# **Poisson and Other Discrete Distributions**

The Poisson distribution arises as a limit of the binomial distribution. This chapter contains a brief discussion of some of its fundamental properties as well as the Poisson limit theorem for null arrays of integer-valued random variables. The chapter also discusses the binomial and negative binomial distributions.

#### 1.1 The Poisson Distribution

A random variable *X* is said to have a *binomial distribution* Bi(n, p) with parameters  $n \in \mathbb{N}_0 := \{0, 1, 2, ...\}$  and  $p \in [0, 1]$  if

$$\mathbb{P}(X=k) = \text{Bi}(n, p; k) := \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \dots, n,$$
 (1.1)

where  $0^0 := 1$ . In the case n = 1 this is the *Bernoulli distribution* with parameter p. If  $X_1, \ldots, X_n$  are independent random variables with such a Bernoulli distribution, then their sum has a binomial distribution, that is

$$X_1 + \dots + X_n \stackrel{d}{=} X, \tag{1.2}$$

where *X* has the distribution Bi(n, p) and where  $\stackrel{d}{=}$  denotes equality in distribution. It follows that the expectation and variance of *X* are given by

$$\mathbb{E}[X] = np, \qquad \mathbb{V}\operatorname{ar}[X] = np(1-p). \tag{1.3}$$

A random variable *X* is said to have a *Poisson distribution*  $Po(\gamma)$  with parameter  $\gamma \ge 0$  if

$$\mathbb{P}(X=k) = \text{Po}(\gamma; k) := \frac{\gamma^k}{k!} e^{-\gamma}, \quad k \in \mathbb{N}_0.$$
 (1.4)

If  $\gamma = 0$ , then  $\mathbb{P}(X = 0) = 1$ , since we take  $0^0 = 1$ . Also we allow  $\gamma = \infty$ ; in this case we put  $\mathbb{P}(X = \infty) = 1$  so  $\text{Po}(\infty; k) = 0$  for  $k \in \mathbb{N}_0$ .

The Poisson distribution arises as a limit of binomial distributions as

follows. Let  $p_n \in [0, 1]$ ,  $n \in \mathbb{N}$ , be a sequence satisfying  $np_n \to \gamma$  as  $n \to \infty$ , with  $\gamma \in (0, \infty)$ . Then, for  $k \in \{0, \dots, n\}$ ,

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{(np_n)^k}{k!} \cdot \frac{(n)_k}{n^k} \cdot (1 - p_n)^{-k} \cdot \left(1 - \frac{np_n}{n}\right)^n \to \frac{\gamma^k}{k!} e^{-\gamma}, \quad (1.5)$$

as  $n \to \infty$ , where

$$(n)_k := n(n-1)\cdots(n-k+1)$$
 (1.6)

is the k-th descending factorial (of n) with  $(n)_0$  interpreted as 1.

Suppose X is a Poisson random variable with finite parameter  $\gamma$ . Then its expectation is given by

$$\mathbb{E}[X] = e^{-\gamma} \sum_{k=0}^{\infty} k \frac{\gamma^k}{k!} = e^{-\gamma} \gamma \sum_{k=1}^{\infty} \frac{\gamma^{k-1}}{(k-1)!} = \gamma.$$
 (1.7)

The probability generating function of X (or of Po( $\gamma$ )) is given by

$$\mathbb{E}[s^X] = e^{-\gamma} \sum_{k=0}^{\infty} \frac{\gamma^k}{k!} s^k = e^{-\gamma} \sum_{k=0}^{\infty} \frac{(\gamma s)^k}{k!} = e^{\gamma(s-1)}, \quad s \in [0, 1].$$
 (1.8)

It follows that the *Laplace transform* of X (or of Po( $\gamma$ )) is given by

$$\mathbb{E}[e^{-tX}] = \exp[-\gamma(1 - e^{-t})], \quad t \ge 0.$$
 (1.9)

Formula (1.8) is valid for each  $s \in \mathbb{R}$  and (1.9) is valid for each  $t \in \mathbb{R}$ . A calculation similar to (1.8) shows that the *factorial moments* of X are given by

$$\mathbb{E}[(X)_k] = \gamma^k, \quad k \in \mathbb{N}_0, \tag{1.10}$$

where  $(0)_0 := 1$  and  $(0)_k := 0$  for  $k \ge 1$ . Equation (1.10) implies that

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[(X)_2] + \mathbb{E}[X] - \mathbb{E}[X]^2 = \gamma.$$
 (1.11)

We continue with a characterisation of the Poisson distribution.

