
11

Minimal Models and Their Singularities

We review the definitions and results of the minimal model program that we
used repeatedly.

Assumptions The theorems of Sections 11.1–11.3 are currently known in char-
acteristic 0. See Kollár and Mori (1998) or Kollár (2013b) for varieties; Lyu
and Murayama (2022) and Fujino (2022) in general.

Most of the older literature works with Q-divisors. We treat R-divisors on
arbitrary schemes in Section 11.4.

11.1 Singularities of Pairs

Singularities of pairs are treated thoroughly in Kollár (2013b). Here we aim to
be concise, discussing all that is necessary for the main results in this book, but
leaving many details untouched.

Definition 11.1 (Pairs) We are primarily interested in pairs
(
X,∆

)
where X

is a normal variety over a field and ∆ =
∑

aiDi a formal linear combina-
tion of prime divisors with rational or real coefficients. More generally, X can
be a reduced scheme and ∆ =

∑
aiDi a formal linear combination of prime,

Mumford divisors (4.16.4), that is, none of the Di are contained in Sing X.
For a prime divisor E, we use coeffE(∆) to denote the coefficient of E in ∆.

That is, E 1 Supp
(
∆ − coeffE(∆) · E

)
. We use coeff(∆) to denote the set of all

nonzero coefficients in ∆.
If ∆ is R-Cartier, π : X′ → X is birational and E′ is a prime divisor on X′,

then coeffE′ (∆) := coeffE′ (π∗∆) defines the coefficient of every prime divisor
over X in ∆.

For any c ∈ R we set ∆>c :=
∑

i : ai>c aiDi, and similarly for ∆=c,∆<c.

418

https://doi.org/10.1017/9781009346115.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.013


11.1 Singularities of Pairs 419

Definition 11.2 (Canonical or dualizing sheaf) A pure dimensional, projective
scheme over a field has a dualizing sheaf as in Hartshorne (1977, III.7), but for
arbitrary schemes the existence of a dualizing sheaf is a complicated issue. The
following quite general setting is sufficient for our purposes.

Let g : X → S be a finite type morphism. As in Stacks (2022, tag 0E9M),
there is a relative dualizing complex. If X is pure dimensional, the lowest non-
zero cohomology of it is the relative dualizing sheaf, or relative canonical
sheaf, denoted by ωX/S .

We are interested in cases whereωX/S depends very little on S . This happens
when OS is a dualizing complex on S Stacks (2022, tag 0AWV). We only need
to know that this occurs in four important cases:
• S is the spectrum of a field,
• S is smooth over a field,
• S is regular and of dimension 1, or
• S is the spectrum of a regular, local ring.
We declare ωX/S to be a canonical sheaf of X and denote it by ωX .

Note that we do not need X → S to be surjective. So if we want to work over
a quasi-projective scheme S , we choose an embedding S ↪→ PN and work over
PN . Similarly, if S is the spectrum of a complete local ring, we can embed it
into the spectrum of a regular, complete local ring. However,ωX is well defined
only up to tensoring with pull-backs by line bundles from S . Thus one should
use it only for properties of X that are local on S .

Definition 11.3 (Canonical class II) Let X be a scheme that has a canonical
sheafωX . IfωX is invertible outside a subset of codimension ≥ 2 – for example,
X is normal or demi-normal – then it corresponds to a linear equivalence class
of Mumford divisors KX , called the canonical class of X.

Assumptions In Sections 11.1–11.3, we work with pairs that have a canonical
class.

Definition 11.4 (Discrepancy of divisors) Let
(
X,∆ =

∑
aiDi

)
be a pair as in

(11.1) that has a canonical class (11.3). We are looking at cases when the pull-
back of KX + ∆ by birational morphisms makes sense. If ∆ is a Q-divisor, the
natural assumption is that KX + ∆ is Q-Cartier, that is, m(KX + ∆) is Cartier for
some m > 0.

If ∆ is an R-divisor, we need to assume that KX + ∆ is R-Cartier, we discuss
this notion in detail in Section 11.4. (See (4.48) for the even more general
notion of numerically R-Cartier divisors).
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420 Minimal Models and Their Singularities

Let f : Y → X be a proper, birational morphism from a demi-normal scheme
Y (11.36), Ex( f ) ⊂ Y the exceptional locus, and Ei ⊂ Ex( f ) the irreducible
exceptional divisors. Assume that Ex( f ) ∩ Sing Y and f (Ex( f )) have codi-
mension ≥ 2 in Y and X; these are automatic if X and Y are normal. Let
f −1
∗ ∆ :=

∑
ai f −1
∗ Di denote the birational transform of ∆. Fix any canonical

divisor KY in the linear equivalence class KY and set KX := f∗(KY ).
Assume next that KX + ∆ is R-Cartier. Then KY + f −1

∗ ∆− f ∗
(
KX + ∆) makes

sense and it is exceptional, hence we can write

KY + f −1
∗ ∆ = f ∗

(
KX + ∆) +

∑
ia(Ei, X,∆)Ei. (11.4.1)

The a(Ei, X,∆) ∈ R are independent of the choice of KY . This defines
a(E, X,∆) for exceptional divisors. Set a(E, X,∆) := − coeffE ∆ for non-
exceptional divisors E ⊂ X.

The real number a(E, X,∆) is called the discrepancy of E with respect to
(X,∆); it depends only on the valuation defined by E, not on the choice of f .
(See Kollár and Mori (1998, 2.22) for a more canonical definition.)

Warning 11.4.2 For most cases of interest to us, a(E, X,∆) ≥ −1, so some
authors use log discrepancies, a`(E, X,∆) := 1 + a(E, X,∆). Unfortunately,
some people use a(E, X,∆) to denote the log discrepancy, leading to confusion.

The discrepancies have the following obvious monotonicity and linearity
properties; see Kollár and Mori (1998, 2.27).

Claim 11.4.3 Let ∆′ be an effective, R-Cartier divisor and E a divisor over X.
Then a(E, X,∆ + ∆′) = a(E, X,∆) − coeffE ∆′. In particular, a(E, X,∆ + ∆′) ≤
a(E, X,∆), and a(E, X,∆ + ∆′) < a(E, X,∆) iff centerX E ⊂ Supp ∆′. �

Claim 11.4.4 Assume that KX + ∆i are R-Cartier. Fix λi ≥ 0 such that
∑
λi = 1

and set ∆ :=
∑
λi∆i. Then KX + ∆ is R-Cartier and a(E, X,∆) =

∑
λia(E, X,∆i)

for every divisor E over X. In particular, using the next definition, if the (X,∆i)
are lc (resp. dlt, klt, canonical, terminal) then so is (X,∆). �

Definition 11.5 Let X be a normal scheme of dimension ≥ 2 and ∆ =
∑

aiDi

an R-divisor such that KX + ∆ is R-Cartier. We say that (X,∆) is

terminal
canonical

klt
plt
dlt
lc


if a(E, X,∆) is



> 0 for every exceptional E,
≥ 0 for every exceptional E,
> −1 for every E,
> −1 for every exceptional E,
> −1 if centerX E ⊂ non-snc(X,∆),
≥ −1 for every E.
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11.1 Singularities of Pairs 421

Here klt is short for Kawamata log terminal, plt for purely log terminal, dlt
for divisorial log terminal, lc for log canonical, and non-snc(X,∆) denotes the
set of points where (X,∆) is not a simple normal crossing pair (p.xvi).

We define semi-log-canonical or slc pairs in (11.37).

Claim 11.5.1 If (X,∆) is in any of these 6 classes, 0 ≤ ∆′ ≤ ∆ and KX + ∆′ is
R-Cartier, then (X,∆′) is also in the same class. �

Claim 11.5.2 Assume that (X,∆) is terminal (resp. klt) and Θ is an effective
R-Cartier divisor. If (X,∆) has a log resolution (p.xvi), then (X,∆ + εΘ) is also
terminal (resp. klt) for 0 ≤ ε � 1. (See (11.10.6) for the other cases.)

We gave some examples in (1.33) and (1.40); see also Section 2.2 for such
surfaces, (2.35) for cones, and Kollár (2013b) for a detailed treatment.

For computing discrepancies, the following are useful; see also (Kollár and
Mori, 1998, 2.29–30).

Lemma 11.6 Let (X,∆ − Θ) be an snc pair, where ∆ =
∑

(1 − ai)Di and Θ

are effective. Let E be a divisor over X such that a(E, X,∆ − Θ) < 0. Then
a(E, X, d∆e) = −1 and a(E, X,∆ −Θ) ≥ a(E, X,∆) = −1 +

∑
ai · coeffE Di < 0.

Proof (X, d∆e) is lc by Kollár and Mori (1998, 2.31), so a(E, X,∆ − Θ) ≥
a(E, X, d∆e) = −1 by (11.4.3). The rest follows from (11.4.3.a). �

Corollary 11.7 Using the notation of (11.6), for every ε > 0 there is η > 0
such that the following holds.

