
CHAPTER 1

SHIFT SPACES

Shift spaces are to symbolic dynamics what shapes like polygons and

curves are to geometry. We begin by introducing these spaces, and describ-

ing a variety of examples to guide the reader’s intuition. Later chapters

will concentrate on special classes of shift spaces, much as geometry con-

centrates on triangles and circles. As the name might suggest, on each shift

space there is a shift map from the space to itself. Together these form

a “shift dynamical system.” Our main focus will be on such dynamical

systems, their interactions, and their applications.

In addition to discussing shift spaces, this chapter also connects them

with formal languages, gives several methods to construct new shift spaces

from old, and introduces a type of mapping from one shift space to another

called a sliding block code. In the last section, we introduce a special class

of shift spaces and sliding block codes which are of interest in coding theory.

§1.1. Full Shifts

Information is often represented as a sequence of discrete symbols drawn

from a fixed finite set. This book, for example, is really a very long sequence

of letters, punctuation, and other symbols from the typographer’s usual

stock. A real number is described by the infinite sequence of symbols in

its decimal expansion. Computers store data as sequences of 0’s and 1’s.

Compact audio disks use blocks of 0’s and 1’s, representing signal samples,

to digitally record Beethoven symphonies.

In each of these examples, there is a finite set A of symbols which we

will call the alphabet. Elements of A are also called letters, and they will

typically be denoted by a, b, c, . . . , or sometimes by digits like 0, 1, 2, . . . ,
when this is more meaningful. Decimal expansions, for example, use the

alphabet A = {0, 1, . . . , 9}.
Although in real life sequences of symbols are finite, it is often extremely

useful to treat long sequences as infinite in both directions (or bi-infinite).
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2 Chapter 1. Shift Spaces

This is analogous to using real numbers, continuity, and other ideas from

analysis to describe physical quantities which, in reality, can be measured

only with finite accuracy.

Our principal objects of study will therefore be collections of bi-infinite

sequences of symbols from a finite alphabet A. Such a sequence is denoted

by x = (xi)i∈Z, or by

x = . . . x−2x−1x0x1x2 . . . ,

where each xi ∈ A. The symbol xi is the ith coordinate of x, and x can

be thought of as being given by its coordinates, or as a sort of infinite

“vector.” When writing a specific sequence, you need to specify which is

the 0th coordinate. This is conveniently done with a “decimal point” to

separate the xi with i � 0 from those with i < 0. For example,

x = . . . 010.1101 . . .

means that x−3 = 0, x−2 = 1, x−1 = 0, x0 = 1, x1 = 1, x2 = 0, x3 = 1,

and so on.

Definition 1.1.1. If A is a finite alphabet, then the full A-shift is the

collection of all bi-infinite sequences of symbols from A. The full r-shift (or
simply r-shift) is the full shift over the alphabet {0, 1, . . . , r − 1}.

The full A-shift is denoted by

AZ = {x = (xi)i∈Z : xi ∈ A for all i ∈ Z}.

Here AZ is the standard mathematical notation for the set of all functions

from Z to A, and such functions are just the bi-infinite sequences of elements

from A. Each sequence x ∈ AZ is called a point of the full shift. Points

from the full 2-shift are also called binary sequences. If A has size |A| = r,
then there is a natural correspondence between the full A-shift and the

full r-shift, and sometimes the distinction between them is blurred. For

example, it can be convenient to refer to the full shift on {+1,−1} as the
full 2-shift.

Blocks of consecutive symbols will play a central role. A block (or word)

over A is a finite sequence of symbols from A. We will write blocks without

separating their symbols by commas or other punctuation, so that a typical

block over A = {a, b} looks like aababbabbb. It is convenient to include the

sequence of no symbols, called the empty block (or empty word) and denoted

by ε. The length of a block u is the number of symbols it contains, and is

denoted by |u|. Thus if u = a1a2 . . . ak is a nonempty block, then |u| = k,
while |ε| = 0. A k-block is simply a block of length k. The set of all k-blocks
over A is denoted Ak. A subblock or subword of u = a1a2 . . . ak is a block
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§1.1. Full Shifts 3

of the form aiai+1 . . . aj , where 1 � i � j � k. By convention, the empty

block ε is a subblock of every block.

If x is a point inAZ and i � j, then we will denote the block of coordinates

in x from position i to position j by

x[i,j ] = xixi+1 . . . xj .

If i > j, define x[i,j ] to be ε. It is also convenient to define

x[i,j) = xixi+1 . . . xj−1 .

By extension, we will use the notation x[i,∞) for the right-infinite sequence

xixi+1xi+2 . . . , although this is not really a block since it has infinite length.

Similarly, x(−∞,i] = . . . xi−2xi−1xi. The central (2k + 1)-block of x is

x[−k,k] = x−kx−k+1 . . . xk. We sometimes will write x[i] for xi, especially

when we want to emphasize the index i.
Two blocks u and v can be put together, or concatenated, by writing u

first and then v, forming a new block uv having length |uv| = |u| + |v|.
Note that uv is in general not the same as vu, although they have the same

length. By convention, εu = uε = u for all blocks u. If n � 1, then un

denotes the concatenation of n copies of u, and we put u0 = ε. The law of

exponents umun = um+n then holds for all integers m,n � 0. The point

. . . uuu.uuu . . . is denoted by u∞.

The index i in a point x = (xi)i∈Z can be thought of as indicating time,

so that, for example, the time-0 coordinate of x is x0. The passage of time

corresponds to shifting the sequence one place to the left, and this gives a

map or transformation from a full shift to itself.

Definition 1.1.2. The shift map σ on the full shift AZ maps a point x to

the point y = σ(x) whose ith coordinate is yi = xi+1.

The operation σ, pictured below, maps the full shift AZ onto itself. There

.  .  . .
1 2 3−2−3 0

=

=( )=

.  .  .
−1

.  .  . .
1 2 3−2 0

.  .  .
−1 4

x x x x x x x x

x x x x x x xxy

is also the inverse operation σ−1 of shifting one place to the right, so that σ
is both one-to-one and onto. The composition of σ with itself k > 0 times

σk = σ◦ . . . ◦σ shifts sequences k places to the left, while σ−k = (σ−1)k

shifts the same amount to the right. This shifting operation is the reason

AZ is called a full shift (“full” since all sequences of symbols are allowed).

The shift map is useful for expressing many of the concepts in symbolic

dynamics. For example, one basic idea is that of codes, or rules, which
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4 Chapter 1. Shift Spaces

transform one sequence into another. For us, the most important codes are

those that do not change with time. Consider the map φ: {0, 1}Z → {0, 1}Z

defined by the rule φ(x) = y, where yi = xi + xi+1 (mod 2). Then φ is a

coding rule that replaces the symbol at index i with the sum modulo 2 of

itself and its right neighbor. The coding operation φ acts the same at each

coordinate, or is stationary, i.e., independent of time.

Another way to say this is that applying the rule φ and then shifting gives

exactly the same result as shifting and then applying φ. Going through the

following diagram to the right and then down gives the same result as going

down and then to the right.

x σ

φ

σ(x)

φ

φ(x) σ σ(φ(x)) = φ(σ(x))

We can express this as σ◦φ = φ◦σ, or in terms of the coordinates by

σ(φ(x))[i] = φ(σ(x))[i] , since both equal xi+1 + xi+2 (mod 2). Recall that

when two mappings f and g satisfy f ◦g = g◦f , they are said to commute.

Not all pairs of mappings commute (try: f = “put on socks” and g = “put

on shoes”). Using this terminology, a code φ on the full 2-shift is stationary

if it commutes with the shift map σ, which we can also express by saying

that the following diagram commutes.

{0, 1}Z σ

φ

{0, 1}Z

φ

{0, 1}Z σ
{0, 1}Z

We will discuss codes in more detail in §1.5.

Points in a full shift which return to themselves after a finite number of

shifts are particularly simple to describe.

Definition 1.1.3. A point x is periodic for σ if σn(x) = x for some n � 1,

and we say that x has period n under σ. If x is periodic, the smallest

positive integer n for which σn(x) = x is the least period of x. If σ(x) = x,
then x is called a fixed point for σ.

If x has least period k, then it has period 2k, 3k, . . . , and every period

of x is a multiple of k (see Exercise 1.1.5). A fixed point for σ must have

the form a∞ for some symbol a, and a point of period n has the form u∞

for some n-block u.
Iteration of the shift map provides the “dynamics” in symbolic dynamics

(see Chapter 6). Naturally, the “symbolic” part refers to the symbols used

to form sequences in the spaces we will study.
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§1.2. Shift Spaces 5

EXERCISES

1.1.1. How many points x ∈ AZ
are fixed points? How many have period n? How

many have least period 12?

