1

Poisson and Other Discrete Distributions

The Poisson distribution arises as a limit of the binomial distribution. This chapter contains a brief discussion of some of its fundamental properties as well as the Poisson limit theorem for null arrays of integer-valued random variables. The chapter also discusses the binomial and negative binomial distributions.

1.1 The Poisson Distribution

A random variable X is said to have a binomial distribution $\operatorname{Bi}(n, p)$ with parameters $n \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$ and $p \in[0,1]$ if

$$
\begin{equation*}
\mathbb{P}(X=k)=\operatorname{Bi}(n, p ; k):=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0, \ldots, n, \tag{1.1}
\end{equation*}
$$

where $0^{0}:=1$. In the case $n=1$ this is the Bernoulli distribution with parameter p. If X_{1}, \ldots, X_{n} are independent random variables with such a Bernoulli distribution, then their sum has a binomial distribution, that is

$$
\begin{equation*}
X_{1}+\cdots+X_{n} \stackrel{d}{=} X \tag{1.2}
\end{equation*}
$$

where X has the distribution $\operatorname{Bi}(n, p)$ and where $\stackrel{d}{=}$ denotes equality in distribution. It follows that the expectation and variance of X are given by

$$
\begin{equation*}
\mathbb{E}[X]=n p, \quad \mathbb{V a r}[X]=n p(1-p) \tag{1.3}
\end{equation*}
$$

A random variable X is said to have a Poisson distribution $\operatorname{Po}(\gamma)$ with parameter $\gamma \geq 0$ if

$$
\begin{equation*}
\mathbb{P}(X=k)=\operatorname{Po}(\gamma ; k):=\frac{\gamma^{k}}{k!} e^{-\gamma}, \quad k \in \mathbb{N}_{0} \tag{1.4}
\end{equation*}
$$

If $\gamma=0$, then $\mathbb{P}(X=0)=1$, since we take $0^{0}=1$. Also we allow $\gamma=\infty$; in this case we put $\mathbb{P}(X=\infty)=1$ so $\operatorname{Po}(\infty ; k)=0$ for $k \in \mathbb{N}_{0}$.

The Poisson distribution arises as a limit of binomial distributions as
follows. Let $p_{n} \in[0,1], n \in \mathbb{N}$, be a sequence satisfying $n p_{n} \rightarrow \gamma$ as $n \rightarrow \infty$, with $\gamma \in(0, \infty)$. Then, for $k \in\{0, \ldots, n\}$,

$$
\begin{equation*}
\binom{n}{k} p_{n}^{k}\left(1-p_{n}\right)^{n-k}=\frac{\left(n p_{n}\right)^{k}}{k!} \cdot \frac{(n)_{k}}{n^{k}} \cdot\left(1-p_{n}\right)^{-k} \cdot\left(1-\frac{n p_{n}}{n}\right)^{n} \rightarrow \frac{\gamma^{k}}{k!} e^{-\gamma} \tag{1.5}
\end{equation*}
$$

as $n \rightarrow \infty$, where

$$
\begin{equation*}
(n)_{k}:=n(n-1) \cdots(n-k+1) \tag{1.6}
\end{equation*}
$$

is the k-th descending factorial (of n) with $(n)_{0}$ interpreted as 1 .
Suppose X is a Poisson random variable with finite parameter γ. Then its expectation is given by

$$
\begin{equation*}
\mathbb{E}[X]=e^{-\gamma} \sum_{k=0}^{\infty} k \frac{\gamma^{k}}{k!}=e^{-\gamma} \gamma \sum_{k=1}^{\infty} \frac{\gamma^{k-1}}{(k-1)!}=\gamma . \tag{1.7}
\end{equation*}
$$

The probability generating function of $X($ or of $\operatorname{Po}(\gamma))$ is given by

$$
\begin{equation*}
\mathbb{E}\left[s^{X}\right]=e^{-\gamma} \sum_{k=0}^{\infty} \frac{\gamma^{k}}{k!} s^{k}=e^{-\gamma} \sum_{k=0}^{\infty} \frac{(\gamma s)^{k}}{k!}=e^{\gamma(s-1)}, \quad s \in[0,1] . \tag{1.8}
\end{equation*}
$$