Let (X,∆′ − Θ′) be a pair, where Supp Θ = Supp Θ′ and ∆′ =
∑

(1 − a′i)Di

such that |ai − a′i | < η for every i and a′i = 0 iff ai = 0. Then, for every E,∣∣∣a(E, X,∆ − Θ) − a(E, X,∆′ − Θ′)
∣∣∣ < ε,

whenever one of the discrepancies is < 0. �

Definition 11.8 Let (X,∆) be an lc or slc (11.37) pair and W ⊂ X an irreduci-
ble, closed subset. The minimal log discrepancy of W is defined as the infimum
of the numbers 1 + a(E, X,∆) where E runs through all divisors over X such
that centerX(E) = W. It is denoted by

mld(W, X,∆) or by mld(W) (11.8.1)

if the choice of (X,∆) is clear. Note that if W is an irreducible divisor on X and
W 1 Sing X then mld(W, X,∆) = 1−coeffW ∆. If W ⊂ X is a closed subset with
irreducible components Wi, then we set mld(W, X,∆) = maxi

{
mld(Wi, X,∆)

}
.
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422 Minimal Models and Their Singularities

If (X,∆) is slc then, by definition, mld(W, X,∆) ≥ 0 for every W. The
subvarieties with mld(W, X,∆) = 0 play a key role in understanding (X,∆).

Definition 11.9 Let (X,∆) be an slc pair. An irreducible subset W ⊂ X is a
log canonical center or lc center of (X,∆) if mld(W, X,∆) = 0. If (X,∆) has a
log resolution, then there is a divisor E over X such that a(E, X,∆) = −1 and
centerX E = W.

11.10 (Properties of log canonical centers) Let (X,∆) be an slc pair over a field
of characteristic 0. (11.10.1) There are only finitely many lc centers.
(11.10.2) Any union of lc centers is seminormal and Du Bois (11.12.1–2).
(11.10.3) Any intersection of lc centers is also a union of lc centers; see Ambro
(2003, 2011), Fujino (2017), or (11.12.4).
(11.10.4) If (X,∆) is snc then the lc centers of (X,∆) are exactly the strata of
∆=1, that is, the irreducible components of the various intersections Di1 ∩ · · · ∩

Dis where the coeffDik
∆ = 1; see Kollár (2013b, 2.11). More generally, this

also holds if (X,∆) is dlt; see Fujino (2007, sec.3.9) or Kollár (2013b, 4.16).
(11.10.5) At codimension 2 normal points, the union of lc centers is either
smooth or has a node; see Kollár (2013b, 2.31).
(11.10.6) Let (X,∆) be slc and Θ effective, R-Cartier. Then (X,∆ + εΘ) is slc
for 0 < ε � 1 iff Supp Θ does not contain any lc center of (X,∆).
(11.10.7) Assume that (X,∆) is slc and εΘ ≤ ∆ is an effectiveQ-Cartier divisor.
Then Supp Θ does not contain any lc center of (X,∆ − εΘ) by (11.4.3).

Definition 11.11 Let (X,∆) be an slc pair. An irreducible subset W ⊂ X is a
log center of (X,∆) if mld(W, X,∆) < 1. (It is frequently convenient to consider
every irreducible component of X a log center.)

Building on earlier results of Ambro (2003, 2011), and Fujino (2017), part
1 of the following theorem is proved in Kollár and Kovács (2010). The rest in
Kollár (2014); see also Kollár (2013b, chap.7).

Theorem 11.12 Let (X,∆) be an slc pair over a field of characteristic 0 and
Z,W ⊂ X closed, reduced subschemes.
(11.12.1) If mld(Z, X,∆) = 0, then Z is Du Bois.
(11.12.2) If mld(Z, X,∆) < 1

6 , then Z is seminormal (10.74).
(11.12.3) If mld(Z, X,∆) + mld(W, X,∆) < 1

2 , then Z ∩W is reduced.
(11.12.4) mld(Z ∩W, X,∆) ≤ mld(Z, X,∆) + mld(W, X,∆). �

Adjunction is a classical method that allows induction on the dimension by
lifting information from divisors to the ambient scheme.
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Definition 11.13 (Poincaré residue map) Let X be a (pure dimensional) CM
scheme and S ⊂ X a divisorial subscheme. Then ωS = Ext1(OS , ωX) and
Ext1(OX , ωX) = 0. Thus, applyingHom( , ωX) to the exact sequence

0→ OX(−S )→ OX → OS → 0,

we get the short exact sequence

0→ ωX → ωX(S )
RS
→ ωS → 0. (11.13.1)

The map RS : ωX(S )→ωS is called the Poincaré residue map. By taking tensor
powers, we get maps

R⊗m
S :

(
ωX(S )

)⊗m
→ ω⊗m

S ,

but, if m(KX + S ) and mKS are Cartier for some m > 0 then we really would
like to get a corresponding map between the locally free sheaves

ω[m]
X (mS )|S

???
d ω[m]

S . (11.13.2)

There is no such map in general; one needs a correction term.

Definition 11.14 (Different) Let X be a demi-normal scheme (11.36), S a
reduced divisor (p.xv) on X, and ∆ an R-divisor on X. We assume that there
are no coincidences, that is, the irreducible components of Supp S ,Supp ∆ and
Sing X are all different from each other.

Let π : S̄ → S denote the normalization. There is a closed subscheme Z ⊂ S
of codimension 1 such that S \ Z and X \ Z are both smooth along S \ Z, the
restriction π : (S̄ \ π−1Z)→ (S \ Z) is an isomorphism and Supp ∆ ∩ S ⊂ Z.

Assume first that ∆ is a Q-divisor and m(KX + S + ∆) is Cartier for some
m > 0. Then the Poincaré residue map (11.13) gives an isomorphism

Rm
S \Z : π∗ω[m]

X (mS + m∆)|(S̄ \π−1Z) ' ω
[m]
S̄
|(S̄ \π−1Z).

Hence there is a unique (not necessarily effective) divisor ∆S̄ on S̄ supported
on π−1Z such that Rm

S \Z extends to an isomorphism

Rm
S̄ : π∗ω[m]

X (mS + m∆)|S̄ ' ω
[m]
S̄

(
∆S̄

)
. (11.14.1)

We formally divide by m and define the different of ∆ on S̄ as the Q-divisor

DiffS̄ (∆) := 1
m ∆S̄ . (11.14.2)

We can write (11.14.1) in terms of Q-divisors as

(KX + S + ∆)|S̄ ∼Q KS̄ + DiffS̄ (∆). (11.14.3)

Note that (11.14.3) has the disadvantage that it indicates only that the two sides
are Q-linearly equivalent, whereas (11.14.1) is a canonical isomorphism.
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424 Minimal Models and Their Singularities

If KX + S + ∆ is R-Cartier, then, by (11.43.4), we can write ∆ = ∆′ + ∆′′

where KX + S + ∆′ is Q-Cartier and ∆′′ is R-Cartier. Then we set

DiffS̄ (∆) := DiffS̄ (∆′) + π∗∆′′. (11.14.4)

If X, S are smooth than KS = (KX + S )|S , hence in this case DiffS̄ (∆) = π∗∆.
Let f : Y → X be a proper birational morphism, S Y := f −1

∗ S and write
KY + S Y + ∆Y ∼R f ∗(KX + S + ∆). Then

DiffS̄ (∆) = ( f |S̄ Y
)∗ DiffS̄ Y

(∆Y ). (11.14.5)

Proposition 11.15 (Kollár, 2013b, 4.4–8) Using the notation of (11.14) write
DiffS̄ (∆) =

∑
diVi where Vi ⊂ S̄ are prime divisors. Then the following hold.

(11.15.1) If (X, S + ∆) is lc (or slc) then
(
S̄ ,DiffS̄ (∆)

)
is lc.

(11.15.2) If coeff(∆) ⊂ {1, 1
2 ,

2
3 ,

3
4 , . . . }, then the same holds for DiffS̄ (∆).

(11.15.3) If S is Cartier, then DiffS̄ (∆) = π∗∆.
(11.15.4) If KX + S and D are both Cartier, then DiffS̄ D is a Z-divisor and(

KX + S + D
)
|S̄ ∼ KS̄ + DiffS̄ D. �

The following facts about codimension 1 behavior of the different can be
proved by elementary computations; see Kollár (2013b, 2.31, 2.36).

Lemma 11.16 Let S be a normal surface, E ⊂ S a reduced curve and ∆ =∑
diDi an effective R-divisor. Assume that 0 ≤ di ≤ 1 and Di 1 Supp E for

every i. Let π : Ē → E be the normalization and x ∈ Ē a point.
(11.16.1) If E is singular at π(x), then coeffx Diff Ē(∆) ≥ 1, and equality holds

iff E has a node at π(x), E is Cartier at π(x) and π(x) < Supp ∆.
(11.16.2) If π(x) ∈ Di, then coeffx Diff Ē(∆) ≥ di. �

The next theorem – proved in Kollár (1992b, 17.4) and Kawakita (2007)
– is frequently referred to as adjunction if we assume something about X and
obtain conclusions about S , or inversion of adjunction if we assume something
about S and obtain conclusions about X. See Kollár (2013b, 4.8–9) for a proof
of a more precise version.