1.1.2. For the full {+1,−1}-shift and k � 1, determine the number of k-blocks
having the property that the sum of the symbols is 0.

1.1.3. Let φ be the coding rule from this section.

(a) Prove that φ maps the full 2-shift onto itself, i.e., that given a point y in

the 2-shift, there is an x with φ(x) = y.
(b) Find the number of points x in the full 2-shift with φn

(x) = 0
∞

for

n = 1, 2, or 3. Can you find this number for every n?
*(c) Find the number of points x with φn

(x) = x for n = 1, 2, or 3. Can you

find this number for every n?

1.1.4. For each k with 1 � k � 6 find the number of k-blocks over A= {0, 1} having

no two consecutive 1’s appearing. Based on your result, can you guess, and

then prove, what this number is for every k?

1.1.5. Determine the least period of u∞ in terms of properties of the block u. Use

your solution to show that if x has period n, then the least period of x
divides n.

1.1.6. (a) Describe those pairs of blocks u and v over an alphabet A such that

uv = vu.
*(b) Describe those sequences u1, u2, . . . , un of n blocks for which all n con-

catenations u1u2 . . . un, u2 . . . unu1, . . . , unu1u2 . . . un−1 of the cyclic

permutations are equal.

§1.2. Shift Spaces

The symbol sequences we will be studying are often subject to con-

straints. For example, Morse code uses the symbols “dot,” “dash,” and

“pause.” The ordinary alphabet is transmitted using blocks of dots and

dashes with length at most six separated by a pause, so that any block of

length at least seven which contains no pause is forbidden to occur (the

only exception is the SOS signal). In the programming language Pascal, a

program line such as sin(x)***2 := y is not allowed, nor are lines with

unbalanced parentheses, since they violate Pascal’s syntax rules. The re-

markable error correction in compact audio disks results from the use of

special kinds of binary sequences specified by a finite number of conditions.

In this section we introduce the fundamental notion of shift space, which

will be the subset of points in a full shift satisfying a fixed set of constraints.

If x ∈ AZ and w is a block over A, we will say that w occurs in x if there

are indices i and j so that w = x[i,j ]. Note that the empty block ε occurs

in every x, since ε = x[1,0]. Let F be a collection of blocks over A, which

we will think of as being the forbidden blocks. For any such F, define XF

to be the subset of sequences in AZ which do not contain any block in F.

Definition 1.2.1. A shift space (or simply shift) is a subset X of a full

shift AZ such that X = XF for some collection F of forbidden blocks over A.

https://doi.org/10.1017/9781108899727.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108899727.003


6 Chapter 1. Shift Spaces

The collection F may be finite or infinite. In any case it is at most

countable since its elements can be arranged in a list (just write down its

blocks of length 1 first, then those of length 2, and so on). For a given shift

space there may be many collections F describing it (see Exercise 1.2.4).

Note that the empty set ∅ is a shift space, since putting F = A rules out

every point. When a shift space X is contained in a shift space Y , we say

that X is a subshift of Y .

In the equationX = XF, the notation X refers to the operation of forming

a shift space, while X denotes the resulting set. We will sometimes use

similar typographical distinctions between an operation and its result, for

example in §2.2 when forming an adjacency matrix from a graph. By use of

such distinctions, we hope to avoid the type of nonsensical equations such

as “y = y(x)” you may have seen in calculus classes.

Example 1.2.2. X is AZ, where we can take F = ∅, reflecting the fact

that there are no constraints. �

Example 1.2.3. X is the set of all binary sequences with no two 1’s next

to each other. Here X = XF, where F = {11}. This shift is called the

golden mean shift for reasons which will surface in Chapter 4. �

Example 1.2.4. X is the set of all binary sequences so that between any

two 1’s there are an even number of 0’s. We can take for F the collection

{102n+11 : n � 0}.

This example is naturally called the even shift. �

In the following examples, the reader will find it instructive to list an

appropriate collection F of forbidden blocks for which X = XF.

Example 1.2.5. X is the set of all binary sequences for which 1’s occur

infinitely often in each direction, and such that the number of 0’s between

successive occurrences of a 1 is either 1, 2, or 3. This shift is used in a

common data storage method for hard disk drives (see §2.5). For each

pair (d, k) of nonnegative integers with d � k, there is an analogous (d, k)
run-length limited shift, denoted by X (d, k), and defined by the constraints

that 1’s occur infinitely often in each direction, and there are at least d 0’s,

but no more than k 0’s, between successive 1’s. Using this notation, our

example is X (1, 3). �

Example 1.2.6. To generalize the previous examples, fix a nonempty sub-

set S of {0, 1, 2, . . .}. If S is finite, define X = X (S) to be the set of all

binary sequences for which 1’s occur infinitely often in each direction, and

such that the number of 0’s between successive occurrences of a 1 is an

integer in S. Thus a typical point in X (S) has the form

x = . . . 1 0n−1 1 0n0 1 0n1 1 . . . ,
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§1.2. Shift Spaces 7

where each nj ∈ S. For example, the (d, k) run-length limited shift corre-

sponds to S = {d, d+ 1, . . . , k}.
When S is infinite, it turns out that to obtain a shift space we need to al-

low points that begin or end with an infinite string of 0’s (see Exercise 1.2.8).

In this case, we define X (S) the same way as when S is finite, except that

we do not require that 1’s occur infinitely often in each direction. In either

case, we refer to X (S) as the S-gap shift.

Observe that the full 2-shift is the S-gap shift with S = {0, 1, 2, . . .}, the
golden mean shift corresponds to S = {1, 2, 3, . . .}, and the even shift to

S = {0, 2, 4, . . .}. As another example, for S = {2, 3, 5, 7, 11, . . .} the set of
primes, we call X (S) the prime gap shift. �

Example 1.2.7. For each positive integer c, the charge constrained shift,

is defined as the set of all points in {+1,−1}Z so that for every block

occurring in the point, the algebraic sum s of the +1’s and −1’s satisfies

−c � s � c. These shifts arise in engineering applications and often go by

the name “DC-free sequences.” See Immink [Imm2, Chapter 6]. �

Example 1.2.8. Let A = {e, f, g}, and X be the set of points in the full

A-shift for which e can be followed only by e or f , f can be followed only

by g, and g can be followed only by e or f . A point in this space is then just

a bi-infinite path on the graph shown in Figure 1.2.1 This is an example of

a shift of finite type. These shifts are the focus of the next chapter. �

Example 1.2.9. X is the set of points in the full shift {a, b, c}Z so that a

block of the form abmcka may occur in the point only if m = k. We will

refer to this example as the context-free shift. �

You can make up infinitely many shift spaces by using different forbidden

collections F. Indeed, there are uncountably many shift spaces possible

(see Exercise 1.2.12). As subsets of full shifts, these spaces share a common

feature called shift invariance. This amounts to the observation that the

constraints on points are given in terms of forbidden blocks alone, and do

not involve the coordinate at which a block might be forbidden. It follows

that if x is in XF, then so are its shifts σ(x) and σ−1(x). This can be neatly

expressed as σ(XF) = XF. The shift map σX on X is the restriction to X
of the shift map σ on the full shift.

This shift invariance property allows us to find subsets of a full shift

that are not shift spaces. One simple example is the subset X of {0, 1}Z

e

g

f

Figure 1.2.1. A graph defining a shift space.
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8 Chapter 1. Shift Spaces

consisting of the single point

x = . . . 0101.0101 . . .= (01)∞.

Since σ(x) = (10)∞ /∈ X , we see that X is not shift invariant, so it is not

a shift space.

However, shift invariance alone is not enough to have a shift space. What

is missing is a sort of “closure” (see Corollary 1.3.5 and Theorem 6.1.21).

This is illustrated by the following example.

Example 1.2.10. Let X ⊆ {0, 1}Z be the set of points each of which

contains exactly one symbol 1 and the rest 0’s. Clearly X is shift invariant.

If X were a shift space, then no block of 0’s could be forbidden. But then

the point 0∞ = . . . 000.000 . . . would necessarily belong to X , whereas it

does not. The set X lacks the “closure” necessary for a shift space. �

Since a shift space X is contained in a full shift, Definition 1.1.3 serves to

define what it means for x ∈ X to be fixed or periodic under σX . However,

unlike full shifts and many of the examples we have introduced, there are

shift spaces that contain no periodic points at all (Exercise 1.2.13).

EXERCISES

1.2.1. Find a collection F of blocks over {0, 1} so that XF = ∅.

1.2.2. For Examples 1.2.5 through 1.2.9 find a set of forbidden blocks describing the

shift space.

