )p (d=p)

— (ﬂ) e PY (W) e~ 1Py,

m! n!

and (1.14) follows. O

1.3 The Poisson Limit Theorem

The next result generalises (1.5) to sums of Bernoulli variables with un-
equal parameters, among other things.

Proposition 1.4 Suppose for n € N that m, € N and X, 1, ..., X, ., are
independent random variables taking values in Ny. Let p,; := P(X,,; > 1)
and assume that

lim max p,; = 0. (1.15)

n—oo 1<i<m,

Assume further that A, := 37" pp; — y as n — oo, wherey > 0, and that

My

lim » P(X,;>2)=0. (1.16)

i=1
Let X, := 3" X,;. Then for k € Ny we have
lim P(X,, = k) = Po(y; k). (1.17)

Proof Let X, := 1{X,; > 1} = min{X,;, 1} and X}, := 3™ X, ;- Since

n,i = —

X, ; # Xy if and only if X,,; > 2, we have

P(X, # X,) < ) P(X, > 2),

i=1

By assumption (1.16) we can assume without restriction of generality that
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X,’l,i = X, foralln € Nand i € {l1,...,m,}. Moreover it is no loss of
generality to assume for each (n, i) that p,; < 1. We then have

Z n;n:n1(1 - pn,j)
pn,i pn,iz Tt pn,i
! = pur) (= pug)

1<ii<ip<-<ix<my,

P(X, =k) = . (1.18)

2 < A, — 0asn — co, we have
n,j

Let y, := maxi<igm, pni- Since X7, p
tog ([ (1= pu) = D =pns + 02 ) » v asn > . (119)
j=1 =1

where the function O(-) satisfies lim sup,_,, [771O0(r)| < . Also,

inf A =pui)--A=pu) = — ) = lasn — co. (1.20)

1<ii<ip<-<ix<m,

Finally, with 7 iei1.2...m,) denoting summation over all ordered k-tuples
of distinct elements of {1,2,...,m,}, we have

k! Z PniyPrir *** Py = Zqt Pnjiy Prir *** Pniys

1<i) <ip<--<ix<my i1yl €(1,2,...,my, }

and

k my My
< (z)zpi,t [ZP”J ’
i=1 j=1
which tends to zero as n — oo. Therefore
k! Z PuisPuiy -+ Prig— ¥* as n — oo (1.21)
1<i)<ip<-<ip<my,
The result follows from (1.18) by using (1.19), (1.20) and (1.21). ]

1.4 The Negative Binomial Distribution

A random element Z of N is said to have a negative binomial distribution
with parameters r > 0 and p € (0, 1] if

I'n+r)

PZ=n= 5 r;

(1-p)"p", neN,, (1.22)
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where the Gamma function T': (0, 00) — (0, 00) is defined by
[(a) := f t“letdt, a>0. (1.23)
0

(In particular I'(a) = (a—1)! for a € N.) This can be seen to be a probability
distribution by Taylor expansion of (1 — x)™" evaluated at x = 1 — p. The
probability generating function of Z is given by

E[s“1=p (1 -s+sp)”, sel0,1] (1.24)

For r € N, such a Z may be interpreted as the number of failures before
the rth success in a sequence of independent Bernoulli trials. In the special
case r = 1 we get the geometric distribution

PZ=n=(0-p)p, neN,. (1.25)
Another interesting special case is r = 1/2. In this case

P(Z =n) = %(1 —pyp? neN, (1.26)
where we recall the definition (B.6) for (2n — 1)!!. This follows from the
fact that T'(n + 1/2) = 2n — D! 27" y/m, n € N,.

The negative binomial distribution arises as a mixture of Poisson distri-
butions. To explain this, we need to introduce the Gamma distribution with
shape parameter a > 0 and scale parameter b > 0. This is a probability
measure on R, with Lebesgue density

x - bT(a) x4 te™t™ (1.27)

on R,. If a random variable Y has this distribution, then one says that Y is
Gamma distributed with shape parameter a and scale parameter b. In this
case Y has Laplace transform

b a
B¢ =(—) 120, 1.28
R (1.28)
In the case a = 1 we obtain the exponential distribution with parameter b.
Exercise 1.11 asks the reader to prove the following result.

Proposition 1.5 Suppose that the random variable Y > 0 is Gamma dis-
tributed with shape parameter a > 0 and scale parameter b > 0. Let Z be
an Ny-valued random variable such that the conditional distribution of Z
given Y is Po(Y). Then Z has a negative binomial distribution with param-
eters aand b/(b + 1).
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1.5 Exercises

Exercise 1.1 Prove equation (1.10).