Theorem 11.17 Let X be a normal scheme over a field of characteristic 0 and
S a reduced divisor on X with normalization πS : S̄ → S . Let ∆ be an effective
R-divisor that has no irreducible components in common with S and such that
KX + S + ∆ is R-Cartier. Then
(11.17.1)

(
S̄ ,DiffS̄ (∆)

)
is klt iff

(
X, S + ∆

)
is plt in a neighborhood of S , and

(11.17.2)
(
S̄ ,DiffS̄ (∆)

)
is lc iff

(
X, S + ∆

)
is lc in a neighborhood of S .
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(11.17.3) mld
(
Z, S̄ ,DiffS̄ (∆)

)
= mld

(
πS (Z), X, S + ∆

)
for any irreducible and

closed subset Z ( S̄ , provided one of them is ≤ 1.
(11.17.4) The claims also hold for slc pairs by (11.37). �

Many divisorial sheaves on an lc pair are Cohen–Macaulay (CM for short).
The following variant is due to Kollár and Mori (1998, 5.25) and Fujino (2017,
4.14); see also Kollár (2013b, 2.88).

Theorem 11.18 Let (X,∆) be a dlt pair over a field of characteristic 0, L a
Q-Cartier Z-divisor, and D ≤ b∆c an effective Z-divisor. Then the sheaves OX ,
OX(−D − L) and ωX(D + L) are CM.

If D + L is effective, then OD+L is also CM. �

We also need the following; see Kollár (2011a) or Kollár (2013b, 7.31).

Theorem 11.19 Let (X,∆) be dlt over a field of characteristic 0, D a (not
necessarily effective) Z-divisor and ∆′ ≤ ∆ an effective R-divisor on X such
that D ∼R ∆′. Then OX(−D) is CM. �

If (X,∆) is lc then frequently OX is not CM. The following variant of the
above theorems, while much weaker, is quite useful. In increasing generality it
was proved by Alexeev (2008), Kollár (2011a), and Fujino (2017); see Kollár
(2013b, 7.20) for the slc case and Kovács (2011) and Alexeev and Hacon
(2012) for other versions. The main applications are in (2.79) and (4.33).

Theorem 11.20 Let (X,∆) be slc over a field of characteristic 0 and x ∈ X a
point that is not an lc center (11.10). Let D be a Mumford Z-divisor. Assume
that there is an effective R-divisor ∆′ ≤ ∆ such that D ∼R ∆′. Then
(11.20.1) depthx OX(−D) ≥ min{3, codimX x}, and
(11.20.2) depthx ωX(D) ≥ min{3, codimX x}.

Proof The first claim is proved in Kollár (2013b, 7.20). To get the second,
note that, working locally, KX + ∆ ∼R 0, thus −(KX + D) ∼R ∆ − ∆′ and
∆−∆′ ≤ ∆ is effective. Thus, by the first part, ωX(D) ' OX

(
−(−(KX + D))

)
has

depth ≥ min{3, codimX x}. �

Corollary 11.21 Alexeev (2008) Let (X,∆) be slc. If x is not an lc center and
codimX x ≥ 3, then depthx OX ≥ 3 and depthx ωX ≥ 3. �

11.22 (Hurwitz formula) The main example is when π : Y → X is a finite,
separable morphism between normal varieties of the same dimension, but we
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also need the case when π : Y → X is a finite, separable morphism between
demi-normal schemes such that π is étale over the nodes of X. Working over
the closure of the open set where KX is Cartier, we get that

KY ∼Q R + π∗KX , (11.22.1)

where R is the ramification divisor of π. If none of the ramification indices is
divisible by the characteristic, then R =

∑
D(e(D) − 1)D where e(D) denotes

the ramification index of π along the divisor D ⊂ Y .
Note that if π is quasi-étale, that is, étale outside a subset of codimension

≥ 2, then R = 0, hence KY ∼Q π
∗KX .

11.23 Let π : Y → X be a finite, separable morphism as in (11.22) and ∆X an
R-divisor on X (not necessarily R-Cartier). Set

∆Y := −R + π∗∆X . (11.23.1)

With this choice, (11.22.1) gives that

KY + ∆Y ∼R π
∗(KX + ∆X). (11.23.2)

Reid’s covering lemma compares the discrepancies of divisors over X and Y .
For precise forms see Reid (1980), Kollár and Mori (1998, 5.20), or Kollár
(2013b, 2.42–43). We need the following special cases.

Claim 11.23.3 Assume also, that ∆X and ∆Y are both effective, and, either the
characteristic is 0, or π is Galois and deg π is not divisible by the characteristic,
or deg π is less than the characteristic. Then (X,∆X) is klt (resp. lc or slc) iff
(Y,∆Y ) is klt (resp. lc or slc). �

Special case 11.23.4 If π is quasi-étale, then ∆Y = π∗∆X; thus we compare
(X,∆X) and (Y, π∗∆X).

Special case 11.23.5 Let DX be a reduced divisor on X such that π is étale
over X \ DX . Set DY := red π∗(DX). Then DY + R = π∗(DX), thus we compare
(X,DX + ∆X) and (Y,DY + π∗∆X).

11.24 (Cyclic covers) See Kollár and Mori (1998, 2.49–52) or Kollár (2013b,
sec.2.3) for details.

Let X be an S 2 scheme, L a divisorial sheaf (3.25) and s a section of L[m].
These data define a cyclic cover or µm-cover π : Y → X such that we have
direct sum decompositions into µm-eigensheaves

π∗OY = ⊕m−1
i=0 L[−i], and

π∗ωY/C ' HomX
(
π∗OY , ωX/C

)
= ⊕m−1

i=0 L[i] [⊗]ωX/C ,
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where [⊗] denotes the double dual of the tensor product. The morphism π is
étale over x ∈ X iff L is locally free at x, s(x) , 0 and char k(x) - m. Thus π is
quasi-étale iff s is a nowhere zero section and char k(x) - m.

One can reduce many questions about Q-Cartier divisors to Cartier divisors.

Proposition 11.25 Let (x, X) be a local scheme over a field of characteristic 0
and {Di : i ∈ I} a finite set of Q-Cartier, Mumford Z- divisors. Then there is a
finite, abelian, quasi-étale cover π : X̃ → X such that the π∗Di are Cartier.

Furthermore, if (X,∆) is klt (resp. lc or slc) for some R-divisor ∆, then(
X̃, ∆̃ := π∗∆

)
is also klt (resp. lc or slc). �

11.2 Canonical Models and Modifications

We used many times canonical models in the relative setting.

Definition 11.26 Let (Y,∆Y ) be an lc pair and pY : Y → S a proper morphism.
We say that (Y,∆Y ) is a canonical model over S , if KY + ∆Y is pY -ample.

Let (X,∆) be an lc pair and p : X → S a proper morphism. We say that
(Xc,∆c) is a canonical model of (X,∆) over S if there is a diagram

X

p
��?

??
??

??
?