**Proposition 1.1** An  $\mathbb{N}_0$ -valued random variable X has distribution  $Po(\gamma)$  if and only if, for every function  $f \colon \mathbb{N}_0 \to \mathbb{R}_+$ , we have

$$\mathbb{E}[Xf(X)] = \gamma \,\mathbb{E}[f(X+1)]. \tag{1.12}$$

**Proof** By a similar calculation to (1.7) and (1.8) we obtain for any function  $f: \mathbb{N}_0 \to \mathbb{R}_+$  that (1.12) holds. Conversely, if (1.12) holds for all such functions f, then we can make the particular choice  $f := \mathbf{1}_{\{k\}}$  for  $k \in \mathbb{N}$ , to obtain the recursion

$$k \mathbb{P}(X = k) = \gamma \mathbb{P}(X = k - 1).$$

This recursion has (1.4) as its only (probability) solution, so the result follows.

## 1.2 Relationships Between Poisson and Binomial Distributions

The next result says that if X and Y are independent Poisson random variables, then X + Y is also Poisson and the conditional distribution of X given X + Y is binomial:

**Proposition 1.2** Let X and Y be independent with distributions  $Po(\gamma)$  and  $Po(\delta)$ , respectively, with  $0 < \gamma + \delta < \infty$ . Then X + Y has distribution  $Po(\gamma + \delta)$  and

$$\mathbb{P}(X=k\mid X+Y=n)=\mathrm{Bi}(n,\gamma/(\gamma+\delta);k),\quad n\in\mathbb{N}_0,\,k=0,\ldots,n.$$

*Proof* For  $n \in \mathbb{N}_0$  and  $k \in \{0, \dots, n\}$ ,

$$\mathbb{P}(X = k, X + Y = n) = \mathbb{P}(X = k, Y = n - k) = \frac{\gamma^k}{k!} e^{-\gamma} \frac{\delta^{n-k}}{(n-k)!} e^{-\delta}$$
$$= e^{-(\gamma+\delta)} \left(\frac{(\gamma+\delta)^n}{n!}\right) \binom{n}{k} \left(\frac{\gamma}{\gamma+\delta}\right)^k \left(\frac{\delta}{\gamma+\delta}\right)^{n-k}$$
$$= \text{Po}(\gamma+\delta; n) \operatorname{Bi}(n, \gamma/(\gamma+\delta); k),$$

and the assertions follow.

Let Z be an  $\mathbb{N}_0$ -valued random variable and let  $Z_1, Z_2, \ldots$  be a sequence of independent random variables that have a Bernoulli distribution with parameter  $p \in [0, 1]$ . If Z and  $(Z_n)_{n\geq 1}$  are independent, then the random variable

$$X := \sum_{j=1}^{Z} Z_j \tag{1.13}$$

is called a *p-thinning* of Z, where we set X := 0 if Z = 0. This means that the conditional distribution of X given Z = n is binomial with parameters n and p.

The following partial converse of Proposition 1.2 is a noteworthy property of the Poisson distribution.

**Proposition 1.3** Let  $p \in [0, 1]$ . Let Z have a Poisson distribution with parameter  $\gamma \geq 0$  and let X be a p-thinning of Z. Then X and Z - X are independent and Poisson distributed with parameters  $p\gamma$  and  $(1 - p)\gamma$ , respectively.

