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Poisson and Other Discrete Distributions

The Poisson distribution arises as a limit of the binomial distribution. This
chapter contains a brief discussion of some of its fundamental properties as
well as the Poisson limit theorem for null arrays of integer-valued random
variables. The chapter also discusses the binomial and negative binomial
distributions.

1.1 The Poisson Distribution

A random variable X is said to have a binomial distribution Bi(n, p) with
parameters n ∈ N0 := {0, 1, 2, . . .} and p ∈ [0, 1] if

P(X = k) = Bi(n, p; k) :=
(
n
k

)
pk(1 − p)n−k, k = 0, . . . , n, (1.1)

where 00 := 1. In the case n = 1 this is the Bernoulli distribution with
parameter p. If X1, . . . , Xn are independent random variables with such a
Bernoulli distribution, then their sum has a binomial distribution, that is

X1 + · · · + Xn
d
= X, (1.2)

where X has the distribution Bi(n, p) and where d
= denotes equality in dis-

tribution. It follows that the expectation and variance of X are given by

E[X] = np, Var[X] = np(1 − p). (1.3)

A random variable X is said to have a Poisson distribution Po(γ) with
parameter γ ≥ 0 if

P(X = k) = Po(γ; k) :=
γk

k!
e−γ, k ∈ N0. (1.4)

If γ = 0, then P(X = 0) = 1, since we take 00 = 1. Also we allow γ = ∞;
in this case we put P(X = ∞) = 1 so Po(∞; k) = 0 for k ∈ N0.

The Poisson distribution arises as a limit of binomial distributions as
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2 Poisson and Other Discrete Distributions

follows. Let pn ∈ [0, 1], n ∈ N, be a sequence satisfying npn → γ as
n → ∞, with γ ∈ (0,∞). Then, for k ∈ {0, . . . , n},(

n
k

)
pk

n(1 − pn)n−k =
(npn)k

k!
· (n)k

nk · (1 − pn)−k ·
(
1 − npn

n

)n
→ γ

k

k!
e−γ, (1.5)

as n → ∞, where

(n)k := n(n − 1) · · · (n − k + 1) (1.6)

is the k-th descending factorial (of n) with (n)0 interpreted as 1.
Suppose X is a Poisson random variable with finite parameter γ. Then

its expectation is given by

E[X] = e−γ
∞∑

k=0

k
γk

k!
= e−γγ

∞∑
k=1

γk−1

(k − 1)!
= γ. (1.7)

The probability generating function of X (or of Po(γ)) is given by

E
[
sX] = e−γ

∞∑
k=0

γk

k!
sk = e−γ

∞∑
k=0

(γs)k

k!
= eγ(s−1), s ∈ [0, 1]. (1.8)

It follows that the Laplace transform of X (or of Po(γ)) is given by

E
[
e−tX] = exp[−γ(1 − e−t)], t ≥ 0. (1.9)

Formula (1.8) is valid for each s ∈ R and (1.9) is valid for each t ∈ R. A
calculation similar to (1.8) shows that the factorial moments of X are given
by

E[(X)k] = γk, k ∈ N0, (1.10)

where (0)0 := 1 and (0)k := 0 for k ≥ 1. Equation (1.10) implies that

Var[X] = E[X2] − E[X]2 = E[(X)2] + E[X] − E[X]2 = γ. (1.11)

We continue with a characterisation of the Poisson distribution.

Proposition 1.1 An N0-valued random variable X has distribution Po(γ)
if and only if, for every function f : N0 → R+, we have

E[X f (X)] = γE[ f (X + 1)]. (1.12)

Proof By a similar calculation to (1.7) and (1.8) we obtain for any func-
tion f : N0 → R+ that (1.12) holds. Conversely, if (1.12) holds for all such
functions f , then we can make the particular choice f := 1{k} for k ∈ N, to
obtain the recursion

k P(X = k) = γ P(X = k − 1).
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1.2 Relationships Between Poisson and Binomial Distributions 3

This recursion has (1.4) as its only (probability) solution, so the result fol-
lows. �

1.2 Relationships Between Poisson and Binomial Distributions

The next result says that if X and Y are independent Poisson random vari-
ables, then X+Y is also Poisson and the conditional distribution of X given
X + Y is binomial:

Proposition 1.2 Let X and Y be independent with distributions Po(γ) and
Po(δ), respectively, with 0 < γ+δ < ∞. Then X+Y has distribution Po(γ+δ)
and

P(X = k | X + Y = n) = Bi(n, γ/(γ + δ); k), n ∈ N0, k = 0, . . . , n.