1.2.3. Let X be the subset of {0, 1}Z described in Example 1.2.10. Show that X ∪

{0∞} is a shift space.

1.2.4. Find two collections F1 and F2 over A= {0, 1} with XF1
= XF2

�= ∅, where

F1 is finite and F2 is infinite.

1.2.5. Show that XF1
∩ XF2

= XF1∪F2
. Use this to prove that the intersection of

two shift spaces over the same alphabet is also a shift space. Extend this to

arbitrary intersections.

1.2.6. Show that if F1 ⊆ F2, then XF1
⊇ XF2

. What is the relationship between

XF1
∪ XF2

and XF1∩F2
?

1.2.7. Let X be the full A-shift.

(a) Show that if X1 and X2 are shift spaces such that X1 ∪ X2 = X, then

X1 = X or X2 = X (or both).

(b) Extend your argument to show that if X is the union of any collection

{Xα} of shift spaces, then there is an α such that X = Xα.

(c) Explain why these statements no longer hold if we merely assume that X
is a shift space.

1.2.8. If S is an infinite subset of {0, 1, 2, . . . }, show that the collection of all binary

sequences of the form

x = . . . 1 0n−1 1 0
n0 1 0

n1 1 . . . ,

where each nj ∈ S, is not a shift space.
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§1.3. Languages 9

1.2.9. Let Xi be a shift over Ai for i = 1, 2. The product shift X = X1 × X2

consists of all pairs (x(1), x(2)
) with x(i) ∈ Xi. If we identify a pair (x, y) of

sequences with the sequence (. . . (x−1, y−1), (x0, y0), (x1, y1), . . . ) of pairs, we
can regard X1 × X2 as a subset of (A1 ×A2)

Z
. With this convention, show

that X1 ×X2 is a shift space over the alphabet A1 ×A2.

1.2.10. Let X be a shift space, and N � 1. Show that there is a collection F of blocks,

all of which have length at least N , so that X = XF .

1.2.11. For which sets S does the S-gap shift have infinitely many periodic points?

1.2.12. Show there are uncountably many shift spaces contained in the full 2-shift.

[Hint : Consider S-gap shifts.]

*1.2.13. Construct a nonempty shift space that does not contain any periodic points.

*1.2.14. For a given alphabet A, let

X = {x ∈ A
Z
: xi+n2 �= xi for all i ∈ Z and n � 1}.

(a) If |A| = 2, prove that X = ∅.

(b) If |A| = 3, show that X = ∅. [Hint : 3
2
+ 4

2
= 5

2
.]

§1.3. Languages

It is sometimes easier to describe a shift space by specifying which blocks

are allowed, rather than which are forbidden. This leads naturally to the

notion of the language of a shift.

Definition 1.3.1. Let X be a subset of a full shift, and let Bn(X) denote

the set of all n-blocks that occur in points in X . The language of X is the

collection

B(X) =

∞⋃
n=0

Bn(X).

Example 1.3.2. The full 2-shift has language

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, . . .}. �

Example 1.3.3. The golden mean shift (Example 1.2.3) has language

{ε, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, . . .}. �

The term “language” comes from the theory of automata and formal

languages. See [HopU] for a lucid introduction to these topics. Think of

the language B(X) as the collection of “allowed” blocks in X . For a block

u ∈ B(X), we sometimes use alternative terminology such as saying that u
occurs in X or appears in X or is in X or is allowed in X .

Not every collection of blocks is the language of a shift space. The follow-

ing proposition characterizes those which are, and shows that they provide

an alternative description of a shift space. In what follows we will denote

the complement of a collection C of blocks over A relative to the collection

of all blocks over A by Cc.
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10 Chapter 1. Shift Spaces

Proposition 1.3.4.

(1) Let X be a shift space, and L = B(X) be its language. If w ∈ L,

then

(a) every subblock of w belongs to L, and

(b) there are nonempty blocks u and v in L so that uwv ∈ L.

(2) The languages of shift spaces are characterized by (1). That is, if L

is a collection of blocks over A, then L = B(X) for some shift space

X if and only if L satisfies condition (1).

(3) The language of a shift space determines the shift space. In fact, for

any shift space, X = XB(X)c . Thus two shift spaces are equal if and

only if they have the same language.

Proof: (1) If w ∈ L = B(X), then w occurs in some point x in X . But

then every subblock of w also occurs in x, so is in L. Furthermore, clearly

there are nonempty blocks u and v such that uwv occurs in x, so that

u, v ∈ L and uwv ∈ L.

(2) Let L be a collection of blocks satisfying (1), and X denote the shift

space XLc . We will show that L = B(X). For if w ∈ B(X), then w occurs in

some point of XLc , so that w /∈ Lc, or w ∈ L. Thus B(X) ⊆ L. Conversely,

suppose that w = x0x1 . . . xm ∈ L. Then by repeatedly applying (1b), we

can find symbols xj with j > m and xi with i < 0 so that by (1a) every

subblock of x = (xi)i∈Z lies in L. This means that x ∈ XLc . Since w occurs

in x, we have that w ∈ B(XLc) = B(X), proving that L ⊆ B(X).

(3) If x ∈ X , no block occurring in x is in B(X)c since B(X) contains

all blocks occurring in all points of X . Hence x ∈ XB(X)c , showing that

X ⊆ XB(X)c . Conversely, since X is a shift there is a collection F for which

X = XF. If x ∈ XB(X)c , then every block in x must be in B(X) = B(XF),

and so cannot be in F. Hence x ∈ XF, proving that X = XF ⊇ XB(X)c . �

This result shows that although a shift X can be described by differ-

ent collections of forbidden blocks, there is a largest collection B(X)c, the

complement of the language of X . This is the largest possible forbidden

collection that describes X . For a minimal forbidden collection, see Exer-

cise 1.3.8. The proposition also gives a one-to-one correspondence between

shifts X and languages L that satisfy (1). This correspondence can be

summarized by the equations

(1–3–1) L = B(XLc), X = XB(X)c .

A useful consequence of part (3) above is that to verify that a point x is

in a given shift space X , you only need to show that each subblock x[i,j ]

is in B(X). In fact, this gives a characterization of shift spaces in terms of

“allowed” blocks.

Corollary 1.3.5. Let X be a subset of the full A-shift. Then X is a shift

space if and only if whenever x ∈ AZ and each x[i,j] ∈ B(X) then x ∈ X.
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Proof: The “whenever” condition is equivalent to the condition that X =

XB(X)c . Thus the corollary follows from Proposition 1.3.4(3). �

If X is a shift space, the first part of Proposition 1.3.4 shows that every

block w ∈ B(X) can be extended on both sides to another block uwv ∈
B(X). However, given two blocks u and v in B(X), it may not be possible

to find a block w so that uwv ∈ B(X). For example, let X = {0∞, 1∞} ⊆
{0, 1}Z, and u = 0, v = 1. Shift spaces for which two blocks can always be

“joined” by a third play a special and important role.

Definition 1.3.6. A shift space X is irreducible if for every ordered pair

of blocks u, v ∈ B(X) there is a w ∈ B(X) so that uwv ∈ B(X).

Note that if u, v is an ordered pair of blocks in B(X), then so is v, u.
Thus to verify that X is irreducible, we must be able to find blocks w1 and

w2 so that both uw1v and vw2u are in B(X).

The reader should verify that Examples 1.2.2 through 1.2.9 are irre-

ducible. Indeed, most shift spaces we encounter will be irreducible. Those

which are not can usually be decomposed into irreducible “pieces,” and the

theory we develop for irreducible shifts can then be applied to each piece.

There are close connections between symbolic dynamics and the theory

of formal languages. For example, special shift spaces called sofic shifts

that we will explore in Chapter 3 correspond to regular languages, i.e.,

those languages accepted by a finite-state automaton. In addition, ideas

and techniques from formal languages can sometimes be used in symbolic

dynamics. For instance, the idea behind the Pumping Lemma for regular

languages is used in Example 3.1.7 to prove that the context-free shift is

not sofic. See the notes section of Chapter 3 for more on these ideas.

EXERCISES

1.3.1. Determine the language of the full shift, the even shift (Example 1.2.4), the

(1, 3) run-length limited shift (Example 1.2.5), and the charge constrained

shift (Example 1.2.7).

1.3.2. If L1 and L2 are languages satisfying condition 1 of Proposition 1.3.4, show

that L1 ∪ L2 also satisfies the condition. Use this to prove that the union

of two shift spaces is also a shift space. If L1,L2,L3, . . . are languages over

the same alphabet, show that

⋃∞
n=1

Ln is also a language. Why can’t you

use this to prove that the union of an infinite number of shift spaces over the

same alphabet is also a shift space?