φ //_______ Xc

pc
~~~~
~~
~~
~~

S

(11.26.1)

such that
(11.26.2) (Xc,∆c) is a canonical model over S ,
(11.26.3) φ is a birational contraction (p.xiv),
(11.26.4) ∆c = φ∗∆, and
(11.26.5) φ∗OX

(
mKX + bm∆c

)
= OXc

(
mKX c + bm∆cc

)
for every m ≥ 0.

Comments 11.26.6 Since φ is a birational contraction, there are open sets
U ⊂ X and Uc ⊂ Xc whose complements have codimension ≥ 2 such that
the restriction of φ is a morphism φU : U → Uc. Thus (11.26.5) is equivalent
to saying that φ∗OU

(
mKU +bm∆|Uc

)
= OUc

(
mKU c +bm∆c|Ucc

)
for every m ≥ 0.

(One needs (11.62.2) to see that this is equivalent to Kollár and Mori (1998,
3.50).)

For Q-divisors we have the following direct generalization of (1.38).

Proposition 11.27 Let (X,∆) be an lc pair and p : X → S a proper morphism.
Assume that X is irreducible and ∆ is a Q-divisor. Then (X,∆) has a canonical
model over S iff the generic fiber is of general type and the canonical algebra
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⊕m≥0 p∗OX
(
mKX + bm∆c

)
is finitely generated. If these hold then the canonical

model is Xc := ProjS ⊕m≥0 p∗OX
(
mKX + bm∆c

)
.

The main conjecture on canonical models says that the relative canonical
models always exist if the generic fiber is of general type. The following
known cases, due to Birkar et al. (2010) and Hacon and Xu (2013, 2016),
and generalized in Lyu and Murayama (2022) are the most important for us.

Theorem 11.28 Let (X,∆) be an lc pair over a field of characteristic 0 and
p : X → S a proper morphism, S irreducible. The relative canonical model
exists in the following cases.
(11.28.1) (X,∆) is klt and the generic fiber is of general type.
(11.28.2) (X,∆) is dlt, the relative canonical model exists over an open S ◦ ⊂

S , and every lc center intersects p−1(S ◦). �

Definition 11.29 (Canonical modification) Let Y be a scheme over a field k.
(We allow Y to be reducible and nonreduced, but in applications usually pure
dimensional.) Its canonical modification is the unique proper, birational mor-
phism pcm : Ycm → red Y such that Ycm has canonical singularities and KYcm is
ample over Y .

Let ∆ be an effective divisor on Y . We define the canonical modification
pcm :

(
Ycm,∆cm)

→ (Y,∆) as the unique proper, birational morphism for which(
Ycm,∆cm)

has canonical singularities and KYcm + ∆cm is ample over Y; where
∆cm is the birational transform of ∆|red Y ; see Kollár (2013b, 1.31).

The log canonical modification plcm :
(
Y lcm,∆lcm)

→ (Y,∆) is defined simi-
larly. The change is that

(
Y lcm,∆lcm + Elcm)

is log canonical and KY lcm + ∆lcm +

Elcm is ample over Y , where Elcm denotes the reduced exceptional divisor.

The canonical modification of (X,∆) is unique. It exist in characteristic 0
if coeff ∆ ⊂ [0, 1] by (11.28). The lc modification is also unique. As for its
existence, we clearly need to assume that coeff ∆ ⊂ [0, 1]. Conjecturally, this
is the only necessary condition, but this is known only in some cases. C. Xu
pointed out that the arguments in Odaka and Xu (2012) give the following.

Theorem 11.30 Let X be a normal variety and ∆ an R-divisor on X with
coeff(∆) ⊂ [0, 1]. If KX + ∆ is numerically R-Cartier (4.48), then (X,∆) has a
log canonical modification. �

Proposition 11.31 (Kollár, 2018a, prop.19) Let (X,∆) be a potentially lc pair
(11.5.1) over a field of characteristic 0. Then
(11.31.1) it has a projective, small, lc modification π : (Xlcm,∆lcm)→ (X,∆),
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(11.31.2) π is a local isomorphism at every lc center of (Xlcm,∆lcm), and
(11.31.3) π is a local isomorphism over x ∈ X iff KX + ∆ is R-Cartier at x. �

The following typical application of (11.31) reduces some questions about
Weil divisors to Q-Cartier Weil divisors.

Proposition 11.32 Let (X,∆) be an lc pair over a field of characteristic 0 and
Θ an effective R-divisor such that Supp Θ ⊂ Supp ∆. Let B be a Weil Z-divisor
such that B ∼R −Θ. Then there is a small, lc modification π : X′ → X such
that the following hold, where we use ′ to denote the birational transform of a
divisor on X′.
(11.32.1) B′ is Q-Cartier and π-ample,
(11.32.2) Ex(π) ⊂ Supp Θ′,
(11.32.3) none of the lc centers of (X′,∆′ − εΘ′) are contained in Ex(π),
(11.32.4) π∗OX′ (B′) = OX(B),
(11.32.5) Riπ∗OX′ (B′) = 0 for i > 0, and
(11.32.6) Hi(X,OX(B)

)
= Hi(X,OX′ (B′)

)
.

Proof We construct π : (X′,∆′) → (X,∆) by applying (11.31) to (X,∆ − εΘ).
Then −εΘ′ ∼R KX′ + ∆′ − εΘ′ is R-Cartier and π-ample, hence (1) holds by
(11.43). This gives (2). Then (3) follows from (11.10.7). Next, (4) holds since
π is small. We can write B′ ∼R KX′ + (∆′−εΘ′)+ (1−ε)(−Θ′); then (5) follows
from (3) and (11.34). Finally, the Leray spectral sequence shows (6). �

One of the difficulties in dealing with slc pairs is that analogous small
modifications need not exist for them; see Kollár (2013b, 1.40).

We use generalizations of Kodaira’s vanishing theorem, see Kollár and Mori
(1998, secs.2.4–5) for an introductory treatment. The following is proved in
Ambro (2003) and (Fujino, 2014, 1.10). See also Fujino (2017, sec.5.7) and
Fujino (2017, 6.3.5), where it is called a Reid–Fukuda–type theorem.

Definition 11.33 Let (X,∆) be an slc pair, f : X → S a proper morphism, and
L an R-Cartier, f -nef divisor on X. Then L is called log f -big if L|W is big on
the generic fiber of f |W : W → f (W) for every lc center W of (X,∆) and also
for every irreducible component W ⊂ X.

Theorem 11.34 Let (X,∆) be an slc pair over a field of characteristic 0 and D
a Mumford Z-divisor on X. Let f : X → S be a proper morphism. Assume that
D ∼R KX + L + ∆, where L is R-Cartier, f -nef and log f -big. Then

Ri f∗OX(D) = 0 for i > 0. �
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11.3 Semi-log-canonical Pairs

Definition 11.35 Let (R,m) be a local ring such that char(R/m) , 2. We say
that Spec R has a node if there is a regular local ring (S ,mS ) of dimension
2, generators mS = (x, y), a unit a ∈ S \ mS and h ∈ m3

S such that R '
S/(x2 − ay2 + h). (See Kollár (2013b, 1.41) for characteristic 2.)

If R is complete, then we can arrange that h = 0. If R/m is algebraically
closed, then we can take a = 1. Over an algebraically closed field we get the
more familiar form k[[x, y]]/(xy).

As a very simple special case of (2.27) or of (10.43), over a field all
deformations of a node can be obtained, étale locally, by pull-back from

(x2 − ay2 = 0) ⊂
(
x2 − ay2 + t = 0

)
⊂ A2

xy × A
1
t . (11.35.1)

Definition 11.36 Recall that, by Serre’s criterion, a scheme X is normal iff it
is S 2 and regular at all codimension 1 points. As a weakening of normality, a
scheme is called demi-normal if it is S 2 and its codimension 1 points are either
regular points or nodes.

A one-dimensional demi-normal variety is a curve C with nodes. It can be
thought of as a smooth curve C̄ (the normalization of C) together with pairs
of points pi, p′i ∈ C̄, obtained as the preimages of the nodes. Equivalently, we
have the nodal divisor D̄ =

∑
i(pi + p′i) on C̄, plus a fixed point free involution

on D̄ given by τ : pi ↔ p′i .
We aim to get a similar description for any demi-normal scheme X. Let

π : X̄ → X denote the normalization and D ⊂ X the divisor obtained as the
closure of the nodes of X. Set D̄ := π−1(D) with reduced structure. Then D, D̄
are the conductors of π, and the induced map D̄ → D has degree 2 over the
generic points. The map between the normalizations D̄n → D̄n has degree
2 over all irreducible components, determining an involution τ : D̄n → D̄n,

which is not the identity on any irreducible component. We always assume
this condition from now on. (Note that τ is only a rational involution on D̄.)

It is easy to see (Kollár, 2013b, 5.3) that a demi-normal scheme X is uniquely
determined by the triple

(
X̄, D̄, τ

)
.

However, it is surprisingly difficult to understand which triples
(
X̄, D̄, τ

)
correspond to demi-normal schemes. The solution of this problem in the log
canonical case, given in (11.38), is a key result for us.

Roughly speaking, the concept of semi-log-canonical is obtained by replac-