Proof For n ∈ N0 and k ∈ {0, . . . , n},

P(X = k, X + Y = n) = P(X = k,Y = n − k) =
γk

k!
e−γ

δn−k

(n − k)!
e−δ

= e−(γ+δ)
( (γ + δ)n

n!

)(n
k

)(
γ

γ + δ

)k( δ
γ + δ

)n−k

= Po(γ + δ; n) Bi(n, γ/(γ + δ); k),

and the assertions follow. �

Let Z be an N0-valued random variable and let Z1,Z2, . . . be a sequence
of independent random variables that have a Bernoulli distribution with
parameter p ∈ [0, 1]. If Z and (Zn)n≥1 are independent, then the random
variable

X :=
Z∑

j=1

Zj (1.13)

is called a p-thinning of Z, where we set X := 0 if Z = 0. This means that
the conditional distribution of X given Z = n is binomial with parameters
n and p.

The following partial converse of Proposition 1.2 is a noteworthy prop-
erty of the Poisson distribution.

Proposition 1.3 Let p ∈ [0, 1]. Let Z have a Poisson distribution with
parameter γ ≥ 0 and let X be a p-thinning of Z. Then X and Z − X are
independent and Poisson distributed with parameters pγ and (1 − p)γ, re-
spectively.
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4 Poisson and Other Discrete Distributions

Proof We may assume that γ > 0. The result follows once we have shown
that

P(X = m,Z − X = n) = Po(pγ; m) Po((1 − p)γ; n), m, n ∈ N0. (1.14)

Since the conditional distribution of X given Z = m + n is binomial with
parameters m + n and p, we have

P(X = m,Z − X = n) = P(Z = m + n)P(X = m | Z = m + n)

=

(
e−γγm+n

(m + n)!

) (
m + n

m

)
pm(1 − p)n

=

(
pmγm

m!

)
e−pγ

(
(1 − p)nγn

n!

)
e−(1−p)γ,

and (1.14) follows. �

1.3 The Poisson Limit Theorem

The next result generalises (1.5) to sums of Bernoulli variables with un-
equal parameters, among other things.

Proposition 1.4 Suppose for n ∈ N that mn ∈ N and Xn,1, . . . , Xn,mn are
independent random variables taking values in N0. Let pn,i := P(Xn,i ≥ 1)
and assume that

lim
n→∞ max

1≤i≤mn

pn,i = 0. (1.15)

Assume further that λn :=
∑mn

i=1 pn,i → γ as n → ∞, where γ > 0, and that

lim
n→∞

mn∑
i=1

P(Xn,i ≥ 2) = 0. (1.16)

Let Xn :=
∑mn

i=1 Xn,i. Then for k ∈ N0 we have

lim
n→∞P(Xn = k) = Po(γ; k). (1.17)

Proof Let X′
n,i := 1{Xn,i ≥ 1} = min{Xn,i, 1} and X′

n :=
∑mn

i=1 X′
n,i. Since

X′
n,i � Xn,i if and only if Xn,i ≥ 2, we have

P(X′
n � Xn) ≤

mn∑
i=1

P(Xn,i ≥ 2).

By assumption (1.16) we can assume without restriction of generality that
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X′
n,i = Xn,i for all n ∈ N and i ∈ {1, . . . ,mn}. Moreover it is no loss of

generality to assume for each (n, i) that pn,i < 1. We then have

P(Xn = k) =
∑

1≤i1<i2<···<ik≤mn

pn,i1 pn,i2 · · · pn,ik

∏mn
j=1(1 − pn, j)

(1 − pn,i1 ) · · · (1 − pn,ik )
. (1.18)

Let μn := max1≤i≤mn pn,i. Since
∑mn

j=1 p2
n, j ≤ λnμn → 0 as n → ∞, we have

log
( mn∏

j=1

(1 − pn, j)
)
=

mn∑
j=1

(−pn, j + O(p2
n, j)) → −γ as n → ∞, (1.19)

where the function O(·) satisfies lim supr→0 |r|−1|O(r)| < ∞. Also,

inf
1≤i1<i2<···<ik≤mn

(1 − pn,i1 ) · · · (1 − pn,ik ) ≥ (1 − μn)k → 1 as n → ∞. (1.20)