1.3.3. Is the intersection of the languages of two shift spaces also the language of a

shift space?

1.3.4. If X and Y are shift spaces, describe the languages of their intersection X∩Y
and of their product X × Y (defined in Exercise 1.2.9).

1.3.5. Is the intersection of two irreducible shift spaces always irreducible? The

product (defined in Exercise 1.2.9)?

1.3.6. Let A= {0, 1} and F= {01}. Is XF irreducible?
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12 Chapter 1. Shift Spaces

1.3.7. Let X be an irreducible shift space. Show that for every ordered pair of blocks

u, v ∈ B(X), there is a nonempty block w ∈ B(X) such that uwv ∈ B(X).

*1.3.8. Let X be a shift space. Call a word w a “first offender” for X if w /∈ B(X),

but every proper subword of w is in B(X). Let O be the collection of all first

offenders for X.

(a) Prove that X = XO .

(b) If X = XF , show that for every w ∈ O there is a v ∈ F such that w is a

subword of v, but v contains no other first offenders.

(c) Use (b) to show that O is a minimal forbidden set, in the sense that if

F⊆ O and XF = X, then F= O.

§1.4. Higher Block Shifts and Higher Power Shifts

One of the basic constructions in symbolic dynamics involves widening

our attention from a single symbol to a block of consecutive symbols, and

considering such blocks as letters from a new, more elaborate alphabet.

This process, which we will call “passing to a higher block shift,” is a very

convenient technical device, and we will be using it often. It provides an

alternative description of the same shift space.

Let X be a shift space over the alphabet A, and A
[N ]

X = BN (X) be

the collection of all allowed N -blocks in X . We can consider A
[N ]

X as an

alphabet in its own right, and form the full shift (A
[N ]

X )Z. Define the Nth

higher block code βN :X → (A
[N ]

X )Z by

(1–4–1) (βN (x))[i] = x[i,i+N−1].

Thus βN replaces the ith coordinate of x with the block of coordinates in x
of length N starting at position i. This becomes clearer if we imagine the

symbols in A
[N ]

X as written vertically. Then the image of x = (xi)i∈Z under

β4 has the form

(1–4–2)

β4(x) = . . .

⎡⎢⎣
x0

x−1

x−2

x−3

⎤⎥⎦
⎡⎢⎣
x1

x0

x−1

x−2

⎤⎥⎦
⎡⎢⎣
x2

x1

x0

x−1

⎤⎥⎦ .

⎡⎢⎣
x3

x2

x1

x0

⎤⎥⎦
⎡⎢⎣
x4

x3

x2

x1

⎤⎥⎦
⎡⎢⎣
x5

x4

x3

x2

⎤⎥⎦ . . . ∈ (A
[4]

X )Z.

Definition 1.4.1. Let X be a shift space. Then the Nth higher block shift

X [N ] or higher block presentation of X is the image X [N ] = βN (X) in the

full shift over A
[N ]

X .

Notice that in (1–4–2) consecutive symbols from A
[N ]

X overlap. If u =

u1u2 . . . uN and v = v1v2 . . . vN are N -blocks, let us say that u and v
overlap progressively if u2u3 . . . uN = v1v2 . . . vN−1. If the 2-block uv over

the alphabet A
[N ]

X occurs in some image point βN (x), then a glance at (1–

4–2) shows that u and v must overlap progressively. Also observe from
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(1–4–2) that by knowing the bottom letter in each symbol of βN(x) we can
reconstruct the entire image, as well as the original point x. In this sense

X [N ] is simply another description of the same shift space X .

Example 1.4.2. Let X be the golden mean shift of Example 1.2.3. Then

A
[2]

X = {a = 00, b = 01, c = 10},

and X [2] is described by the constraints F = {ac, ba, bb, cc}. Each of these

2-blocks is forbidden since they fail to overlap progressively. For example,

the second symbol of a = 00 does not match the first of c = 10, so ac is

forbidden. Naturally, the block 11 is also forbidden, since it is forbidden in

the original shift. This is expressed by its absence from A
[2]

X . �

The terminology “higher block shift” implies that it is a shift space. We

can verify this as follows.

Proposition 1.4.3. The higher block shifts of a shift space are also shift

spaces.

Proof: Let X be a shift space over A, and N � 1. Then there is a

collection F of blocks over A so that X = XF. Create a new collection F̃

by replacing each block u in F such that |u| < N by all N -blocks over A

containing u. Then clearly X = X
F̃
, and every block in F̃ has length � N .

(See Exercise 1.2.10.)

For each w = a1a2 . . . am ∈ F̃ let

w[N ] = (a1a2 . . . aN )(a2a3 . . . aN+1) . . . (am−N+1am−N+2 . . . am)

be the corresponding (m − N + 1)-block over AN . Let F1 denote the set

of all blocks over the alphabet AN of the form w[N ] for some w ∈ F̃. This

represents one set of constraints on X [N ], namely those coming from the

constraints on the original shift. It follows that X [N ] ⊆ XF1 .

Points in X [N ] also satisfy the overlap condition illustrated in (1–4–2).

Thus we let

F2 = {uv : u ∈ AN , v ∈ AN , and u and v do not overlap progressively}.

Then X [N ] ⊆ XF2 , so that by Exercise 1.2.5

X [N ] ⊆ XF1 ∩ XF2 = XF1∪F2 .

Conversely, suppose that y ∈ XF1∪F2 , and let x be the point of AZ re-

constructed from the “bottom” symbols as described after Definition 1.4.1.

Then x ∈ X = XF since y satisfies the constraints from F1, and y = βN (x)
by the overlap constraints from F2. This proves that X [N ] ⊇ XF1∪F2 , so

that X [N ] = XF1∪F2 is a shift space. �
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14 Chapter 1. Shift Spaces

The Nth higher block shift of X uses overlapping blocks. The same sort

of construction can be made with nonoverlapping blocks, and leads to the

notion of the Nth higher power shift of X .

Using the same notation as at the beginning of this section, define the

N th higher power code γN :X → (A
[N ]

X )Z by

(γN (x))[i] = x[iN,iN+N−1].

Here γN chops up the coordinates of x into consecutiveN -blocks and assem-

bles the pieces into a point over A
[N ]

X . The image of x = (xi)i∈Z under γ4
has the form

(1–4–3)

γ4(x) = . . .

⎡⎢⎣
x−9

x−10

x−11

x−12

⎤⎥⎦
⎡⎢⎣
x−5

x−6

x−7

x−8

⎤⎥⎦
⎡⎢⎣
x−1

x−2

x−3

x−4

⎤⎥⎦.
⎡⎢⎣
x3

x2

x1

x0

⎤⎥⎦
⎡⎢⎣
x7

x6

x5

x4

⎤⎥⎦
⎡⎢⎣
x11

x10

x9

x8

⎤⎥⎦ . . . ∈ (A
[4]

X )Z.

Compare this with (1–4–2). Note that the bottom symbols here will usually

not determine the rest of the symbols since there is no overlapping.

Definition 1.4.4. Let X be a shift space. The Nth higher power shift XN

of X is the image XN = γN (X) of X in the full shift over A
[N ]

X

Example 1.4.5. Let X be the golden mean shift of Example 1.2.3, and

N = 2. Then A
[2]

X = {a = 00, b = 01, c = 10}. The 2nd higher power shift

X2 is described by F = {bc}, since words containing bc = 0110 are the only

ones containing the forbidden word 11 of the original shift. �

As before, a higher power shift is also a shift space.

Proposition 1.4.6. The higher power shifts of a shift space are also shift

spaces.

Proof: The proof is very similar to that of Proposition 1.4.3, and is left

to the reader. �

EXERCISES

1.4.1. For Examples 1.2.3 and 1.2.4 describe explicitly the 3rd higher block shift

X[3]
. To do this, you need to specify the alphabet A

[3]
X , and then describe a

collection F of blocks over this alphabet so that X[3]
= XF . [Hint : Use the

proof of Proposition 1.4.3 as a guide.]

1.4.2. If X and Y are shift spaces over the same alphabet, show that

(X ∩ Y )
[N]

= X[N]
∩ Y [N]

and (X ∪ Y )
[N]

= X[N]
∪ Y [N].

1.4.3. If X and Y are shift spaces over possibly different alphabets, show that

(X × Y )
[N]

= X[N]
× Y [N]
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1.4.4. If X is a shift space with shift map σX , and X[N]
is its Nth higher block

shift with corresponding shift map σX[N ] , prove that βN ◦σX = σX[N ] ◦βN .