ing “normal” with “demi-normal” in the definition of log canonical (11.5).
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Definition 11.37 Let X be a demi-normal scheme with normalization π : X̄ →
X and with conductors D ⊂ X and D̄ ⊂ X̄. Let ∆ be an effective R-divisor
whose support does not contain any irreducible component of D, and ∆̄ the
divisorial part of π−1(∆). The pair (X,∆) is called semi-log-canonical or slc if
(11.37.1) KX + ∆ is R-Cartier, and
(11.37.2)

(
X̄, D̄ + ∆̄

)
is lc.

Alternatively, one can define a(E, X,∆) using semi-resolutions (as in Kollár
(2013b, Sec.10.4)) and then replace (2) by
(11.37.3) a(E, X,∆) ≥ −1 for every exceptional divisor E over X.
This is now the exact analog of the definition of log canonical given in (11.5);
the equivalence is proved in Kollár (2013b, 5.10).

This formula suggests that if Di ⊂ D is an irreducible component, then we
should declare that a(Di, X,∆) = −1.
Warning 11.37.4 It can happen that (2) holds, hence KX̄ + D̄ + ∆̄ is R-Cartier,
but KX + ∆ is not; see (2.22.1) for an instructive special case of dimension 2.

By contrast, this cannot happen in codimensions ≥ 3 by (11.42).

The following theorem, proved in Kollár (2016b) and Kollár (2013b, 5.13),
describes slc pairs using their normalizations.

Theorem 11.38 Let S be a scheme over a field of characteristic 0 as in (11.2).
Then normalization gives a one-to-one correspondence:

Proper, slc pairs
g : (X,∆)→ S ,

KX + ∆ is g-ample.

 ←→


Proper, lc pairs ḡ :

(
X̄, D̄ + ∆̄

)
→ S

with involution τy
(
D̄n,DiffD̄n ∆̄

)
,

KX̄ + D̄ + ∆̄ is ḡ-ample.

 .
(As in (11.36), τ is not the identity on any irreducible component.) �

In applications, we usually know the codimension 1 points of X and X̄. The
codimension 1 points of

(
D̄n,DiffD̄n ∆̄

)
correspond to codimension 2 points

of X and X̄. Since we understand two-dimensional slc pairs quite well, we
frequently have good control over codimension ≤ 2 points of lc and slc pairs.
The next theorems show that one can sometimes ignore the higher codimension
points.

The first result of this type, due to Matsusaka and Mumford (1964), shows
how to extend isomorphisms across subsets of codimension ≥ 2.

Theorem 11.39 Let S be a Noetherian scheme, Xi → S projective morphisms
and Hi relatively ample R-divisor classes on Xi. Let Zi ⊂ Xi be closed subsets
such that depthZi

Xi ≥ 2. Let
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τ◦ :
(
X1 \ Z1,H1|X1\Z1

)
'

(
X2 \ Z2,H2|X2\Z2

)
be an isomorphism. Then τ◦ extends to an isomorphism τ : X1 ' X2.

Proof Let Γ ⊂ X1 ×S X2 be the closure of the graph of τ◦ with projections
πi : Γ → Xi. Then πi is an isomorphism over Xi \ Zi. By (5.32.4), πi is an
isomorphism iff it is finite. The latter can be checked locally on S after com-
pletion. We can now also assume that the Xi are normal and replace Γ with its
normalization.

There is a divisor E ∼R π∗1H1 − π
∗
2H2 that is supported on the union of the

πi-exceptional loci. Since πi(E) ⊂ Zi, we see that Supp(E) ⊂ Ex(πi) for i = 1, 2.
Next note that −E is π1-nef and exceptional, so E ≥ 0 by (11.60). Also E is

π2-nef and exceptional, so E ≤ 0. Thus E = 0, hence π∗1H1 ≡ π
∗
2H2. We now

finish by (11.39.1). �

Claim 11.39.1 Let Xi → S be projective morphisms and Hi relatively ample
R-divisor classes on Xi. Let p : Y → X1 ×S X2 be a finite morphism such that
p∗π∗1H1 ∼R p∗π∗2H2. Then πi ◦ p : Y → Xi are finite.

Proof If a curve C ⊂ Y is contracted by π1 ◦ p then it cannot be contracted by
π2◦p since p is finite. Thus (C·p∗π∗1H1) = 0, but (C·p∗π∗2H2) = (π2◦p(C)·H2) >
0 since H2 is ample. �

The depthZ X ≥ 2 assumption in (11.39) holds if X is normal and Z ⊂ X has
codimension ≥ 2; the main case in most applications. If Z has codimension
1, we usually get very little information about X from X \ Z. Nonetheless, we
have the following very useful result about slc pairs.

Theorem 11.40 Let S be a scheme over a field of characteristic 0 as in
(11.2), and let fi : (Xi,∆i) → S proper morphisms from slc pairs such that
KXi + ∆i is fi-ample. Let ZS ⊂ S be a closed subset and set Zi := f −1

i (ZS ).
Let

τ◦ :
(
X1 \ Z1,∆1|X1\Z1

)
'

(
X2 \ Z2,∆2|X2\Z2

)
(11.40.1)

be an isomorphism. Assume that none of the log centers (11.11) of (Xi,∆i) is
contained in Zi for i = 1, 2.

Then τ◦ extends to an isomorphism τ : X1 ' X2.

Proof Since every irreducible component of X is a log center, the Zi are
nowhere dense in Xi.

Using (11.38) we may assume that the Xi are normal. Let Γ→ X1 ×S X2 be
the normalization of the closure of the graph of τ◦ with projections πi : Γ→ Xi.
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As in (1.28), we use the log canonical class to compare the Xi. If F is an
irreducible component of ∆i then a

(
F, Xi,∆i

)
= − coeffF ∆i < 0, thus F 1 Zi.

In particular, (π1)−1
∗ ∆1 = (π2)−1

∗ ∆2; let us denote this divisor by ∆Γ. Write

KΓ + ∆Γ ∼R π
∗
i
(
KXi + ∆i

)
+ Ei, (11.40.2)

where Ei is πi-exceptional and πi(Supp Ei) ⊂ Zi. Note that Ei is effective by
our assumption on the log centers.

Subtracting the i = 1, 2 cases of (11.40.2) from each other, we get that

E1 − E2 ∼R π
∗
2
(
KX2 + ∆2

)
− π∗1

(
KX1 + ∆1

)
. (11.40.3)

Thus E1 − E2 is π1-nef and −(π1)∗(E1 − E2) = (π1)∗(E2) is effective. Thus
E2 − E1 is effective by (11.60). Using π2 shows that E1 − E2 is effective, hence
E1 = E2. Thus π∗1

(
KX1 + ∆1

)
∼R π

∗
2
(
KX2 + ∆2

)
. We finish by (11.39.1). �

Remark 11.40.4 The assumption on log centers is crucial. To see an example,
consider the family of curves

X :=
(
xyz(x + y + z) + t(x4 + y4 + z4) = 0

)
⊂ P2

xyz × A
1
t .

It is smooth along the central fiber X0, which consists of four lines Li, each
with self-intersection −3. We can contract any of them pi : X → Xi, to get
fi : Xi → A

1. Note that p j ◦ p−1
i : Xi d X j is an isomorphism over A1 \ {0},

but not an isomorphism for i , j. Here Xi has a singularity of type A2/ 1
3 (1, 1),

which is log terminal and the singularities are log centers of (Xi, 0).

Corollary 11.41 Let S be a scheme over a field of characteristic 0 as in (11.2)
and S ◦ ⊂ S a dense, open subscheme. Let g◦ : (X◦,∆◦) → S ◦ be a proper, slc
pair with normalization π◦ :

(
X̄◦, ∆̄◦ + D̄◦

)
→ (X◦,∆◦).

Assume that there is an slc pair
(
X̄, ∆̄ + D̄

)
⊃

(
X̄◦, ∆̄◦ + D̄◦

)
that is proper

over S such that KX̄ + ∆̄ + D̄ is ample over S and every codimension ≤ 2 log
center of

(
X̄, ∆̄ + D̄

)
has nonempty intersection with X̄◦.

Then there is a unique slc pair (X,∆) ⊃ (X◦,∆◦) that is proper over S and
whose normalization is

(
X̄, ∆̄ + D̄

)
.

Proof Since every irreducible component of X̄ is a log center, X̄◦ is dense
in X̄. Let n : D̄n → D̄ denote the normalization. By inversion of adjunction
(11.17.2),

(
D̄n,DiffD̄n ∆̄

)
is also lc and KD̄n + DiffD̄n ∆̄ is ample over S .

Using (11.17.3), every irreducible component of DiffD̄n lies over a codimen-
sion 2 log center of

(
X̄, ∆̄ + D̄

)
, hence none of the irreducible components of

DiffD̄n is disjoint from X̄◦.
Thus the involution τ◦ of (D̄◦)n extends to an involution τ on D̄n by (11.40),

and DiffD̄n is τ̄-invariant. Hence (11.38) gives the existence of (X,∆). �
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Corollary 11.42 Let (X,∆) be demi-normal with lc normalization
(
X̄, ∆̄ + D̄

)
.

Assume that there is a closed subset W ⊂ X of codimension ≥ 3 such that(
X \W,∆|X\W

)
is slc. Then (X,∆) is slc.

Proof Apply (11.41) with S = X, X◦ = X \W. �

11.4 R-divisors

It is easy to see that, on a Q-factorial scheme, R-divisors behave very much
like Q-divisors. The same holds in general, but it needs a little more work.
The basics are discussed in Lazarsfeld (2004, sec.1.3), but most other facts
are scattered in the literature; see, for example, Kollár (2013b, 2.21), Birkar
(2017), or Fujino and Miyamoto (2021).

11.43 (R-divisors) Let X be a reduced, S 2 scheme and ∆ =
∑

biBi a Mumford
R-divisor. There is a unique such way of writing ∆ where the Bi are irreducible,
distinct and bi , 0 for every i. The Q-vector space spanned by the coefficients
is denoted by CoSp(∆) =

∑
i Q · bi ⊂ R.

We say that ∆ is R-Cartier if it can be written as an R-linear combination