Finally, with
∑�

i1,...,ik∈{1,2,...,mn} denoting summation over all ordered k-tuples
of distinct elements of {1, 2, . . . ,mn}, we have

k!
∑

1≤i1<i2<···<ik≤mn

pn,i1 pn,i2 · · · pn,ik =
∑�

i1,...,ik∈{1,2,...,mn}
pn,i1 pn,i2 · · · pn,ik ,

and

0 ≤
⎛⎜⎜⎜⎜⎜⎝

mn∑
i=1

pn,i

⎞⎟⎟⎟⎟⎟⎠
k

−
∑�

i1,...,ik∈{1,2,...,mn}
pn,i1 pn,i2 · · · pn,ik

≤
(
k
2

) mn∑
i=1

p2
n,i

⎛⎜⎜⎜⎜⎜⎜⎝
mn∑
j=1

pn, j

⎞⎟⎟⎟⎟⎟⎟⎠
k−2

,

which tends to zero as n → ∞. Therefore

k!
∑

1≤i1<i2<···<ik≤mn

pn,i1 pn,i2 · · · pn,ik→ γk as n → ∞. (1.21)

The result follows from (1.18) by using (1.19), (1.20) and (1.21). �

1.4 The Negative Binomial Distribution

A random element Z of N0 is said to have a negative binomial distribution
with parameters r > 0 and p ∈ (0, 1] if

P(Z = n) =
Γ(n + r)
Γ(n + 1)Γ(r)

(1 − p)n pr, n ∈ N0, (1.22)
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6 Poisson and Other Discrete Distributions

where the Gamma function Γ : (0,∞) → (0,∞) is defined by

Γ(a) :=
∫ ∞

0
ta−1e−t dt, a > 0. (1.23)

(In particular Γ(a) = (a−1)! for a ∈ N.) This can be seen to be a probability
distribution by Taylor expansion of (1 − x)−r evaluated at x = 1 − p. The
probability generating function of Z is given by

E
[
sZ] = pr(1 − s + sp)−r, s ∈ [0, 1]. (1.24)

For r ∈ N, such a Z may be interpreted as the number of failures before
the rth success in a sequence of independent Bernoulli trials. In the special
case r = 1 we get the geometric distribution

P(Z = n) = (1 − p)n p, n ∈ N0. (1.25)

Another interesting special case is r = 1/2. In this case

P(Z = n) =
(2n − 1)!!

2nn!
(1 − p)n p1/2, n ∈ N0, (1.26)

where we recall the definition (B.6) for (2n − 1)!!. This follows from the
fact that Γ(n + 1/2) = (2n − 1)!! 2−n √π, n ∈ N0.

The negative binomial distribution arises as a mixture of Poisson distri-
butions. To explain this, we need to introduce the Gamma distribution with
shape parameter a > 0 and scale parameter b > 0. This is a probability
measure on R+ with Lebesgue density

x �→ baΓ(a)−1xa−1e−bx (1.27)

on R+. If a random variable Y has this distribution, then one says that Y is
Gamma distributed with shape parameter a and scale parameter b. In this
case Y has Laplace transform

E
[
e−tY] = ( b

b + t

)a

, t ≥ 0. (1.28)

In the case a = 1 we obtain the exponential distribution with parameter b.
Exercise 1.11 asks the reader to prove the following result.

Proposition 1.5 Suppose that the random variable Y ≥ 0 is Gamma dis-
tributed with shape parameter a > 0 and scale parameter b > 0. Let Z be
an N0-valued random variable such that the conditional distribution of Z
given Y is Po(Y). Then Z has a negative binomial distribution with param-
eters a and b/(b + 1).
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1.5 Exercises

Exercise 1.1 Prove equation (1.10).

Exercise 1.2 Let X be a random variable taking values in N0. Assume
that there is a γ ≥ 0 such that E[(X)k] = γk for all k ∈ N0. Show that X has
a Poisson distribution. (Hint: Derive the Taylor series for g(s) := E[sX] at
s0 = 1.)

Exercise 1.3 Confirm Proposition 1.3 by showing that

E
[
sXtZ−X] = epγ(s−1)e(1−p)γ(t−1), s, t ∈ [0, 1],

using a direct computation and Proposition B.4.