[Hint : Compute the ith coordinate of each image.]

1.4.5. If XN
is the Nth higher power shift of X, and σXN is its shift map, prove

that γN ◦σN
X = σXN ◦γN . Here σN

X is the N-fold composition of σX with

itself.

1.4.6. Find an example of a shift space for which the bottom symbols in (1–4–3) of

γ4(x) do not determine the rest of the symbols. Find another example for

which they do determine the rest.

§1.5. Sliding Block Codes

Suppose that x = . . . x−1x0x1 . . . is a sequence of symbols in a shift space

X over A. We can transform x into a new sequence y = . . . y−1y0y1 . . .
over another alphabet A as follows. Fix integers m and n with −m � n.
To compute the ith coordinate yi of the transformed sequence, we use a

function Φ that depends on the “window” of coordinates of x from i−m to

i+n. Here Φ:Bm+n+1(X)→ A is a fixed block map , called an (m+n+1)-

block map from allowed (m + n + 1)-blocks in X to symbols in A, and

so

(1–5–1) yi = Φ(xi−mxi−m+1 . . . xi+n) = Φ(x[i−m,i+n]).

Definition 1.5.1. Let X be a shift space over A, and Φ:Bm+n+1(X)→ A

be a block map. Then the map φ:X → AZ defined by y = φ(x) with

yi given by (1–5–1) is called the sliding block code with memory m and

anticipation n induced by Φ. We will denote the formation of φ from Φ by

φ = Φ
[−m,n]
∞ , or more simply by φ = Φ∞ if the memory and anticipation

of φ are understood. If not specified, the memory is taken to be 0. If Y is

a shift space contained in AZ and φ(X) ⊆ Y , we write φ:X → Y .

Figure 1.5.1 illustrates the action of a sliding block code. The window

is slid one coordinate to the right to compute the next coordinate of the

image.

The simplest sliding block codes are those with no memory or antici-

pation, i.e., with m = n = 0. Here the ith coordinate of the image of x
depends only on xi. Such sliding block codes are called 1-block codes. By

our convention about memory in Definition 1.5.1, when Φ is a 1-block map,

then φ = Φ∞ is taken to be a 1-block code if no memory is specified.

i−1 . ... ..

. .. . ... ..

Φ

i i+1yy y

Figure 1.5.1. Sliding block code.
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16 Chapter 1. Shift Spaces

Example 1.5.2. Let X be a shift space over an alphabet A, A = A,

m = 0, n = 1, and Φ(a0a1) = a1. Then φ = Φ
[0,1]
∞ = Φ∞ is the shift

map σX . What happens if we let Φ(a0a1) = a0 instead?

Now let m = 1, n = 0, and Ψ(a−1a0) = a−1. Then ψ = Ψ
[−1,0]
∞ = Ψ∞

is the inverse σ−1

X of the shift map, so that ψ(φ(x)) = x = φ(ψ(x)) for all

x ∈ X .

Notice that if Θ(a) = a for all a ∈ A, then φ = Θ
[1,1]
∞ and ψ = Θ

[−1,−1]
∞ .

So, there may be many ways of representing a mapping between shift spaces

as a sliding block code. �

Example 1.5.3. Let A = {0, 1} = A, X = AZ, m = 0, n = 1, and

Φ(a0a1) = a0+ a1 (mod 2). Then φ = Φ∞ is the code φ discussed near the

end of §1.1. �

Example 1.5.4. Let A = {0, 1}, A = {a, b}, m = n = 0, and Φ(0) = a,
Φ(1) = b. Then φ = Φ∞ is a 1-block code from the full 2-shift to the full

A-shift. If Ψ(0) = Ψ(1) = a, then ψ = Ψ∞ collapses the full 2-shift to the

single point a∞. �

Example 1.5.5. Let X be a shift space over A, A = A
[N ]

X , m = 0, n =

N − 1, Y = X [N ], and

Φ(a0a1 . . . aN−1) = a0a1 . . . aN−1 ∈ A
[N ]

X .

Then φ = Φ∞:X → Y is the Nth higher block code βN from §1.4. �

Suppose that Φ:Bm+n+1(X) → A is a block map which induces a slid-

ing block code with memory m and anticipation n. It will sometimes be

convenient to imagine Φ as having a larger “window,” and ignore the extra

coordinates. Thus if M � m and N � n, define Φ̂:BM+N+1(X)→ A by

Φ̂(x[−M,N ]) = Φ(x[−m,n]).

Clearly Φ̂
[−M,N ]
∞ = Φ

[−m,n]
∞ . The process of passing from Φ to Φ̂ is called

“increasing the window size of Φ,” and shows we can assume that a sliding

block code is induced by a block map with as large a window as we like.

Let Φ:Bm+n+1(X) → A be a block map. We can extend Φ so that it

maps (m+ n+ k)-blocks in X to k-blocks over A by sliding its window as

follows. If x[−m,n+k−1] is in Bm+n+k(X), put

Φ(x[−m,n+k−1]) = Φ(x[−m,n])Φ(x[−m+1,n+1]) . . . Φ(x[−m+k−1,n+k−1]).

For example, if Φ is the 2-block map of Example 1.5.3, then Φ(011010001) =
10111001.
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Example 1.5.6. Let A = A = {0, 1}, X be the golden mean shift of

Example 1.2.3, and Y be the even shift of Example 1.2.4. Let Φ be the

2-block map defined by Φ(00) = 1, Φ(01) = 0, and Φ(10) = 0. We do not

need to define Φ(11) since the block 11 does not occur in X . Then we will

show that the induced sliding block code φ = Φ∞:X → Y is onto.

If 10k1 occurs in φ(x), it must be the image under Φ of the block 0(01)r00,

so that k = 2r is even. This shows that φ(X) ⊆ Y . Since each point y ∈ Y
has 1’s separated by an even number of 0’s, this same observation shows

how to construct an x ∈ X with φ(x) = y, so that φ is onto. �

If φ:X → Y is a sliding block code and x ∈ X , then computing φ at

the shifted sequence σX(x) gives the same result as shifting the image φ(x)
using σY . The commuting property is a key feature of sliding block codes.

Proposition 1.5.7. Let X and Y be shift spaces. If φ:X → Y is a sliding

block code, then φ◦σX = σY ◦φ; i.e., the following diagram commutes.

X
σX

φ

X

φ

Y
σY Y

Proof: Let φ be induced by the block map Φ:Bm+n+1(X)→ A and have

memory m and anticipation n. For x ∈ X ,

(σY ◦φ)(x)[i] = φ(x)[i+1] = Φ(x[i+1−m,i+1+n]),

while

(φ◦σX)(x)[i] = φ(σX (x))[i]

= Φ(σX (x)[i−m,i+n])

= Φ(x[i−m+1,i+n+1]).

Hence the ith coordinates of the images agree for each i, so the images are

equal. �

However, shift-commuting is not enough to have a sliding block code

(the reader is asked to give a specific example in Exercise 1.5.14). One also

needs to know that φ(x)0 depends only on a central block of x.

Proposition 1.5.8. Let X and Y be shift spaces. A map φ:X → Y is a

sliding block code if and only if φ◦σX = σY ◦φ and there exists N � 0 such

that φ(x)0 is a function of x[−N,N ].
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18 Chapter 1. Shift Spaces

Proof: The necessity of the condition is clear from the definition and

Proposition 1.5.7. For sufficiency, define the (2N + 1)-block map Φ by

Φ(w) = φ(x)0 where x is any point in X such that x[−N,N ] = w. It is

straightforward to check that φ = Φ
[−N,N ]
∞ . �

If a sliding block code φ:X → Y is onto, then φ is called a factor code

from X onto Y . A shift space Y is a factor of X if there is a factor

code from X onto Y . The sliding block codes φ in Examples 1.5.2 through

1.5.6 are factor codes. Factor codes are often called “factor maps” in the

literature.

If φ:X → Y is one-to-one, then φ is called an embedding of X into Y .

The sliding block codes φ in Examples 1.5.2 and 1.5.4 are embeddings, as

is the higher block code βN :X → (A
[N ]

X )Z. The code in Example 1.5.3 is

not an embedding since it is two-to-one everywhere.

Sometimes a sliding block code φ:X → Y has an inverse, i.e., a sliding

block code ψ:Y → X such that ψ(φ(x)) = x for all x ∈ X and φ(ψ(y)) = y
for all y ∈ Y . This is the case in Example 1.5.2. If φ has an inverse, it

is unique (see Exercise 1.5.4), so we can write ψ = φ−1, and we call φ
invertible.

Definition 1.5.9. A sliding block code φ:X → Y is a conjugacy from X
to Y , if it is invertible. Two shift spaces X and Y are conjugate (written

X ∼= Y ) if there is a conjugacy from X to Y .