**Proof** We may assume that  $\gamma > 0$ . The result follows once we have shown that

$$\mathbb{P}(X=m,Z-X=n) = \text{Po}(p\gamma;m) \, \text{Po}((1-p)\gamma;n), \quad m,n \in \mathbb{N}_0. \quad (1.14)$$

Since the conditional distribution of X given Z = m + n is binomial with parameters m + n and p, we have

$$\mathbb{P}(X=m,Z-X=n) = \mathbb{P}(Z=m+n)\,\mathbb{P}(X=m\mid Z=m+n)$$

$$= \left(\frac{e^{-\gamma}\gamma^{m+n}}{(m+n)!}\right) \binom{m+n}{m} p^m (1-p)^n$$

$$= \left(\frac{p^m\gamma^m}{m!}\right) e^{-p\gamma} \left(\frac{(1-p)^n\gamma^n}{n!}\right) e^{-(1-p)\gamma},$$

and (1.14) follows.

## 1.3 The Poisson Limit Theorem

The next result generalises (1.5) to sums of Bernoulli variables with unequal parameters, among other things.

**Proposition 1.4** Suppose for  $n \in \mathbb{N}$  that  $m_n \in \mathbb{N}$  and  $X_{n,1}, \ldots, X_{n,m_n}$  are independent random variables taking values in  $\mathbb{N}_0$ . Let  $p_{n,i} := \mathbb{P}(X_{n,i} \ge 1)$  and assume that

$$\lim_{n \to \infty} \max_{1 \le i \le m_n} p_{n,i} = 0. \tag{1.15}$$

Assume further that  $\lambda_n := \sum_{i=1}^{m_n} p_{n,i} \to \gamma$  as  $n \to \infty$ , where  $\gamma > 0$ , and that

$$\lim_{n \to \infty} \sum_{i=1}^{m_n} \mathbb{P}(X_{n,i} \ge 2) = 0.$$
 (1.16)

Let  $X_n := \sum_{i=1}^{m_n} X_{n,i}$ . Then for  $k \in \mathbb{N}_0$  we have

$$\lim_{n \to \infty} \mathbb{P}(X_n = k) = \text{Po}(\gamma; k). \tag{1.17}$$

*Proof* Let  $X'_{n,i} := \mathbf{1}\{X_{n,i} \ge 1\} = \min\{X_{n,i}, 1\}$  and  $X'_n := \sum_{i=1}^{m_n} X'_{n,i}$ . Since  $X'_{n,i} \ne X_{n,i}$  if and only if  $X_{n,i} \ge 2$ , we have

$$\mathbb{P}(X_n' \neq X_n) \leq \sum_{i=1}^{m_n} \mathbb{P}(X_{n,i} \geq 2).$$

By assumption (1.16) we can assume without restriction of generality that

 $X'_{n,i} = X_{n,i}$  for all  $n \in \mathbb{N}$  and  $i \in \{1, ..., m_n\}$ . Moreover it is no loss of generality to assume for each (n, i) that  $p_{n,i} < 1$ . We then have

$$\mathbb{P}(X_n = k) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le m_n} p_{n,i_1} p_{n,i_2} \cdots p_{n,i_k} \frac{\prod_{j=1}^{m_n} (1 - p_{n,j})}{(1 - p_{n,i_1}) \cdots (1 - p_{n,i_k})}. \quad (1.18)$$

Let  $\mu_n := \max_{1 \le i \le m_n} p_{n,i}$ . Since  $\sum_{j=1}^{m_n} p_{n,j}^2 \le \lambda_n \mu_n \to 0$  as  $n \to \infty$ , we have

$$\log\left(\prod_{i=1}^{m_n} (1 - p_{n,j})\right) = \sum_{i=1}^{m_n} (-p_{n,j} + O(p_{n,j}^2)) \to -\gamma \text{ as } n \to \infty,$$
 (1.19)

where the function  $O(\cdot)$  satisfies  $\limsup_{r\to 0} |r|^{-1}|O(r)| < \infty$ . Also,

$$\inf_{1 \le i_1 < i_2 < \dots < i_k \le m_n} (1 - p_{n, i_1}) \cdots (1 - p_{n, i_k}) \ge (1 - \mu_n)^k \to 1 \text{ as } n \to \infty.$$
 (1.20)