It follows that the Laplace transform of $X($ or of $\operatorname{Po}(\gamma))$ is given by

$$
\begin{equation*}
\mathbb{E}\left[e^{-t X}\right]=\exp \left[-\gamma\left(1-e^{-t}\right)\right], \quad t \geq 0 \tag{1.9}
\end{equation*}
$$

Formula (1.8) is valid for each $s \in \mathbb{R}$ and (1.9) is valid for each $t \in \mathbb{R}$. A calculation similar to (1.8) shows that the factorial moments of X are given by

$$
\begin{equation*}
\mathbb{E}\left[(X)_{k}\right]=\gamma^{k}, \quad k \in \mathbb{N}_{0} \tag{1.10}
\end{equation*}
$$

where $(0)_{0}:=1$ and $(0)_{k}:=0$ for $k \geq 1$. Equation (1.10) implies that

$$
\begin{equation*}
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\mathbb{E}\left[(X)_{2}\right]+\mathbb{E}[X]-\mathbb{E}[X]^{2}=\gamma \tag{1.11}
\end{equation*}
$$

We continue with a characterisation of the Poisson distribution.
Proposition 1.1 An \mathbb{N}_{0}-valued random variable X has distribution $\operatorname{Po}(\gamma)$ if and only if, for every function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$, we have

$$
\begin{equation*}
\mathbb{E}[X f(X)]=\gamma \mathbb{E}[f(X+1)] . \tag{1.12}
\end{equation*}
$$

Proof By a similar calculation to (1.7) and (1.8) we obtain for any function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$that (1.12) holds. Conversely, if (1.12) holds for all such functions f, then we can make the particular choice $f:=\mathbf{1}_{\{k\}}$ for $k \in \mathbb{N}$, to obtain the recursion

$$
k \mathbb{P}(X=k)=\gamma \mathbb{P}(X=k-1)
$$

This recursion has (1.4) as its only (probability) solution, so the result follows.

1.2 Relationships Between Poisson and Binomial Distributions

The next result says that if X and Y are independent Poisson random variables, then $X+Y$ is also Poisson and the conditional distribution of X given $X+Y$ is binomial:

Proposition 1.2 Let X and Y be independent with distributions $\operatorname{Po}(\gamma)$ and $\operatorname{Po}(\delta)$, respectively, with $0<\gamma+\delta<\infty$. Then $X+Y$ has distribution $\operatorname{Po}(\gamma+\delta)$ and

$$
\mathbb{P}(X=k \mid X+Y=n)=\operatorname{Bi}(n, \gamma /(\gamma+\delta) ; k), \quad n \in \mathbb{N}_{0}, k=0, \ldots, n .
$$

Proof For $n \in \mathbb{N}_{0}$ and $k \in\{0, \ldots, n\}$,

$$
\begin{aligned}
\mathbb{P}(X=k, X+Y=n) & =\mathbb{P}(X=k, Y=n-k)=\frac{\gamma^{k}}{k!} e^{-\gamma} \frac{\delta^{n-k}}{(n-k)!} e^{-\delta} \\
& =e^{-(\gamma+\delta)}\left(\frac{(\gamma+\delta)^{n}}{n!}\right)\binom{n}{k}\left(\frac{\gamma}{\gamma+\delta}\right)^{k}\left(\frac{\delta}{\gamma+\delta}\right)^{n-k} \\
& =\operatorname{Po}(\gamma+\delta ; n) \operatorname{Bi}(n, \gamma /(\gamma+\delta) ; k),
\end{aligned}
$$

and the assertions follow.
Let Z be an \mathbb{N}_{0}-valued random variable and let Z_{1}, Z_{2}, \ldots be a sequence of independent random variables that have a Bernoulli distribution with parameter $p \in[0,1]$. If Z and $\left(Z_{n}\right)_{n \geq 1}$ are independent, then the random variable

$$
\begin{equation*}
X:=\sum_{j=1}^{Z} Z_{j} \tag{1.13}
\end{equation*}
$$

is called a p-thinning of Z, where we set $X:=0$ if $Z=0$. This means that the conditional distribution of X given $Z=n$ is binomial with parameters n and p.

The following partial converse of Proposition 1.2 is a noteworthy property of the Poisson distribution.

Proposition 1.3 Let $p \in[0,1]$. Let Z have a Poisson distribution with parameter $\gamma \geq 0$ and let X be a p-thinning of Z. Then X and $Z-X$ are independent and Poisson distributed with parameters $p \gamma$ and $(1-p) \gamma$, respectively.