If there is a conjugacy from X to Y , we can think of Y as being a

“recoded” version of X , sharing all of its properties. Then X and Y are

merely different views of the same underlying object. We will explore this

idea in greater detail in Chapter 6. Conjugacies are often called “topological

conjugacies” in the literature.

Example 1.5.10. Let X be a shift space over A, and X [N ] be its Nth

higher block shift. According to Example 1.5.5, βN :X → X [N ] is a sliding

block code. Define the 1-block map Ψ :A
[N ]

X → A by Ψ(a0a1 . . . aN−1) = a0,

and put ψ = Ψ∞:X [N ] → X . It is easy to check that ψ = β−1

N , so that βN

is a conjugacy, and thus X ∼= X [N ]. In this sense, X [N ] is a recoded version

of X . �

The behavior of periodic points under sliding block codes is described in

the following result.

Proposition 1.5.11. Let φ:X → Y be a sliding block code. If x ∈ X has

period n under σX , then φ(x) has period n under σY , and the least period

of φ(x) divides the least period of x. Embeddings, and hence conjugacies,

preserve the least period of a point.

Proof: If x has period n, then σn
X(x) = x. Hence

σn
Y (φ(x)) = φ(σn

X(x)) = φ(x),
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so that φ(x) has period n. If x has least period n, then φ(x) has period n,
and hence its least period divides n (see Exercise 1.1.5). If φ is one-to-one,

then σn
X(x) = x if and only if σn

Y (φ(x)) = φ(x), so that x and φ(x) must

have the same least period. �

Observe that this proposition shows that for each n, the number of points

of period n is the same for all shifts conjugate to a given shift; i.e., it is an

invariant of the shift. This gives a way to prove that some pairs of shift

spaces cannot be conjugate, for example when one has a fixed point and

the other doesn’t. We shall be meeting several other kinds of invariants in

the chapters ahead.

Let φ:X → Y be a sliding block code. We show next that we can

recode X to a conjugate shift X̃ so that the corresponding sliding block

code φ̃: X̃ → Y is a 1-block code. This process, called “recoding φ to a

1-block code,” is often a starting point in proofs, since 1-block codes are

much easier to think about. However, the penalty for making the map

simpler is making the alphabet more complicated.

Proposition 1.5.12. Let φ:X → Y be a sliding block code. Then there

exist a higher block shift X̃ of X, a conjugacy ψ:X → X̃, and a 1-block

code φ̃: X̃ → Y so that φ̃◦ψ = φ; i.e., the following diagram commutes.

X
ψ
∼=

φ

X̃

φ̃

Y

Proof: Suppose that φ is induced by a block map Φ and has memory m
and anticipation n. Let A = Bm+n+1(X), and define ψ:X → AZ by

ψ(x)[i] = x[i−m,i+n]. Then ψ = σ−m◦βm+n+1. Thus X̃ = ψ(X) =

X [m+n+1] is a shift space, and since σ and βm+n+1 are conjugacies, so

is ψ. Put φ̃ = φ◦ψ−1. Note that φ̃ is a 1-block code. �

We remark that if a sliding block code φ happens to be a conjugacy, then

the recoding of φ to a 1-block code, given in Proposition 1.5.12, usually does

not also recode φ−1 to a 1-block code (why?). Thus the cost of recoding

to “simplify” a sliding block code in one direction is often to make it more

“complicated” in the other.

We next show that for any sliding block code φ:X → Y , φ(X) is a shift

space.

Theorem 1.5.13. The image of a shift space under a sliding block code is

a shift space.
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20 Chapter 1. Shift Spaces

Proof: Let X and Y be shift spaces, and φ:X → Y be a sliding block

code. By Proposition 1.5.12, we can assume that φ is a 1-block code. Let Φ
be a 1-block map inducing φ. Put L = {Φ(w) : w ∈ B(X)}. We will show

that φ(X) = XLc , proving that the image of X is a shift space.

If x ∈ X , then every block in φ(x) is in L, so that φ(x) ∈ XLc . This

proves that φ(X) ⊆ XLc .

Suppose now that y ∈ XLc . Then for each n � 0 the central (2n + 1)-

block of y is the image under Φ of the central (2n+ 1)-block of some point

x(n) in X ; i.e.,

(1–5–2) Φ(x
(n)
[−n,n]

) = φ(x(n))[−n,n] = y[−n,n].

We will use the x(n) to find a point x ∈ X with φ(x) = y.

First consider the 0th coordinates x
(n)
[0]

for n � 1. Since there are only

finitely many symbols, there is an infinite set S0 of integers for which x
(n)
[0]

is the same for all n ∈ S0. Next, the central 3-blocks x
(n)
[−1,1] for n ∈ S0 all

belong to the finite set of possible 3-blocks, so there is an infinite subset

S1 ⊆ S0 so that x
(n)
[−1,1] is the same for all n ∈ S1. Continuing this way, we

find for each k � 1 an infinite set Sk ⊆ Sk−1 so that all blocks x
(n)
[−k,k] are

equal for n ∈ Sk.

Define x to be the sequence with x
[−k,k] = x

(n)
[−k,k] for all n ∈ Sk (these

blocks are all the same by our construction). Observe that since Sk ⊆ Sk−1,

the central (2k−1)-block of x[−k,k] is x[−k+1,k−1], so that x is well-defined.

Also observe that every block in x occurs in some x
[−k,k] = x

(n)
[−k,k] ∈ B(X),

so that x ∈ X since X is a shift space. Finally, for each k � 0 and n ∈ Sk

with n � k we have, using (1–5–2), that

Φ(x[−k,k]) = Φ(x
(n)
[−k,k]) = φ(x(n))[−k,k] = y[−k,k],

so that φ(x) = y. This proves that XLc ⊆ φ(X), completing the proof. �

This proof repays close study. It uses a version of the Cantor diagonal

argument , one of the most important and subtle ideas in mathematics. This

argument is used, for example, to show that the set of real numbers cannot

be arranged in a sequence (i.e., the set of real numbers is uncountable).

We will encounter it again in Chapter 6, when we discuss the notion of

compactness.

Suppose that φ:X → Y is an embedding. By the previous result, φ(X) is

a shift space, and φ establishes a one-to-one correspondence between points

in X and points in φ(X). Let ψ:φ(X)→ X be the reverse correspondence,

so that ψ(y) = x whenever φ(x) = y. Then ψ is a mapping, but is it a

sliding block code? Another application of the Cantor diagonal argument

shows that it is.
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Theorem 1.5.14. A sliding block code that is one-to-one and onto has a

sliding block inverse, and is hence a conjugacy.

Proof: Let φ:X → Y be a sliding block code that is one-to-one and onto.

By recoding φ if necessary, we can assume that φ is a 1-block code. Let Φ
be a 1-block map inducing φ. Let ψ:Y → X be the map on points inverse

to φ, which we will show is a sliding block code.

First observe that if y = φ(x), then since φ(σX (x)) = σY (φ(x)), we have

that

σX(ψ(y)) = σX(x) = ψ(φ(σX (x)))

= ψ(σY (φ(x))) = ψ(σY (y)),

so that ψ◦σY = σX ◦ψ. Hence by Proposition 1.5.8, to show that ψ is

a sliding block code, it is enough to find an n � 0 such that the central

(2n+1)-block of every y determines the 0th coordinate ψ(y)[0] of its image.

If this were not the case, then for every n � 0 there would be two points

y(n) and ỹ(n) in Y so that y
(n)
[−n,n]

= ỹ
(n)
[−n,n]

but ψ(y(n))[0] 
= ψ(ỹ(n))[0]. Put

x(n) = ψ(y(n)) and x̃(n) = ψ(ỹ(n)).
Since there are only finitely many symbols in the alphabet of X , there

would be distinct symbols a 
= b and an infinite set S0 of integers so that

x
(n)
[0]

= ψ(y(n))[0] = a and x̃
(n)
[0]

= ψ(ỹ(n))[0] = b for all n ∈ S0.