Exercise 1.2 Let X be a random variable taking values in Nj. Assume
that there is a y > 0 such that E[(X);] = y* for all k € N,,. Show that X has
a Poisson distribution. (Hint: Derive the Taylor series for g(s) := E[s*] at
So = 1)

Exercise 1.3 Confirm Proposition 1.3 by showing that
E[s*t**] = &7 Dl s e [0, 1],
using a direct computation and Proposition B.4.

Exercise 1.4 (Generalisation of Proposition 1.2) Letm € N and suppose
that Xy, ..., X, are independent random variables with Poisson distribu-
tions Po(y,), ..., Po(y,,), respectively. Show that X = X; + --- + X}, is
Poisson distributed with parameter y := y; + - -+ + ¥,,. Assuming y > 0,
show moreover for any k € N that

k! By Ve
P(Xl:kl,...,xmzk,,,|x=k)=—(ﬂ) (7_) (1.29)
Kl kot \y y

for ky + -+ + k,, = k. This is a multinomial distribution with parameters k
and y1/v, ... ¥Ymly-

Exercise 1.5 (Generalisation of Proposition 1.3) Letm € N and suppose
that Z,, n € N, is a sequence of independent random vectors in R™ with
common distribution P(Z, = ¢;) = p;, i € {1,...,m}, where ¢; is the i-th
unit vector in R” and p; + - -- + p,, = 1. Let Z have a Poisson distribution
with parameter y, independent of (Z;, Z,, ...). Show that the components
of the random vector X := Zle Z; are independent and Poisson distributed
with parameters p1y, ..., pmY-

Exercise 1.6 (Bivariate extension of Proposition 1.4) Lety > 0,6 > 0.
Suppose for n € N that m, € N and for 1 < i < m, that p,;,q,; € [0,1)
with Z:'n:”l Pni =Y and Z:inl qni — 6, and maXi<i<m, maX{Pn,i, LIn,i} -0
as n — oo. Suppose for n € N that (X,,Y,) = Z:’:’l(Xn,i, Y,:), where each
(X.4» Yi) 1s arandom 2-vector whose components are Bernoulli distributed
with parameters p,,;, ¢,, respectively, and satisfy X;,;Y,,; = 0 almost surely.
Assume the random vectors (X,,;, Y,,;), 1 < i < m,, are independent. Prove
that X,,, Y, are asymptotically (as n — co) distributed as a pair of indepen-
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8 Poisson and Other Discrete Distributions

dent Poisson variables with parameters v, 9, i.e. for k, £ € Ny,

k ot
. _ Py
,}L%P(X” =k Y, =0=e Ak

Exercise 1.7 (Probability of a Poisson variable being even) Suppose X is
Poisson distributed with parameter y > 0. Using the fact that the prob-
ability generating function (1.8) extends to s = —1, verify the identity
P(X/2 € Z) = (1 + e%)/2. For k € N with k > 3, using the fact that
the probability generating function (1.8) extends to a k-th complex root of
unity, find a closed-form formula for P(X/k € Z).

Exercise 1.8 Lety > 0, and suppose X is Poisson distributed with param-
eter y. Suppose f: N — R, is such that E[f(X)'**] < oo for some & > 0.
Show that B[ f(X + k)] < oo for any k € N.

Exercise 1.9 Let 0 <y < y'. Give an example of a random vector (X, Y)
with X Poisson distributed with parameter y and Y Poisson distributed with
parameter y’, such that Y—X is not Poisson distributed. (Hint: First consider
apair X', Y’ such that Y'—X’ is Poisson distributed, and then modify finitely
many of the values of their joint probability mass function.)

Exercise 1.10 Suppose n € N and set [n] := {1, ..., n}. Suppose that Z is
a uniform random permutation of [n], that is a random element of the space
%, of all bijective mappings from [n] to [n] such that P(Z = ) = 1/n! for
eachm e X,. Fora e Rlet[a] := min{k € Z : k > a}. Lety € [0, 1] and let
X, 1= card{i € [[yn]] : Z(i) = i} be the number of fixed points of Z among
the first [yn] integers. Show that the distribution of X,, converges to Po(y),

that is
Y
lim P(X, = k) = Fe", k € Ny.
(Hint: Establish an explicit formula for P(X,, = k), starting with the case
k=0.)

Exercise 1.11 Prove Proposition 1.5.

Exercise 1.12 ILety > 0 and 6 > 0. Find a random vector (X, Y) such
that X, Y and X + Y are Poisson distributed with parameter vy, § and y + 0,
respectively, but X and Y are not independent.
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