Basic Notation

 \mathbb{N} : set of all natural numbers.

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}.$

 \mathbb{R} : set of all real numbers.

 \mathbb{R}^n : *n*-dimensional Euclidean space.

 $\mathbb{R}^n_+:\{(x_i)\in\mathbb{R}^n:x_n>0\}\,.$

 ω_n : volume of unit ball in \mathbb{R}^n .

 Ω : open subset of \mathbb{R}^n with closure $\overline{\Omega}$ and boundary $\partial \Omega$.

B(X, Y): space of all bounded linear maps from a Banach space X to another such space Y.

K(X, Y): subspace of B(X, Y) consisting of all compact linear maps from X to Y.

Embedding: a bounded linear injective map of a Banach space X to another such space Y.

 $X \hookrightarrow Y$: the space X is embedded in Y.

 $X \hookrightarrow \hookrightarrow Y$: the space *X* is compactly embedded in *Y*.

 $L_p(\Omega)$: the Lebesgue space of all scalar-valued functions f on Ω such that $\int_{\Omega} |f|^p dx < \infty \ (1 \le p < \infty)$.

 $L_{\infty}(\Omega)$: the Lebesgue space of all scalar-valued functions f on Ω such that ess $\sup_{\Omega} |f(x)| < \infty$.

F: Fourier transform given by $F(f)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi} dx$.