of Cartier Z-divisors ∆ =

∑
riDi. By (11.46), we can choose the Di to have

the same support as ∆, but we do not assume this to start with. Two R-divisors
are R-linearly equivalent, denoted by ∆1 ∼R ∆2, if ∆1 − ∆2 is an R-linear
combination of principal divisors. Claim (11.43.2.d) shows that for Q-divisors
we do not get anything new.

Let σ : R → Q be a Q-linear map. It extends to a Q-linear map from R-
divisors to Q-divisors as σ(

∑
diDi) :=

∑
σ(di)Di.

Claim 11.43.1 Let σ : R→ Q be a Q-linear map. Then
(a) Supp

(
σ(D)

)
⊂ Supp(D),

(b) if D1 ∼R D2 then σ(D1) ∼Q σ(D2),
(c) if D is R-Cartier then σ(D) is Q-Cartier, and
(d) D 7→ σ(D) commutes with pull-back for R-Cartier divisors.

Proof The first claim is clear. If D1 − D2 =
∑

ci( fi) then σ(D1) − σ(D2) =∑
σ(ci)( fi), showing (b), which in turn implies (c) and (d) is clear. �

Let D be an R-divisor. Choosing a Q-basis di ∈ CoSp(D), we can write
D =

∑
diDi where the Di are Q-divisors (usually reducible). The Di depend on

the choice of the basis. Nonetheless, they inherit many properties of D.
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Claim 11.43.2 Let Di be Q-divisors and di ∈ R linearly independent over Q.
Then

(a)
∑

diDi is R-Cartier iff each Di is Q-Cartier.
(b)

∑
diDi ∼R 0 iff Di ∼Q 0 for every i.

(c) If X is proper then
∑

diDi ≡ 0 iff Di ≡ 0 for every i.
(d) A Q-divisor Di is R-Cartier iff it is Q-Cartier.
(e) D1 ∼R D2 iff D1 ∼Q D2.
(f) Supp Di ⊂ Supp D.

Proof If the di ∈ R are linearly independent then we can choose σi such that
σi(di) = 1 and σi(d j) = 0 for i , j. Then σi(D) = Di, thus (11.43.1) shows (a)
and (b).

For (c), assume that
∑

diDi ≡ 0 and let C ⊂ X be a curve. Then
∑

di(Di ·C) =

0. Since (Di ·C) ∈ Q and the di are linearly independent, we get that (Di ·C) = 0
for every i. Applying (a) to Di gives (d). Applying (b) to D1 − D2 gives (e).
Finally (f) follows from the linear independence over Q. �

Corollary 11.43.3 Let Θ be a Mumford R-divisor and {di} a basis of CoSp(Θ)
over Q. Then we get a unique representation Θ =

∑
diDi where the Di are

Q-divisors. If Θ is R-Cartier, then the Di are Q-Cartier. �

Corollary 11.43.4 Let ∆ be a Mumford R-divisor and {d′i } a Q-basis of Q +

CoSp(∆) such that
∑

d′i = 1. Then we get a unique representation ∆ =
∑

d′i Di

where the Di are Q-divisors. If KX +∆ is R-Cartier, then KX + Di are Q-Cartier.

Proof Note that KX + ∆ =
∑

d′i (KX + Di), so the last assertion follows from
(11.43.2.a). �

Next we show that R-divisors can be approximated by Q-divisors in a way
that many properties are preserved. We start with some general comments on
vector spaces and field extensions. At the end we care only about R ⊃ Q.

Definition–Lemma 11.44 Let K/k be a field extension, V a k-vector space
and w ∈ V ⊗k K. The linear k-envelope of w, denoted by LEnvk(w) ⊂ V , is
the smallest vector subspace such that w ∈ LEnvk(w) ⊗k K. Then LEnvk(w) is
spanned by any of the following three sets, where σ runs through all k-linear
maps K → k.
(11.44.1) All (1V ⊗ σ)(w).
(11.44.2) All

∑
σ(ci)vi, where vi ∈ V is a basis and w =

∑
civi.

(11.44.3) All
∑

i ai jvi, where e j ∈ K is a k-basis and w =
∑

i j ai je jvi.
The affine k-envelope of w, denoted by AEnvk(w) ⊂ V , is the smallest affine-

linear subspace such that w ∈ AEnvk(w) ⊗k K. Then AEnvk(w) is spanned by
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any of the following three sets, where σ runs through all k-linear maps K → k
such that σ(1) = 1.
(11.44.4) All (1V ⊗ σ)(w).
(11.44.5) All

∑
σ(ci)vi, where vi ∈ V is a basis and w =

∑
civi.

(11.44.6) All
∑

i ai jvi, where e j ∈ K is a k-basis such that e1 = 1 and w =∑
i j ai je jvi.

11.45 (Approximating by rational simplices) Fix real numbers d1, . . . , dm and
consider a Q-vector space W with basis d1, . . . , dm. Set d :=

∑
didi ∈ WR and

V := AEnvQ(d). We inductively construct a sequence of simplices

V ⊃ S 1 ⊃ S 2 ⊃ · · · such that ∩n S n = {d}.

Set S 0 := V . For each n ∈ N the cubes of the lattice 1
nZ

m give a cubical
chamber decomposition of WR. There is a smallest chamber Cn that contains d.
Then d is an interior point of Cn ∩ S n−1 (in its affine-linear span). The vertices
of Cn∩S n−1 are in Qn. Thus d can be written as a convex linear combination of
suitably chosen dim V + 1 vertices of VR ∩Cn; denote them by dnj . These span
S n. By (11.44), there are Q-linear maps σn

j : R → Q such that dnj = σn
j (d). We

can thus write
(11.45.1) d =

∑
jλ

n
jd

n
j , where

(11.45.2) dnj =
∑

i σ
n
j (di)di,

(11.45.3)
∑

j λ
n
j = 1 and

∑
j λ

n
jσ

n
j (di) = di ∀i,

(11.45.4) limn→∞ d
n
j = d ∀ j, and

(11.45.5) for fixed n, the λn
j are linearly independent over Q. (To see this, note

that 1 and the di are Q-linear combinations of the λn
j for fixed n.)

Remark 11.45.6 The choice of the vertices is not unique, but once we choose
them, the constants λn

j are unique, and so are the restrictions of σn
j to LEnvQ(d).

Thus, from now on, we view σn
j and λn

j as depending only on j, n ∈ N and
d1, . . . , dm ∈ R. Note that these are not continuous functions of the di, even the
number of the j-indices varies discontinuously with d1, . . . , dm.

Also, we only care about the restriction of the σn
j to LEnvQ(d), so we are

really dealing with finite dimensional linear algebra.

Proposition 11.46 (Convex approximation of R-divisors I) Let X be a
reduced, S 2 scheme and Θ =

∑
idiDi a Mumford R-divisor, where the Di are

Q-divisors. Let σn
j and λn

j be as in (11.45) and set Θn
j :=

∑
σn

j (di)Di. Then
(11.46.1) Θ =

∑
j λ

n
jΘ

n
j and the Θn

j are Q-divisors.
(11.46.2) Let E ⊂ X be a prime divisor on X. Then limn→∞ coeffE Θn

j =

coeffE Θ and coeffE Θn
j = coeffE Θ if coeffE Θ ∈ Q.
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(11.46.3) Θ is effective iff the Θn
j are effective for every j for n � 1 (then they

have the same support).
Assume next that Θ is R-Cartier. Then the following also hold.

(11.46.4) The Θn
j are Q-Cartier.

(11.46.5) Let E be prime divisor over X (11.1). Then limn→∞ coeffE Θn
j =

coeffE Θ and coeffE Θn
j = coeffE Θ if coeffE Θ ∈ Q.

(11.46.6) Let C be a proper curve on X. Then limn→∞(C · Θn
j ) = (C · Θ) and

(C · Θn
j ) = (C · Θ) if (C · Θ) ∈ Q.

(11.46.7) Θ is ample (11.51) iff the Θn
j are ample for every j for n � 1.

Proof (1) is a formal consequence of (11.45.2), while the limit in (2) follows
from (11.45.3). If coeffE Θ =: c ∈ Q, then

∑
i xi coeffE Di = c defines a rational

hyperplane in W (as in (11.45)). It contains d, hence also V and the other dnj .
The Θn

j are the images of the dnj .
By (11.45.4) the λn

j are linearly independent over Q. Thus, if Θ is R-Cartier
then the Θn

j are Q-Cartier by (11.43.2), proving (4). Also, in this case, coeffE Θ

makes sense for divisors over X and same for the intersection numbers (C ·Θ).
The proofs of (5–7) are now the same as for (2). �

Proposition 11.47 (Convex approximation of R-divisors II) Let X be a
demi-normal scheme and ∆ =

∑
diDi a Mumford R-divisor, where the Di are

Q-divisors. Assume that KX + ∆ is R-Cartier. Let σn
j and λn

j be as in (11.45)
and set ∆n

j :=
∑
σn

j (di)Di. Then
(11.47.1) ∆ =

∑
j λ

n
j∆

n
j and KX + ∆ =

∑
j λ

n
j (KX + ∆n

j ).
(11.47.2) ∆ is effective iff the ∆n

j are effective for every j for n � 1 (then they
have the same support).

(11.47.3) KX + ∆n
j are Q-Cartier.

(11.47.4) KX + ∆ is ample iff the KX + ∆n
j are ample for every j for n � 1.

(11.47.5) Let E be a prime divisor. Then limn→∞ a(E, X,∆n
j ) = a(E, X,∆) and

a(E, X,∆n
j ) = a(E, X,∆) if a(E, X,∆) ∈ Q.

(11.47.6) Let C be a proper curve. Then limn→∞(C · (KX +∆n
j )) = (C · (KX +∆))

and (C · (KX + ∆n
j )) = (C · (KX + ∆)) if (C · (KX + ∆)) ∈ Q.

Assume next that (X,∆) has a log resolution and fix ε > 0. Then, for every j
and every n � 1, the following hold.
(11.47.7) |a(E, X,∆) − a(E, X,∆n

j )| < ε for every divisor E over X, whenever
one of the discrepancies is < 0.

(11.47.8) (X,∆) is lc (resp. dlt or klt) iff (X,∆n
j ) is lc (resp. dlt or klt).

(11.47.9) (X,∆) and (X,∆n
j ) have the same dlt modifications.