Proof We may assume that $\gamma>0$. The result follows once we have shown that

$$
\begin{equation*}
\mathbb{P}(X=m, Z-X=n)=\operatorname{Po}(p \gamma ; m) \operatorname{Po}((1-p) \gamma ; n), \quad m, n \in \mathbb{N}_{0} \tag{1.14}
\end{equation*}
$$

Since the conditional distribution of X given $Z=m+n$ is binomial with parameters $m+n$ and p, we have

$$
\begin{aligned}
\mathbb{P}(X=m, Z-X=n) & =\mathbb{P}(Z=m+n) \mathbb{P}(X=m \mid Z=m+n) \\
& =\left(\frac{e^{-\gamma} \gamma^{m+n}}{(m+n)!}\right)\binom{m+n}{m} p^{m}(1-p)^{n} \\
& =\left(\frac{p^{m} \gamma^{m}}{m!}\right) e^{-p \gamma}\left(\frac{(1-p)^{n} \gamma^{n}}{n!}\right) e^{-(1-p) \gamma},
\end{aligned}
$$

and (1.14) follows.

1.3 The Poisson Limit Theorem

The next result generalises (1.5) to sums of Bernoulli variables with unequal parameters, among other things.

Proposition 1.4 Suppose for $n \in \mathbb{N}$ that $m_{n} \in \mathbb{N}$ and $X_{n, 1}, \ldots, X_{n, m_{n}}$ are independent random variables taking values in \mathbb{N}_{0}. Let $p_{n, i}:=\mathbb{P}\left(X_{n, i} \geq 1\right)$ and assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{1 \leq i \leq m_{n}} p_{n, i}=0 \tag{1.15}
\end{equation*}
$$

Assume further that $\lambda_{n}:=\sum_{i=1}^{m_{n}} p_{n, i} \rightarrow \gamma$ as $n \rightarrow \infty$, where $\gamma>0$, and that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{m_{n}} \mathbb{P}\left(X_{n, i} \geq 2\right)=0 \tag{1.16}
\end{equation*}
$$

Let $X_{n}:=\sum_{i=1}^{m_{n}} X_{n, i}$. Then for $k \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k\right)=\operatorname{Po}(\gamma ; k) \tag{1.17}
\end{equation*}
$$

Proof Let $X_{n, i}^{\prime}:=\mathbf{1}\left\{X_{n, i} \geq 1\right\}=\min \left\{X_{n, i}, 1\right\}$ and $X_{n}^{\prime}:=\sum_{i=1}^{m_{n}} X_{n, i}^{\prime}$. Since $X_{n, i}^{\prime} \neq X_{n, i}$ if and only if $X_{n, i} \geq 2$, we have

$$
\mathbb{P}\left(X_{n}^{\prime} \neq X_{n}\right) \leq \sum_{i=1}^{m_{n}} \mathbb{P}\left(X_{n, i} \geq 2\right)
$$

By assumption (1.16) we can assume without restriction of generality that
$X_{n, i}^{\prime}=X_{n, i}$ for all $n \in \mathbb{N}$ and $i \in\left\{1, \ldots, m_{n}\right\}$. Moreover it is no loss of generality to assume for each (n, i) that $p_{n, i}<1$. We then have

$$
\begin{equation*}
\mathbb{P}\left(X_{n}=k\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m_{n}} p_{n, i_{1}} p_{n, i_{2}} \cdots p_{n, i_{k}} \frac{\prod_{j=1}^{m_{n}}\left(1-p_{n, j}\right)}{\left(1-p_{n, i_{1}}\right) \cdots\left(1-p_{n, i_{k}}\right)} . \tag{1.18}
\end{equation*}
$$

Let $\mu_{n}:=\max _{1 \leq i \leq m_{n}} p_{n, i}$. Since $\sum_{j=1}^{m_{n}} p_{n, j}^{2} \leq \lambda_{n} \mu_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\log \left(\prod_{j=1}^{m_{n}}\left(1-p_{n, j}\right)\right)=\sum_{j=1}^{m_{n}}\left(-p_{n, j}+O\left(p_{n, j}^{2}\right)\right) \rightarrow-\gamma \text { as } n \rightarrow \infty, \tag{1.19}
\end{equation*}
$$

where the function $O(\cdot)$ satisfies $\lim \sup _{r \rightarrow 0}|r|^{-1}|O(r)|<\infty$. Also,

$$
\begin{equation*}
\inf _{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m_{n}}\left(1-p_{n, i_{1}}\right) \cdots\left(1-p_{n, i_{k}}\right) \geq\left(1-\mu_{n}\right)^{k} \rightarrow 1 \text { as } n \rightarrow \infty . \tag{1.20}
\end{equation*}
$$