Since the number of pairs of possible 3-blocks is finite, there would be

an infinite subset S1 ⊆ S0 so that the x
(n)
[−1,1] are all equal for n ∈ S1 and

the x̃
(n)
[−1,1] are all equal for n ∈ S1. Continuing this way, for each k � 1

we would find an infinite subset Sk ⊆ Sk−1 so that the x
(n)
[−k,k] are all equal

for n ∈ Sk, and the x̃
(n)
[−k,k] are all equal for n ∈ Sk. As in the proof

of Theorem 1.5.13, this would allow us to construct points x and x̃ in X

defined by x
[−k,k] = x

(n)
[−k,k] and x̃

[−k,k] = x̃
(n)
[−k,k] for n ∈ Sk. Note that

x[0] = a 
= b = x̃[0], so that x 
= x̃. Now if n ∈ Sk and n � k, then

Φ(x
[−k,k]) = Φ(x

(n)
[−k,k]) = φ(x(n))

[−k,k] = y
(n)
[−k,k]

= ỹ
(n)
[−k,k] = φ(x̃(n))[−k,k] = Φ(x̃

(n)
[−k,k]) = Φ(x̃[−k,k]).

But this would imply that φ(x) = φ(x̃). This contradiction shows that ψ
must be a sliding block code. �

If we are given two shift spaces X and Y , it is natural to ask whether Y
is conjugate to X , whether Y is a factor of X , or whether Y embeds into X .

These questions are very difficult to settle for general shift spaces. Indeed,

many of the ideas and results we will encounter originate in attempts to

answer these fundamental questions for special classes of shift spaces.
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EXERCISES

1.5.1. Suppose that φ:X → Y and ψ: Y → Z are sliding block codes. Show that

ψ◦φ:X → Z is also a sliding block code. If φ and ψ are factor codes, show

that ψ◦φ is also a factor code, and similarly for embeddings and conjugacies.

1.5.2. Show that an invertible sliding block code must be one-to-one and onto, so it

is simultaneously a factor code and an embedding.

1.5.3. Prove that conjugacy ∼= between shift spaces is an equivalence relation; that

is, show that (a) X ∼= X, (b) if X ∼= Y then Y ∼= X, and (c) if X ∼= Y and

Y ∼= Z, then X ∼= Z.

1.5.4. Prove that an invertible sliding block code can have only one inverse.

1.5.5. Does the sliding block code in Example 1.5.3 have an inverse? What about

the sliding block codes in Example 1.5.4? Justify your answers.

1.5.6. Let X be a shift space.

(a) Show that X[1]
= X.

(b) Show that (X[N]
)
[2] ∼= X[N+1]

.

1.5.7. Let X = {0, 1}Z, and Φ: {0, 1} → {0, 1} be the 1-block map given by Φ(0) = 1

and Φ(1) = 0. Show that φ = Φ∞:X → X is a conjugacy of the full 2-shift

to itself.

1.5.8. Let X be the full 2-shift. Define the block map Φ by

Φ(abcd) = b+ a(c+ 1)d (mod 2),

and put φ = Φ
[−1,2]
∞ .

(a) Describe the action of φ on x ∈ X in terms of the blocks 1001 and 1101

appearing in x.
(b) Show that φ2

(x) = x for all x ∈ X, and hence show that φ is a conjugacy

of X to itself.

(c) Use this method to find other conjugacies of the full 2-shift to itself.

1.5.9. Recode Example 1.5.3 to a 1-block code.

1.5.10. Suppose that X1 ⊇ X2 ⊇ X3 ⊇ . . . are shift spaces whose intersection is X.

For each N � 1, use the Cantor diagonal argument to prove that there is a

K � 1 such that BN (Xk) = BN (X) for all k � K.

1.5.11. (a) Is the full 2-shift conjugate to the full 3-shift?

(b) Find a factor code from the full 3-shift onto the full 2-shift. Can you find

infinitely many such factor codes?

(c) Is there a factor code from the full 2-shift onto the full 3-shift?

(d) Is the golden mean shift conjugate to a full shift? To the even shift?

1.5.12. Let φ:X → Y be a sliding block code, and Z be a shift space contained in Y .

Show that φ−1
(Z) = {x ∈ X : φ(x) ∈ Z} is a shift space.

1.5.13. (a) Let Z be the full k-shift, and φ:X → Z be a sliding block code. If X is a

subset of a shift space Y , show that φ can be extended to a sliding block

code ψ:Y → Z such that ψ(x) = φ(x) for all x ∈ X.

(b) Find an example of shift spaces X, Y , and Z with X ⊂ Y , and a sliding

block code φ:X → Z, such that there is no sliding block code from Y
to Z extending φ.
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1.5.14. Find a point mapping from the full 2-shift to itself that commutes with the

shift, but is not a sliding block code.

1.5.15. Show that for a forbidden list F, XF = ∅ if and only if there exists N such

that whenever u and v are blocks with |u| = N , then some subblock of uvu
belongs to F.

*1.5.16. (a) Show that there is no 1-block or 2-block factor code from the even shift

onto the golden mean shift.

(b) Find a 3-block factor code from the even shift onto the golden mean shift

(compare with Example 1.5.6).

*1.5.17. Show that the S-gap shift and the S′-gap shift are conjugate iff either S =

S′ or for some n, S = {0, n} and S′ = {n, n + 1, . . . }. Hence, there are

uncountably many shifts no pair of which are conjugate.

§1.6. Convolutional Encoders

In symbolic dynamics the term “code” means a mapping from one shift

space to another, or more loosely some sort of apparatus or procedure for

constructing such a mapping. In the previous section we introduced sliding

block codes. Later in this book we consider finite-state codes (Chapter 5),

finite-to-one codes (Chapter 8), and almost invertible codes (Chapter 9).

However, in the subject of coding theory the term “code” means some-

thing different, namely a set C of sequences (often finite sequences, but

sometimes right-infinite or bi-infinite sequences). The goal is to find “good”

error-correcting codes. These are codes C for which any two distinct se-

quences in C differ in a relatively “large” number of coordinates. Thus if

the sequences in C are regarded as messages and transmitted over a “noisy”

channel that makes a relatively small number of errors, then these errors

can be detected and corrected to recover the original message.

The two broad classes of error-correcting codes that have been studied

over the past forty years are block codes and convolutional codes. A block

code is defined as a finite set of sequences all of the same length over some

finite alphabet. Convolutional codes are much closer in spirit to symbolic

dynamics, and are used in various applications in communications and stor-

age. Such a code is defined as the image of a mapping, called a convolutional

encoder, defined below.

Recall that a finite field F is a finite set in which you can add, sub-

tract, multiply and divide so that the basic associative, distributive and

commutative laws of arithmetic hold. A good example to keep in mind

(and the one that we are mostly concerned with) is the field F2 with just

two elements. Thus F2 = {0, 1} with the usual additive and multiplicative

structure: 0 + 0 = 1+ 1 = 0, 0+ 1 = 1+ 0 = 1, 0 · 0 = 0 · 1 = 1 · 0 = 0, and

1 · 1 = 1.

A Laurent polynomial over a field F is a polynomial f(t) in the variable t
and its inverse t−1 whose coefficients are in F. A typical Laurent polynomial
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looks like

f(t) =

n∑
j=−m

ajt
j ,

where the aj ∈ F. A bi-infinite power series over F is a series of the form

(1–6–1) f(t) =
∞∑

j=−∞

ajt
j .

Although these series resemble the infinite series studied in calculus, we

are using them as a formal algebraic device and are not concerned with

convergence. If the coefficients of two series lie in the same field F, then

we can add them coefficientwise. Note that the set of all bi-infinite power

series with coefficients in F can be identified with the full shift over F,

where the series in (1–6–1) corresponds to the point . . . a−1.a0a1 . . . ∈ FZ.

We can also multiply a bi-infinite power series by a Laurent polynomial

using the normal rules of algebra. A Laurent polynomial matrix is a (finite-

dimensional) rectangular matrix whose entries are Laurent polynomials.

For the k-dimensional vector space Fk over a field F, we identify the full

Fk-shift with the set of all k-tuple row vectors of bi-infinite power series

with coefficients in F.

Definition 1.6.1. Let G(t) = [gij(t)] be a k × n Laurent polynomial

matrix. Use G(t) to transform an input vector I(t) = [I1(t), . . . , Ik(t)],
whose components are bi-infinite power series, into an output vector O(t) =
[O1(t), . . . , On(t)] via the equation

(1–6–2) O(t) = E(I(t)) = I(t)G(t).

A (k, n)-convolutional encoder is a mapping E from the full Fk-shift to the

full Fn-shift of the form (1–6–2). A convolutional code is the image of a

convolutional encoder.

The term “convolutional” is used because multiplying a power series by

a polynomial is usually called a convolution. In coding theory, what we

have defined as a convolutional encoder is often called a “Laurent polyno-

mial convolutional encoder” to distinguish it from a more general class of

encoders.

We illustrate these concepts with the following example.

Example 1.6.2. Let F = F2 and

G(t) =

[
1 0 1 + t
0 t t

]
.