Finally, with  $\sum_{i_1,\dots,i_k\in\{1,2,\dots,m_n\}}^{\neq}$  denoting summation over all ordered k-tuples of distinct elements of  $\{1,2,\dots,m_n\}$ , we have

$$k! \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq m_n} p_{n,i_1} p_{n,i_2} \cdots p_{n,i_k} = \sum_{i_1, \dots, i_k \in \{1, 2, \dots, m_n\}}^{\neq} p_{n,i_1} p_{n,i_2} \cdots p_{n,i_k},$$

and

$$0 \leq \left(\sum_{i=1}^{m_n} p_{n,i}\right)^k - \sum_{i_1,\dots,i_k \in \{1,2,\dots,m_n\}}^{\neq} p_{n,i_1} p_{n,i_2} \cdots p_{n,i_k}$$
$$\leq \binom{k}{2} \sum_{i=1}^{m_n} p_{n,i}^2 \left(\sum_{i=1}^{m_n} p_{n,i}\right)^{k-2},$$

which tends to zero as  $n \to \infty$ . Therefore

$$k! \sum_{1 \le i_1 < i_2 < \dots < i_k \le m_n} p_{n,i_1} p_{n,i_2} \cdots p_{n,i_k} \to \gamma^k \text{ as } n \to \infty.$$
 (1.21)

The result follows from (1.18) by using (1.19), (1.20) and (1.21).

# 1.4 The Negative Binomial Distribution

A random element Z of  $\mathbb{N}_0$  is said to have a *negative binomial distribution* with parameters r > 0 and  $p \in (0, 1]$  if

$$\mathbb{P}(Z=n) = \frac{\Gamma(n+r)}{\Gamma(n+1)\Gamma(r)} (1-p)^n p^r, \quad n \in \mathbb{N}_0,$$
 (1.22)

where the Gamma function  $\Gamma: (0, \infty) \to (0, \infty)$  is defined by

$$\Gamma(a) := \int_0^\infty t^{a-1} e^{-t} dt, \quad a > 0.$$
 (1.23)

(In particular  $\Gamma(a) = (a-1)!$  for  $a \in \mathbb{N}$ .) This can be seen to be a probability distribution by Taylor expansion of  $(1-x)^{-r}$  evaluated at x=1-p. The probability generating function of Z is given by

$$\mathbb{E}[s^Z] = p^r (1 - s + sp)^{-r}, \quad s \in [0, 1]. \tag{1.24}$$

For  $r \in \mathbb{N}$ , such a Z may be interpreted as the number of failures before the rth success in a sequence of independent Bernoulli trials. In the special case r = 1 we get the *geometric distribution* 

$$\mathbb{P}(Z=n) = (1-p)^n p, \quad n \in \mathbb{N}_0.$$
 (1.25)

Another interesting special case is r = 1/2. In this case

$$\mathbb{P}(Z=n) = \frac{(2n-1)!!}{2^n n!} (1-p)^n p^{1/2}, \quad n \in \mathbb{N}_0, \tag{1.26}$$

where we recall the definition (B.6) for (2n-1)!!!. This follows from the fact that  $\Gamma(n+1/2) = (2n-1)!! 2^{-n} \sqrt{\pi}$ ,  $n \in \mathbb{N}_0$ .

The negative binomial distribution arises as a mixture of Poisson distributions. To explain this, we need to introduce the *Gamma distribution* with *shape parameter* a > 0 and *scale parameter* b > 0. This is a probability measure on  $\mathbb{R}_+$  with Lebesgue density

$$x \mapsto b^a \Gamma(a)^{-1} x^{a-1} e^{-bx}$$
 (1.27)

on  $\mathbb{R}_+$ . If a random variable *Y* has this distribution, then one says that *Y* is Gamma distributed with shape parameter *a* and scale parameter *b*. In this case *Y* has Laplace transform

$$\mathbb{E}[e^{-tY}] = \left(\frac{b}{b+t}\right)^a, \quad t \ge 0. \tag{1.28}$$

In the case a = 1 we obtain the *exponential distribution* with parameter b. Exercise 1.11 asks the reader to prove the following result.