Finally, with $\sum_{i_{1}, \ldots, i_{k} \in\left\{1,2, \ldots, m_{n}\right\}}^{\neq}$denoting summation over all ordered k-tuples of distinct elements of $\left\{1,2, \ldots, m_{n}\right\}$, we have

$$
k!\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m_{n}} p_{n, i_{1}} p_{n, i_{2}} \cdots p_{n, i_{k}}=\sum_{i_{1}, \ldots, i_{k} \in\left\{1,2, \ldots, m_{n}\right\}}^{\neq} p_{n, i_{1}} p_{n, i_{2}} \cdots p_{n, i_{k}},
$$

and

$$
\begin{aligned}
0 & \leq\left(\sum_{i=1}^{m_{n}} p_{n, i}\right)^{k}-\sum_{i_{1}, \ldots, i_{k} \in\left\{1,2, \ldots, m_{n}\right\}}^{\neq} p_{n, i_{1}} p_{n, i_{2}} \cdots p_{n, i_{k}} \\
& \leq\binom{ k}{2} \sum_{i=1}^{m_{n}} p_{n, i}^{2}\left(\sum_{j=1}^{m_{n}} p_{n, j}\right)^{k-2},
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. Therefore

$$
\begin{equation*}
k!\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m_{n}} p_{n, i_{1}} p_{n, i_{2}} \cdots p_{n, i_{k}} \rightarrow \gamma^{k} \text { as } n \rightarrow \infty \tag{1.21}
\end{equation*}
$$

The result follows from (1.18) by using (1.19), (1.20) and (1.21).

1.4 The Negative Binomial Distribution

A random element Z of \mathbb{N}_{0} is said to have a negative binomial distribution with parameters $r>0$ and $p \in(0,1]$ if

$$
\begin{equation*}
\mathbb{P}(Z=n)=\frac{\Gamma(n+r)}{\Gamma(n+1) \Gamma(r)}(1-p)^{n} p^{r}, \quad n \in \mathbb{N}_{0} \tag{1.22}
\end{equation*}
$$

where the Gamma function $\Gamma:(0, \infty) \rightarrow(0, \infty)$ is defined by

$$
\begin{equation*}
\Gamma(a):=\int_{0}^{\infty} t^{a-1} e^{-t} d t, \quad a>0 \tag{1.23}
\end{equation*}
$$

(In particular $\Gamma(a)=(a-1)$! for $a \in \mathbb{N}$.) This can be seen to be a probability distribution by Taylor expansion of $(1-x)^{-r}$ evaluated at $x=1-p$. The probability generating function of Z is given by

$$
\begin{equation*}
\mathbb{E}\left[s^{Z}\right]=p^{r}(1-s+s p)^{-r}, \quad s \in[0,1] \tag{1.24}
\end{equation*}
$$

For $r \in \mathbb{N}$, such a Z may be interpreted as the number of failures before the r th success in a sequence of independent Bernoulli trials. In the special case $r=1$ we get the geometric distribution

$$
\begin{equation*}
\mathbb{P}(Z=n)=(1-p)^{n} p, \quad n \in \mathbb{N}_{0} . \tag{1.25}
\end{equation*}
$$

Another interesting special case is $r=1 / 2$. In this case

$$
\begin{equation*}
\mathbb{P}(Z=n)=\frac{(2 n-1)!!}{2^{n} n!}(1-p)^{n} p^{1 / 2}, \quad n \in \mathbb{N}_{0} \tag{1.26}
\end{equation*}
$$

where we recall the definition (B.6) for $(2 n-1)!$!. This follows from the fact that $\Gamma(n+1 / 2)=(2 n-1)!!2^{-n} \sqrt{\pi}, n \in \mathbb{N}_{0}$.