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Proof (1–2) follow directly from (11.46) and (3) follows from (11.46.4) and
(1). Since ampleness is an open condition, (3) implies (4).

The proofs of (5) and (6) are the same as the proof of (11.46.2). If (X,∆) has
a log resolution then (7) follows from (11.7) and being lc (resp. dlt or klt) can
be read off from the discrepancies, hence (7) implies (8) and (9). �

In the slc case, we have the following remarkable sharpening.

Complement 11.48 (Han et al., 2020, 5.6) In (11.47) assume in addition that
(X,∆ =

∑
diDi) is slc. Then we can choose the σn

j and λn
j to depend only on

(d1, . . . , dr) and the dimension. �

We also get some information about pluricanonical sheaves for R-divisors.

Theorem 11.49 Fix a finite set C := {c1, . . . , cr} ⊂ [0, 1]. Then there is a subset
M(C, n) ⊂ Z of positive density such that, if (X,∆ =

∑
ciDi) is an slc pair of

dimension n, then
(
X, b∆c+

∑
{mci}Di

)
is slc for m ∈ M(C, n), and has the same

lc centers as (X,∆).

Proof Let A ⊂ Rr be the affine envelope of c := (c1, . . . , cr) ∈ Rr and H ⊂ Rn

the closed subgroup generated by A. Then A is a connected component of H
and H/(H ∩ Zr) ⊂ Rr/Zr is a closed subgroup. Furthermore, by a theorem of
Weyl, the multiples of c are equidistributed in H/(H ∩ Zr); see, for example,
Kuipers and Niederreiter (1974, sec.1.1).

Pick now σn
j as in (11.48). Then the convex linear combinations of the σn

j (c)
give an open neighborhood c ∈ U ⊂ H/(H ∩ Zr). If

(
{mc1}, . . . , {mcr}

)
∈ U

then (1–2) hold. �

Applying (11.20) gives the following.

Corollary 11.50 Using the notation of (11.49), let (X,∆ =
∑

ciDi) be an slc
pair of dimension n. Then, for every m ∈ M(C, n),

depthx ω
[m]
X

(∑
bmcicDi

)
≥ min{3, codimX x} (11.50.1)

whenever x is not an lc center of (X,∆). �

Example 11.50.2 Let X ⊂ A4 be the quadric cone and |A|, |B| the two families
of planes on X. Fix r ∈ N and for 0 < c ≤ 1/r consider the pair(

X,∆c := B + cA1 + · · · + cAr + (1 − rc)A0
)
.

Then (X,∆c) is canonical and

OX
(
bm∆cc

)
'

{
OX(−A) if {mc} ≤ 1/r, and
OX(−dA) for some d ≥ 2 otherwise.
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An easy computation, as in Kollár (2013b, 3.15.2), shows that OX
(
bm∆cc

)
is

CM iff {mc} ≤ 1/r. If c is irrational, then the set {m : {mc} ≤ 1/r} has no
periodic subsets.

Definition 11.51 Let g : X → S be a proper morphism. An R-Cartier divisor
H is g-ample iff it is linearly equivalent to a positive linear combination H ∼R∑

ciHi of g-ample Cartier divisors.
Ampleness is preserved under perturbations. Indeed, let D1, . . . ,Dr be Q-

Cartier divisors. There are m j > 0 such that the m jH1 + D j are g-ample. Then

H +
∑

jη jD j ∼R
(
c1 −

∑
jη jm j

)
H1 +

∑
i,1ciHi +

∑
jη j(m jH1 + D j)

shows that H +
∑

jη jD j is g-ample if η j ≥ 0 and
∑

jη jm j ≤ c1.
This implies that if H is g-ample, m � 1 and bmHc is Cartier, then bmHc

is very g-ample. However, frequently bmHc is not even Q-Cartier for every
m > 0, making the proofs of the basic ampleness criteria more complicated.

Theorem 11.52 (Asymptotic Riemann–Roch) Let X be a normal, proper
algebraic space of dimension n and D a nef R-Cartier divisor. Then

h0(X,OX(bmDc)
)

= mn

n! (Dn) + O(mn−1), and

h0(X,OX(dmDe)
)

= mn

n! (Dn) + O(mn−1).
(11.52.1)

Proof By Chow’s lemma we may assume that X is projective. Write D =∑
aiAi where the Ai are effective, ample Z-divisors and ai ∈ R. Then∑

bmaicAi ≤ bmDc ≤ mD ≤ dmDe ≤ H +
∑
dmaieAi (11.52.2)

for any H ample and effective. It is thus enough to prove that (11.52.1) holds
for the two divisors on the sides of (11.52.2) for suitable H. Note that∑

dmaieAi ∼R
∑

(dmaie − mai)Ai + mD,

thus
∑
dmaieAi is nef for every m ≥ 0, even though some of the dmaie may be

negative. Next choose H such that (11.52.4) holds (with F = OX) and H +
∑

Ai

is linearly equivalent to an irreducible divisor B. Then, by Riemann–Roch,

h0(X,OX(H +
∑
dmaieAi)

)
= χ

(
X,OX(H +

∑
dmaieAi)

)
= mn

n! (Dn) + O(mn−1).

Restricting OX(H +
∑
dmaieAi) to B, the kernel is

OX(
∑
dmaieAi −

∑
Ai) ⊂ OX(

∑
bmaicAi)

(the two are equal iff none of the mai are integers). Thus

h0(X,OX(H +
∑
dmaieAi)

)
− h0(X,OX(

∑
bmaicAi)

)
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is at most h0(B,OB(H|B+
∑
dmaieAi|B)

)
. The latter is bounded by O(mn−1) using

(11.52.3). �

11.52.3 (Matsusaka inequality) Let X be a proper variety of dimension n, L a
nef and big Z-divisor and D a Weil Z-divisor giving a dominant map |D| : X d
Z. Then

h0(X,OX(D)
)
≤

(D · Ln−1)dim Z

(Ln)dim Z−1 + dim Z.

See Matsusaka (1972) or Kollár (1996, VI.2.15) for proofs.

11.52.4 (Fujita vanishing) Let X be a projective scheme and F a coherent sheaf
on X. Then there is an ample line bundle L such that

Hi(X, F ⊗ L ⊗ M
)

= 0 ∀i > 0, ∀ nef line bundle M.

See Fujita (1983) (or Lazarsfeld (2004, I.4.35) for the characteristic 0 case).

Corollary 11.53 (Kodaira lemma) Let X be a normal, proper, irreducible alge-
braic space of dimension n and D a nef R-divisor. Then D is big (p.xvi) ⇔
(Dn) > 0 ⇔ one can write D = cB + E, where B is a big Z-divisor, c > 0,
and E is an effective R-divisor. If X is projective, then one can choose B to be
ample.

Proof With (11.52) in place, the arguments in Kollár and Mori (1998, 2.61) or
Lazarsfeld (2004, 2.2.6) work. See also Shokurov (1996, 6.17) (for character-
istic 0) and Birkar (2017, 1.5) for the original proofs, or Fujino and Miyamoto
(2021, 2.3). �

The proof of the Nakai–Moishezon criterion for R-divisors uses induction
on all proper schemes, so first we need some basic results about them.

11.54 (R-Cartier divisor classes) Fujino and Miyamoto (2021) On an arbitrary
scheme one can define R-line bundles or R-Cartier divisor classes as elements
of Pic(X) ⊗Z R. It is better to think of these as coming from line bundles, but
writing divisors keeps the additive notation.

Claim 11.54.1 Let X be a proper algebraic space, p : Y → X its normalization
and Θ an R-Cartier divisor class on X. Then Θ is ample iff p∗Θ is ample.

Proof For Cartier divisors, this is Hartshorne (1977, ex.III.5.7), which implies
the Q-Cartier case. Next we reduce the R-Cartier case to it.

By assumption, we can write Θ ∼R
∑

idiDi where the Di are Q-Cartier. By
(11.46), there are ci j ∈ Q and 0 < λ j ∈ R such that the ΘY

j :=
∑

i ci j p∗Di are
ample and di =

∑
k λ jci j for every i. In particular, p∗Θ ∼R

∑
j λ jΘ

Y
j .

https://doi.org/10.1017/9781009346115.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.013


11.4 R-divisors 441

Set Θ j :=
∑

i ci jDi. Then Θ ∼R
∑

j λ jΘ j and p∗Θ j = ΘY
j . The Θ j are Q-

Cartier, hence ample, hence so is Θ. �

Corollary 11.54.2 Let g : X → S be a proper morphism of algebraic spaces
and Θ an R-Cartier divisor class on X. Then

S amp := {s ∈ S : Θs is ample on Xs} ⊂ S is open.

Proof Write Θ =
∑

diDi and apply (11.46) to its restriction to Xs. Thus we get
Q-Cartier divisors Θ j := Θn

j (for n � 1) such that Θ =
∑

j λ jΘ j and each Θ j|Xs

is ample. The Θ j are ample over some open s ∈ S ◦ ⊂ S , hence so is Θ. �

Theorem 11.55 Fujino and Miyamoto (2021) Let X be a proper algebraic
space and D anR-Cartier divisor class on X. Then D is ample iff (Ddim Z ·Z) > 0
for every integral subscheme Z ⊂ X.

Proof By (11.54.1), we may assume that X is normal. By (11.52), we may
assume that D is an effective R-divisor. By (11.46), we can write D =

∑
λiDi

where the Di are effective, Q-Cartier. D − Di can be chosen arbitrarily small.
Let p : Y → Supp D ↪→ X be the normalization of Supp D. By dimension

induction, p∗D is ample, and so are the p∗Di if the D − Di are small enough.
Thus the Di|Supp D are ample, hence the Di are semiample by (11.55.1). Since

(D · C) > 0 for every curve, Supp D is not disjoint from any curve, hence the
same holds for Supp Di = Supp D. So the Di are ample, and the converse is
clear. �

Claim 11.55.1 (Lazarsfeld, 2004, p.35) Let X be a proper algebraic space and D
an effectiveQ-Cartier divisor such that D|Supp D is ample. Then D is semiample.
Thus if D is not disjoint from any curve, then D is ample. �

The usual proof of the Seshadri criterion (see Lazarsfeld (2004, 1.4.13)) now
gives the following.

Corollary 11.56 (Seshadri criterion) Let X be a proper algebraic space and
D an R-Cartier divisor on X. Then D is ample iff there is an ε > 0 such that
(D ·C) ≥ εmultp C for every pointed, integral curve p ∈ C ⊂ X. �

Next we study a way to pull back Weil divisors.

11.57 (Intersection theory on normal surfaces) Mumford (1961) Let S be a
normal, two-dimensional scheme and p : S ′ → S a resolution with exceptional
curves Ei. The the intersection matrix (Ei ·E j) is negative definite by the Hodge
index theorem (see Kollár (2013b, 10.1)). Let D be an R-divisor on S . Then
there is a unique p-exceptional R-divisor ED such that
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(
Ei · (p−1

∗ D + ED)
)

= 0 for every i. (11.57.1)

If D is effective, then ED is effective by Kollár (2013b, 10.3.3) and (Ei ·ED) ≤ 0
for every i.

We call p∗D := p−1
∗ D + ED the numerical pull-back of D. If D is R-Cartier

then this agrees with the usual pull-back.
More generally, the numerical pull-back is also defined if S ′ is only normal:

we first pull-back to a resolution of S ′ and then push forward to S .
If D1,D2 are R-divisors and one of them has proper support, then one can

define their intersection cycle as

(D1 · D2) = p∗
(
p−1
∗ D1 · p∗D2

)
= p∗

(
p−1
∗ D2 · p∗D1

)
. (11.57.2)

If S is proper, we get the usual properties of intersection theory, except that,
even if the Di are Z-divisors, their intersection numbers can be rational.

The following connects the numerical and sheaf-theoretic pull-backs.

Claim 11.57.3 Let p : T → S be a proper, birational morphism between normal
surfaces with exceptional curve E = ∪Ei. Let B be an R-divisor on T such that
−B is p-nef. Then p∗OT (bBc) = OS (bp∗Bc).

Moreover, if E is connected, then g∗OT (bB − εEc) = OS (bp∗Bc) for 0 ≤ ε �
1, save when B is a Z-divisor and B ∼ 0 in a neighborhood of E.

Proof Write B = Bv + Bh as a sum of its exceptional and nonexceptional parts.
We can harmlessly replace Bh with its round down, so we assume that Bh is a
Z-divisor. Let φ be a local section of OS (p∗Bh). Then φ ◦ p is a rational section
of OT (Bh), with possible poles along the exceptional curves. There is thus a
smallest exceptional Z-divisor F such that φ ◦ p is a section of OT (Bh + F). In
particular,

(
Ei · (Bh + F)

)
≥ 0 for every i. Thus(

Ei · (F − Bv)
)

=
(
Ei · (Bh + F − B)

)
≥

(
Ei · (Bh + F)

)
≥ 0

for every i. By the Hodge index theorem (Kollár, 2013b, 10.3.3), this implies
that Bv − F is effective, thus Bh + F ≤ bBc.

Moreover, Bv − F − εE is effective, unless(
Ei · (−B)

)
= 0 and

(
Ei · (Bh + F)

)
= 0

for every i. Then Bh + F ∼ 0 and Bh + Bv ∼Q 0. Thus F = Bv, hence B ∼ 0. �

Corollary 11.57.4 Let p : T → S be a proper, birational morphism between
normal surfaces and D an R-divisor on S . Then p∗OT (bp∗Dc) = OS (bDc). �

Next we propose a higher dimensional version of pull-back, focusing on its
numerical properties. A different notion, using sheaf-theoretic properties, is
defined in de Fernex and Hacon (2009).
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11.58 (Numerical pull-back) Let g : Y → X be a projective, birational mor-
phism of normal schemes and H a g-ample Cartier divisor. We define the
H-numerical pull-back of R-divisors

g(∗)
H : WDivR(X)→WDivR(Y)

as follows. Let D ⊂ X be an R-divisor. We inductively define

g(∗)
H (D) = g−1

∗ D +
∑

i≥2Fi(D), (11.58.1)

where Supp Fi(D) consists of g-exceptional divisors Ei` for which g(Ei`) ⊂ X
has codimension i.

Assume that we already defined the Fi(D) for i < j. Let x ∈ X be a point of
codimension j. After localizing at x, we have gx : Yx → Xx. Let F j(D)x be the
unique divisor supported on g−1

x (x) such that(
E j` · (g−1

∗ D +
∑

i< jFi(D) + F j(D)x) · H j−2) = 0 ∀`. (11.58.2)

To make sense of this, we may assume that H is very ample. Let S be a general
complete intersection of j − 2 members of |H|. Then S is a normal surface, so
we are working with intersection numbers as in (11.57). Also, if S is general,
then the gx|S -exceptional curves are in one-to-one correspondence with the
divisors E j`, so any linear combination of gx|S -exceptional curves corresponds
to a linear combination of the divisors E j`.

If we have proper, but non-projective Y → X, we can apply our definition
to a projective modification Y ′ → Y → X and then push forward to Y . This
defines g(∗)

H in general.
Already in simple situations, for example, for cones over cubic surfaces, the

divisors g(∗)
H (D) do depend on H. However, the notion has several good proper-

ties and it is quite convenient in some situations. See, for example, (11.52) or
Fulger et al. (2016, 3.3).

Theorem 11.59 Let g : Y → X be a projective, birational morphism of normal
schemes and H a g-ample Cartier divisor. Then
(11.59.1) g(∗)

H : WDivR(X)→WDivR(Y) is R-linear,
(11.59.2) g∗ ◦ g(∗)

H is the identity,
(11.59.3) if D is R-Cartier, then g(∗)

H (D) = g∗(D),
(11.59.4) if D is effective, then so is g(∗)

H (D),
(11.59.5) g(∗)

H respects R-linear equivalence,
(11.59.6) g∗OY

(
bg(∗)

H (B)c
)

= OX
(
bBc

)
, and

(11.59.7) g(∗)
H maps Q-divisors to Q-divisors.
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Proof Here (1–3) are clear from the definition. (4) follows from its surface
case, which we noted after (11.57.1). If D1 ∼R D2 then, using first (1) and then
(3), we get that

g(∗)
H (D1) = g(∗)

H (D2) + g(∗)
H (D1 − D2) = g(∗)

H (D2) + g∗(D1 − D2),

giving (5). Finally (6) is a local question. We may thus assume that (6) holds
outside a closed point x ∈ X. Assume to the contrary that OY

(
bg(∗)

H (B)c
)

has
a rational section that has poles along g−1(x). After restricting to a general
complete intersection surface S ⊂ Y as in (11.58), we would get a contradiction
to (11.57.3). �

The following negativity lemmas are quite useful.

Lemma 11.60 (Kollár and Mori, 1998, 3.39) Let h : Z → Y be a proper
birational morphism between normal schemes. Let −B be an h-nef R-Cartier
divisor on Z. Then
(11.60.1) B is effective iff h∗B is.
(11.60.2) Assume that B is effective. Then for every y ∈ Y, either h−1(y) ⊂

Supp B or h−1(y) ∩ Supp B = ∅. �

Lemma 11.61 Kollár (2018a) Let π : Y → X be a proper, birational contrac-
tion of demi-normal schemes such that none of the π-exceptional divisors is
contained in Sing Y. Let N, B be Mumford R-divisors such that N is π-nef and
B is effective and non-exceptional. Then

π∗OY (b−N − Bc) = OX(bπ∗(−N − B)c). (11.61.1)

Moreover, fix x ∈ X and let Ex be the divisorial part of π−1(x). Then

π∗OY (b−N − B − εExc) = OX(bπ∗(−N − B)c) (11.61.2)

for 0 ≤ ε � 1, save when N+B is a Z-divisor and N+B ∼ 0 in a neighborhood
of π−1(x).

Proof If dim Y = 2, then B is also π-nef, so the claim follows from (11.57.3).
In general, we may assume that π is projective, take the normalization, and
reduce to the surface case as in the proof of (11.59.6). �

11.62 (Divisorial base locus) Let X be a normal scheme and D a Z-divisor.
The divisorial part of the base locus of |D| is denoted by Bsdiv(D). Define the
divisorial base locus of an R-divisor ∆ as Bsdiv(∆) := Bsdiv(b∆c) + {∆}. In
particular, H0(X,OX(bD − Bsdivc(D))

)
= H0(X,OX(bDc)

)
.
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Assume now that we can write ∆ =
∑

j a jA j where the A j are Cartier divisors
such that Bs(A j) = ∅ and a j > 0 (This is always possible if X is quasi-affine.)
Then

∑
jbma jcA j ≤ bm∆c for any m > 0, which shows that

Bsdiv(m∆) ≤
∑

jA j. (11.62.1)

Claim 11.62.2 Let g : Y → X be a proper, birational morphism of normal
schemes and ∆ an R-Cartier, R-divisor on X. Let E be a g-exceptional divisor.
Then g∗OY (bmg∗∆ + mEc) = OX(bm∆c) for infinitely many m ≥ 1 iff E is
effective.

Proof Use (11.61) with B = 0 and N = −g∗∆ for the if part. For the converse,
we may assume that X is affine. Write ∆ =

∑
j a jA j as above.

If g∗OY (bmg∗∆ + mEc) = OX(bm∆c) then −mE ≤ Bsdiv(mg∗∆) ≤
∑

jg∗A j by
(11.62.1). If this holds for infinitely many m ≥ 1, then E is effective. �
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