**Proposition 1.5** Suppose that the random variable  $Y \ge 0$  is Gamma distributed with shape parameter a > 0 and scale parameter b > 0. Let Z be an  $\mathbb{N}_0$ -valued random variable such that the conditional distribution of Z given Y is Po(Y). Then Z has a negative binomial distribution with parameters a and b/(b+1).

### 1.5 Exercises

**Exercise 1.1** Prove equation (1.10).

**Exercise 1.2** Let X be a random variable taking values in  $\mathbb{N}_0$ . Assume that there is a  $\gamma \geq 0$  such that  $\mathbb{E}[(X)_k] = \gamma^k$  for all  $k \in \mathbb{N}_0$ . Show that X has a Poisson distribution. (Hint: Derive the Taylor series for  $g(s) := \mathbb{E}[s^X]$  at  $s_0 = 1$ .)

**Exercise 1.3** Confirm Proposition 1.3 by showing that

$$\mathbb{E}\big[s^Xt^{Z-X}\big]=e^{p\gamma(s-1)}e^{(1-p)\gamma(t-1)},\quad s,t\in[0,1],$$

using a direct computation and Proposition B.4.

**Exercise 1.4** (Generalisation of Proposition 1.2) Let  $m \in \mathbb{N}$  and suppose that  $X_1, \ldots, X_m$  are independent random variables with Poisson distributions  $\text{Po}(\gamma_1), \ldots, \text{Po}(\gamma_m)$ , respectively. Show that  $X := X_1 + \cdots + X_m$  is Poisson distributed with parameter  $\gamma := \gamma_1 + \cdots + \gamma_m$ . Assuming  $\gamma > 0$ , show moreover for any  $k \in \mathbb{N}$  that

$$\mathbb{P}(X_1 = k_1, \dots, X_m = k_m \mid X = k) = \frac{k!}{k_1! \cdots k_m!} \left(\frac{\gamma_1}{\gamma}\right)^{k_1} \cdots \left(\frac{\gamma_m}{\gamma}\right)^{k_m}$$
 (1.29)

for  $k_1 + \cdots + k_m = k$ . This is a multinomial distribution with parameters k and  $\gamma_1/\gamma, \ldots, \gamma_m/\gamma$ .

**Exercise 1.5** (Generalisation of Proposition 1.3) Let  $m \in \mathbb{N}$  and suppose that  $Z_n$ ,  $n \in \mathbb{N}$ , is a sequence of independent random vectors in  $\mathbb{R}^m$  with common distribution  $\mathbb{P}(Z_1 = e_i) = p_i$ ,  $i \in \{1, ..., m\}$ , where  $e_i$  is the i-th unit vector in  $\mathbb{R}^m$  and  $p_1 + \cdots + p_m = 1$ . Let Z have a Poisson distribution with parameter  $\gamma$ , independent of  $(Z_1, Z_2, ...)$ . Show that the components of the random vector  $X := \sum_{j=1}^{Z} Z_j$  are independent and Poisson distributed with parameters  $p_1 \gamma, ..., p_m \gamma$ .