The negative binomial distribution arises as a mixture of Poisson distributions. To explain this, we need to introduce the Gamma distribution with shape parameter $a>0$ and scale parameter $b>0$. This is a probability measure on \mathbb{R}_{+}with Lebesgue density

$$
\begin{equation*}
x \mapsto b^{a} \Gamma(a)^{-1} x^{a-1} e^{-b x} \tag{1.27}
\end{equation*}
$$

on \mathbb{R}_{+}. If a random variable Y has this distribution, then one says that Y is Gamma distributed with shape parameter a and scale parameter b. In this case Y has Laplace transform

$$
\begin{equation*}
\mathbb{E}\left[e^{-t Y}\right]=\left(\frac{b}{b+t}\right)^{a}, \quad t \geq 0 \tag{1.28}
\end{equation*}
$$

In the case $a=1$ we obtain the exponential distribution with parameter b. Exercise 1.11 asks the reader to prove the following result.

Proposition 1.5 Suppose that the random variable $Y \geq 0$ is Gamma distributed with shape parameter $a>0$ and scale parameter $b>0$. Let Z be an \mathbb{N}_{0}-valued random variable such that the conditional distribution of Z given Y is $\operatorname{Po}(Y)$. Then Z has a negative binomial distribution with parameters a and $b /(b+1)$.

1.5 Exercises

Exercise 1.1 Prove equation (1.10).
Exercise 1.2 Let X be a random variable taking values in \mathbb{N}_{0}. Assume that there is a $\gamma \geq 0$ such that $\mathbb{E}\left[(X)_{k}\right]=\gamma^{k}$ for all $k \in \mathbb{N}_{0}$. Show that X has a Poisson distribution. (Hint: Derive the Taylor series for $g(s):=\mathbb{E}\left[s^{X}\right]$ at $s_{0}=1$.)

Exercise 1.3 Confirm Proposition 1.3 by showing that

$$
\mathbb{E}\left[s^{X} t^{Z-X}\right]=e^{p \gamma(s-1)} e^{(1-p) \gamma(t-1)}, \quad s, t \in[0,1]
$$

using a direct computation and Proposition B.4.
Exercise 1.4 (Generalisation of Proposition 1.2) Let $m \in \mathbb{N}$ and suppose that X_{1}, \ldots, X_{m} are independent random variables with Poisson distributions $\operatorname{Po}\left(\gamma_{1}\right), \ldots, \operatorname{Po}\left(\gamma_{m}\right)$, respectively. Show that $X:=X_{1}+\cdots+X_{m}$ is Poisson distributed with parameter $\gamma:=\gamma_{1}+\cdots+\gamma_{m}$. Assuming $\gamma>0$, show moreover for any $k \in \mathbb{N}$ that

$$
\begin{equation*}
\mathbb{P}\left(X_{1}=k_{1}, \ldots, X_{m}=k_{m} \mid X=k\right)=\frac{k!}{k_{1}!\cdots k_{m}!}\left(\frac{\gamma_{1}}{\gamma}\right)^{k_{1}} \cdots\left(\frac{\gamma_{m}}{\gamma}\right)^{k_{m}} \tag{1.29}
\end{equation*}
$$

for $k_{1}+\cdots+k_{m}=k$. This is a multinomial distribution with parameters k and $\gamma_{1} / \gamma, \ldots, \gamma_{m} / \gamma$.

Exercise 1.5 (Generalisation of Proposition 1.3) Let $m \in \mathbb{N}$ and suppose that $Z_{n}, n \in \mathbb{N}$, is a sequence of independent random vectors in \mathbb{R}^{m} with common distribution $\mathbb{P}\left(Z_{1}=e_{i}\right)=p_{i}, i \in\{1, \ldots, m\}$, where e_{i} is the i-th unit vector in \mathbb{R}^{m} and $p_{1}+\cdots+p_{m}=1$. Let Z have a Poisson distribution with parameter γ, independent of $\left(Z_{1}, Z_{2}, \ldots\right)$. Show that the components of the random vector $X:=\sum_{j=1}^{Z} Z_{j}$ are independent and Poisson distributed with parameters $p_{1} \gamma, \ldots, p_{m} \gamma$.