Exercise 1.4 (Generalisation of Proposition 1.2) Let m ∈ N and suppose
that X1, . . . , Xm are independent random variables with Poisson distribu-
tions Po(γ1), . . . ,Po(γm), respectively. Show that X := X1 + · · · + Xm is
Poisson distributed with parameter γ := γ1 + · · · + γm. Assuming γ > 0,
show moreover for any k ∈ N that

P(X1 = k1, . . . , Xm = km | X = k) =
k!

k1! · · · km!

(
γ1

γ

)k1

· · ·
(
γm

γ

)km

(1.29)

for k1 + · · · + km = k. This is a multinomial distribution with parameters k
and γ1/γ, . . . , γm/γ.

Exercise 1.5 (Generalisation of Proposition 1.3) Let m ∈ N and suppose
that Zn, n ∈ N, is a sequence of independent random vectors in Rm with
common distribution P(Z1 = ei) = pi, i ∈ {1, . . . ,m}, where ei is the i-th
unit vector in Rm and p1 + · · · + pm = 1. Let Z have a Poisson distribution
with parameter γ, independent of (Z1,Z2, . . .). Show that the components
of the random vector X :=

∑Z
j=1 Zj are independent and Poisson distributed

with parameters p1γ, . . . , pmγ.

Exercise 1.6 (Bivariate extension of Proposition 1.4) Let γ > 0, δ ≥ 0.
Suppose for n ∈ N that mn ∈ N and for 1 ≤ i ≤ mn that pn,i, qn,i ∈ [0, 1)
with

∑mn
i=1 pn,i → γ and

∑mn
i=1 qn,i → δ, and max1≤i≤mn max{pn,i, qn,i} → 0

as n → ∞. Suppose for n ∈ N that (Xn,Yn) =
∑mn

i=1(Xn,i,Yn,i), where each
(Xn,i,Yn,i) is a random 2-vector whose components are Bernoulli distributed
with parameters pn,i, qn,i, respectively, and satisfy Xn,iYn,i = 0 almost surely.
Assume the random vectors (Xn,i,Yn,i), 1 ≤ i ≤ mn, are independent. Prove
that Xn,Yn are asymptotically (as n → ∞) distributed as a pair of indepen-
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8 Poisson and Other Discrete Distributions

dent Poisson variables with parameters γ, δ, i.e. for k, � ∈ N0,

lim
n→∞P(Xn = k,Yn = �) = e−(γ+δ) γ

kδ�

k!�!
.

Exercise 1.7 (Probability of a Poisson variable being even) Suppose X is
Poisson distributed with parameter γ > 0. Using the fact that the prob-
ability generating function (1.8) extends to s = −1, verify the identity
P(X/2 ∈ Z) = (1 + e−2γ)/2. For k ∈ N with k ≥ 3, using the fact that
the probability generating function (1.8) extends to a k-th complex root of
unity, find a closed-form formula for P(X/k ∈ Z).

Exercise 1.8 Let γ > 0, and suppose X is Poisson distributed with param-
eter γ. Suppose f : N → R+ is such that E[ f (X)1+ε] < ∞ for some ε > 0.
Show that E[ f (X + k)] < ∞ for any k ∈ N.

Exercise 1.9 Let 0 < γ < γ′. Give an example of a random vector (X,Y)
with X Poisson distributed with parameter γ and Y Poisson distributed with
parameter γ′, such that Y−X is not Poisson distributed. (Hint: First consider
a pair X′,Y ′ such that Y ′−X′ is Poisson distributed, and then modify finitely
many of the values of their joint probability mass function.)

Exercise 1.10 Suppose n ∈ N and set [n] := {1, . . . , n}. Suppose that Z is
a uniform random permutation of [n], that is a random element of the space
Σn of all bijective mappings from [n] to [n] such that P(Z = π) = 1/n! for
each π ∈ Σn. For a ∈ R let �a� := min{k ∈ Z : k ≥ a}. Let γ ∈ [0, 1] and let
Xn := card{i ∈ [�γn�] : Z(i) = i} be the number of fixed points of Z among
the first �γn� integers. Show that the distribution of Xn converges to Po(γ),
that is

lim
n→∞P(Xn = k) =

γk

k!
e−γ, k ∈ N0.

(Hint: Establish an explicit formula for P(Xn = k), starting with the case
k = 0.)

Exercise 1.11 Prove Proposition 1.5.

Exercise 1.12 Let γ > 0 and δ > 0. Find a random vector (X,Y) such
that X, Y and X + Y are Poisson distributed with parameter γ, δ and γ + δ,
respectively, but X and Y are not independent.
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