**Exercise 1.6** (Bivariate extension of Proposition 1.4) Let  $\gamma > 0$ ,  $\delta \ge 0$ . Suppose for  $n \in \mathbb{N}$  that  $m_n \in \mathbb{N}$  and for  $1 \le i \le m_n$  that  $p_{n,i}, q_{n,i} \in [0,1)$  with  $\sum_{i=1}^{m_n} p_{n,i} \to \gamma$  and  $\sum_{i=1}^{m_n} q_{n,i} \to \delta$ , and  $\max_{1 \le i \le m_n} \max\{p_{n,i}, q_{n,i}\} \to 0$  as  $n \to \infty$ . Suppose for  $n \in \mathbb{N}$  that  $(X_n, Y_n) = \sum_{i=1}^{m_n} (X_{n,i}, Y_{n,i})$ , where each  $(X_{n,i}, Y_{n,i})$  is a random 2-vector whose components are Bernoulli distributed with parameters  $p_{n,i}, q_{n,i}$ , respectively, and satisfy  $X_{n,i}Y_{n,i} = 0$  almost surely. Assume the random vectors  $(X_{n,i}, Y_{n,i})$ ,  $1 \le i \le m_n$ , are independent. Prove that  $X_n, Y_n$  are asymptotically (as  $n \to \infty$ ) distributed as a pair of independent.

dent Poisson variables with parameters  $\gamma$ ,  $\delta$ , i.e. for k,  $\ell \in \mathbb{N}_0$ ,

$$\lim_{n\to\infty} \mathbb{P}(X_n = k, Y_n = \ell) = e^{-(\gamma+\delta)} \frac{\gamma^k \delta^{\ell}}{k!\ell!}.$$

**Exercise 1.7** (Probability of a Poisson variable being even) Suppose X is Poisson distributed with parameter  $\gamma > 0$ . Using the fact that the probability generating function (1.8) extends to s = -1, verify the identity  $\mathbb{P}(X/2 \in \mathbb{Z}) = (1 + e^{-2\gamma})/2$ . For  $k \in \mathbb{N}$  with  $k \geq 3$ , using the fact that the probability generating function (1.8) extends to a k-th complex root of unity, find a closed-form formula for  $\mathbb{P}(X/k \in \mathbb{Z})$ .

**Exercise 1.8** Let  $\gamma > 0$ , and suppose X is Poisson distributed with parameter  $\gamma$ . Suppose  $f: \mathbb{N} \to \mathbb{R}_+$  is such that  $\mathbb{E}[f(X)^{1+\varepsilon}] < \infty$  for some  $\varepsilon > 0$ . Show that  $\mathbb{E}[f(X+k)] < \infty$  for any  $k \in \mathbb{N}$ .

**Exercise 1.9** Let  $0 < \gamma < \gamma'$ . Give an example of a random vector (X, Y) with X Poisson distributed with parameter  $\gamma$  and Y Poisson distributed with parameter  $\gamma'$ , such that Y - X is not Poisson distributed. (Hint: First consider a pair X', Y' such that Y' - X' is Poisson distributed, and then modify finitely many of the values of their joint probability mass function.)

**Exercise 1.10** Suppose  $n \in \mathbb{N}$  and set  $[n] := \{1, ..., n\}$ . Suppose that Z is a uniform random permutation of [n], that is a random element of the space  $\Sigma_n$  of all bijective mappings from [n] to [n] such that  $\mathbb{P}(Z = \pi) = 1/n!$  for each  $\pi \in \Sigma_n$ . For  $a \in \mathbb{R}$  let  $[a] := \min\{k \in \mathbb{Z} : k \ge a\}$ . Let  $\gamma \in [0, 1]$  and let  $X_n := \operatorname{card}\{i \in [\lceil \gamma n \rceil] : Z(i) = i\}$  be the number of fixed points of Z among the first  $\lceil \gamma n \rceil$  integers. Show that the distribution of  $X_n$  converges to  $\operatorname{Po}(\gamma)$ , that is

$$\lim_{n\to\infty} \mathbb{P}(X_n = k) = \frac{\gamma^k}{k!} e^{-\gamma}, \quad k \in \mathbb{N}_0.$$

(Hint: Establish an explicit formula for  $\mathbb{P}(X_n = k)$ , starting with the case k = 0.)

**Exercise 1.11** Prove Proposition 1.5.

**Exercise 1.12** Let  $\gamma > 0$  and  $\delta > 0$ . Find a random vector (X, Y) such that X, Y and X + Y are Poisson distributed with parameter  $\gamma, \delta$  and  $\gamma + \delta$ , respectively, but X and Y are not independent.