Exercise 1.6 (Bivariate extension of Proposition 1.4) Let $\gamma>0, \delta \geq 0$. Suppose for $n \in \mathbb{N}$ that $m_{n} \in \mathbb{N}$ and for $1 \leq i \leq m_{n}$ that $p_{n, i}, q_{n, i} \in[0,1)$ with $\sum_{i=1}^{m_{n}} p_{n, i} \rightarrow \gamma$ and $\sum_{i=1}^{m_{n}} q_{n, i} \rightarrow \delta$, and $\max _{1 \leq i \leq m_{n}} \max \left\{p_{n, i}, q_{n, i}\right\} \rightarrow 0$ as $n \rightarrow \infty$. Suppose for $n \in \mathbb{N}$ that $\left(X_{n}, Y_{n}\right)=\sum_{i=1}^{m_{n}}\left(X_{n, i}, Y_{n, i}\right)$, where each $\left(X_{n, i}, Y_{n, i}\right)$ is a random 2-vector whose components are Bernoulli distributed with parameters $p_{n, i}, q_{n, i}$, respectively, and satisfy $X_{n, i} Y_{n, i}=0$ almost surely. Assume the random vectors $\left(X_{n, i}, Y_{n, i}\right), 1 \leq i \leq m_{n}$, are independent. Prove that X_{n}, Y_{n} are asymptotically (as $n \rightarrow \infty$) distributed as a pair of indepen-
dent Poisson variables with parameters γ, δ, i.e. for $k, \ell \in \mathbb{N}_{0}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k, Y_{n}=\ell\right)=e^{-(\gamma+\delta)} \frac{\gamma^{k} \delta^{\ell}}{k!\ell!}
$$

Exercise 1.7 (Probability of a Poisson variable being even) Suppose X is Poisson distributed with parameter $\gamma>0$. Using the fact that the probability generating function (1.8) extends to $s=-1$, verify the identity $\mathbb{P}(X / 2 \in \mathbb{Z})=\left(1+e^{-2 \gamma}\right) / 2$. For $k \in \mathbb{N}$ with $k \geq 3$, using the fact that the probability generating function (1.8) extends to a k-th complex root of unity, find a closed-form formula for $\mathbb{P}(X / k \in \mathbb{Z})$.

Exercise 1.8 Let $\gamma>0$, and suppose X is Poisson distributed with parameter γ. Suppose $f: \mathbb{N} \rightarrow \mathbb{R}_{+}$is such that $\mathbb{E}\left[f(X)^{1+\varepsilon}\right]<\infty$ for some $\varepsilon>0$. Show that $\mathbb{E}[f(X+k)]<\infty$ for any $k \in \mathbb{N}$.

Exercise 1.9 Let $0<\gamma<\gamma^{\prime}$. Give an example of a random vector (X, Y) with X Poisson distributed with parameter γ and Y Poisson distributed with parameter γ^{\prime}, such that $Y-X$ is not Poisson distributed. (Hint: First consider a pair X^{\prime}, Y^{\prime} such that $Y^{\prime}-X^{\prime}$ is Poisson distributed, and then modify finitely many of the values of their joint probability mass function.)

Exercise 1.10 Suppose $n \in \mathbb{N}$ and set $[n]:=\{1, \ldots, n\}$. Suppose that Z is a uniform random permutation of $[n]$, that is a random element of the space Σ_{n} of all bijective mappings from $[n]$ to $[n]$ such that $\mathbb{P}(Z=\pi)=1 / n$! for each $\pi \in \Sigma_{n}$. For $a \in \mathbb{R}$ let $\lceil a\rceil:=\min \{k \in \mathbb{Z}: k \geq a\}$. Let $\gamma \in[0,1]$ and let $X_{n}:=\operatorname{card}\{i \in[[\gamma n\rceil]: Z(i)=i\}$ be the number of fixed points of Z among the first $\lceil\gamma n\rceil$ integers. Show that the distribution of X_{n} converges to $\operatorname{Po}(\gamma)$, that is

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k\right)=\frac{\gamma^{k}}{k!} e^{-\gamma}, \quad k \in \mathbb{N}_{0}
$$

(Hint: Establish an explicit formula for $\mathbb{P}\left(X_{n}=k\right)$, starting with the case $k=0$.)

Exercise 1.11 Prove Proposition 1.5.
Exercise 1.12 Let $\gamma>0$ and $\delta>0$. Find a random vector (X, Y) such that X, Y and $X+Y$ are Poisson distributed with parameter γ, δ and $\gamma+\delta$, respectively, but X and Y are not independent.