The image of the input vector I(t) = [I1(t), I2(t)] under the corresponding

convolutional encoder E is

E(I(t)) = I(t) ·G(t) = [I1(t), tI2(t), (1 + t)I1(t) + tI2(t)].

https://doi.org/10.1017/9781108899727.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108899727.003


§1.6. Convolutional Encoders 25

To see how E represents a mapping from X = (F2
2)

Z to Y = (F3
2)

Z, write

I1(t) =
∑

j ajt
j and I2(t) =

∑
j bjt

j . We are then identifying I(t) with the

point

. . . (a−1, b−1).(a0, b0)(a1, b1) . . . ∈ X,

and similarly for O(t) and Y . With these identifications, the jth component

of O(t) = E(I(t)) is (aj , bj−1, aj + aj−1 + bj−1), whose entries are just the

coefficients of tj in O1(t), O2(t), and O3(t), respectively. Observe that E

is actually a sliding block code. Specifically, E = Φ
[−1,0]
∞ , where Φ is the

2-block map over F2
2 defined by

Φ
(
(a−1, b−1)(a0, b0)

)
= (a0, b−1, a0 + a−1 + b−1).

The corresponding convolutional code is

E(X) = {. . . (aj , bj−1, aj + aj−1 + bj−1) . . . ∈ (F3
2)

Z : aj , bj ∈ F2}.

To describe E(X) more explicitly, let F be the finite collection of 2-blocks

over F3
2 defined by

(1–6–3) F = {(c, d, e)(c′, d′, e′) : e′ 
= c′ + c+ d′}.

We leave it to the reader to check that E(X) is the shift space defined using

the set F of forbidden blocks, so that E(X) = XF. �

It is not an accident that the convolutional encoder in the previous ex-

ample is a sliding block code, or that the corresponding convolutional code

is a shift space. To prove that this holds generally, consider a convolutional

encoder E defined by a Laurent polynomial matrix G(t) = [gij(t)] over a

finite field F. Let M denote the largest power of t that occurs in any of

the gij(t), and N denote the smallest such power. Let gpij be the coefficient

of tp in gij(t). Similarly, if I(t) = [I1(t), . . . , Ik(t)] is an input vector of

bi-infinite power series over F, let Ipi denote the coefficient of tp in Ii(t).
Then I(t) is identified with the point

. . . (I−1

1 , . . . , I−1

k ).(I01 , . . . , I
0
k)(I

1
1 , . . . I

1
k) . . . ∈ (Fk)Z.

It is then straightforward to check that

(1–6–4) E = Φ[−M,N ]
∞ ,

where

Φ
(
(I−M

1 , . . . , I−M
k ) . . .(IN1 , . . . , INk )

)
=( N∑

j=−M

k∑
i=1

Iji g
−j
i,1 , . . . ,

N∑
j=−M

k∑
i=1

Iji g
−j
i,n

)
.
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Hence the convolutional code E
(
(Fk)Z

)
, being the image of a full shift under

a sliding block code, is a shift space by Theorem 1.5.13.

Note that both (Fk)Z and (Fn)Z are (infinite-dimensional) vector spaces

over F. Also observe from what we just did that a convolutional encoder is

a linear transformation. Since the image of a vector space under a linear

transformation is again a vector space, it follows that the corresponding

convolutional code E
(
(Fk)Z

)
is a linear subspace of (Fn)Z, i.e., is a linear

shift space. Furthermore, it is easy to check that E
(
(Fk)Z

)
is also irreducible

(Exercise 1.6.4). This proves the following result

Theorem 1.6.3.

(1) Every convolutional encoder is a linear sliding block code.

(2) Every convolutional code is a linear irreducible shift space.

In fact, the converses hold: the convolutional encoders are precisely the

linear sliding block codes, and the convolutional codes are precisely the

linear irreducible shift spaces (see Exercises 1.6.3 and 1.6.6).

Convolutional encoders are usually viewed as operating on the set of all

k-tuples of Laurent series, i.e., objects of the form
∑∞

j=j0
ajt

j , where j0 may

be negative. We have focused on bi-infinite power series instead in order

to view these encoders better within the framework of symbolic dynamics.

Each formalism has its advantages.

EXERCISES

1.6.1. Verify that in Example 1.6.2, E(X) = XF where F is defined by (1–6–3).

1.6.2. Verify (1–6–4).

1.6.3. Let F be a finite field and E be a mapping from the full shift over Fk
into the

full shift over Fn
. Show that the following are equivalent:

(a) E is a convolutional encoder.

(b) E is a linear sliding block code, i.e., a sliding block code which is linear

as a mapping between the vector spaces (Fk
)
Z, (Fn

)
Z
.

(c) E is a map from the full F k
-shift to the full Fn

-shift of the form E =

Φ
[−M,N]
∞ where Φ is a linear map Φ: (Fk

)
M+N+1 → F

n
; here M,N are

integers and we identify (Fk
)
M+N+1

with Fk(M+N+1)
.

1.6.4. Show that every convolutional code has a fixed point and is irreducible.

*1.6.5. Let G(t) be a Laurent polynomial matrix. Give an algorithm to construct a

finite list F from G(t) such that XF is the convolutional code defined by G(t).

*1.6.6. Show that a subset of the full F
n
-shift is a convolutional code if and only if

it is a linear irreducible shift space, i.e., an irreducible shift space that is a

linear subspace of (F
n
)
Z
.

Notes

Symbolic dynamics goes back to Hadamard [Had] (1898) and Morse [Mor1,

Mor2] (1921) in modeling of geodesics on surfaces of negative curvature. A no-

tion of shift space described by spelling out an explicit list of restrictions on the
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allowed sequences was given by Morse and Hedlund [MorH1, pp. 822–824] (1938);

see also [MorH2] and Hedlund [Hed4]. A space of sequences was often described by

declaring the allowed blocks to be those that appear in a particular bi-infinite se-

quence; for instance, see Gottschalk and Hedlund [GotH, Chap. 12]. However, in the

generality of our textbook, shift spaces were not formally defined until Smale [Sma]

(1967); he called them subshifts, viewing them as closed, shift invariant subsets of

full shifts (in his definition, he also assumed that periodic points are dense). We

have chosen the term “shift space” to emphasize the basic nature of these spaces.

See §6.5 and §13.6 for discussions of how shift spaces can be used to model

smooth dynamical systems. Shift spaces can also be used to model constraints that

naturally occur in data recording; see §2.5. The Scientific American article [Mon]

gives a lucid explanation of how compact audio disks make use of certain shifts in

recording Beethoven symphonies.

Underlying the theory of shift spaces are some fundamental topological notions

such as compactness and continuity. We will explain these thoroughly in Chapter 6.

But for readers already familiar with these ideas, the following gives a brief account

of how they connect with symbolic dynamics.

There is a metric on the full shift such that two points are “close” if and only

if they agree in a “large” central block (such a metric is given in Example 6.1.10).

With respect to this metric, the full shift is compact and the shift map is continuous.

A subset of a full shift is a shift space precisely when it is compact and shift

invariant. Sliding block codes are exactly those maps from one shift space to

another that are continuous and commute with the shift map. Theorem 1.5.13

then follows from the result that the continuous image of a compact set is compact,

while Theorem 1.5.14 follows from the general result that a continuous one-to-one

map on a compact metric space has a continuous inverse. The Cantor diagonal

argument replaces compactness in our proofs of these results. Other facts are

easier to understand from the topological viewpoint. Exercise 1.2.5, for example,

translates to the statement that the intersection of compact subsets is compact.

We remark that the metric on the full shift mentioned above is compatible with

the product topology on the full shift using the discrete topology on its alphabet.

There is a version of shift spaces in which the alphabet is allowed to be countably

infinite (see §13.9). However, the requirement of a finite alphabet that we have

imposed allows us to take advantage of two very important tools: the Cantor

diagonalization argument and, as we shall see in later chapters, finite-dimensional

linear algebra. There is also a version of shift spaces where the sequences are one-

sided, i.e., indexed over the nonnegative integers rather than the integers (see §5.1

and §13.8). One reason we choose to focus on bi-infinite sequences is to allow for

memory as well as anticipation in sliding block codes.

Convolutional encoders and convolutional codes are central objects in coding

theory. We refer the reader to [McE], [LinC], [Pir] for further reading on this

subject.

Exercise 1.2.14 is due to M. Keane; Exercise 1.3.8 to A. Khayrallah and D.

Neuhoff [KhaN1]; Exercise 1.5.16 to E. Coven and M. Paul [CovP2]; Exercise 1.5.15

to V. DeAngelis; and Exercise 1.5.17 to D. A. Dastjerdi and S. Jangjoo [DasJ] and

M. Hollander and J. Von Limbach.
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