Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:53:03.748Z Has data issue: false hasContentIssue false

Characterizations of Morrey type spaces

Published online by Cambridge University Press:  14 May 2021

Fangmei Sun
Affiliation:
Department of Mathematics, Shantou University, Shantou515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
Hasi Wulan*
Affiliation:
Department of Mathematics, Shantou University, Shantou515063, People’s Republic of China e-mail: 18fmsun@stu.edu.cn
*

Abstract

For a nondecreasing function $K: [0, \infty)\rightarrow [0, \infty)$ and $0<s<\infty $ , we introduce a Morrey type space of functions analytic in the unit disk $\mathbb {D}$ , denoted by $\mathcal {D}^s_K$ . Some characterizations of $\mathcal {D}^s_K$ are obtained in terms of K-Carleson measures. A relationship between two spaces $\mathcal {D}^{s_1}_K$ and $\mathcal {D}^{s_2}_K$ is given by fractional order derivatives. As an extension of some known results, for a positive Borel measure $\mu $ on $\mathbb {D}$ , we find sufficient or necessary condition for the embedding map $I: \mathcal {D}^{s}_{K}\mapsto \mathcal {T}^s_{K}(\mu)$ to be bounded.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research is supported by the National Natural Science Foundation of China (Grant Number 11720101003)

References

Aleman, A., Carlsson, M., and Persson, A., Preduals of ${{\mathcal{Q}}}_p$ -spaces. II. Carleson imbeddings and atomic decompositions . Complex Var. Elliptic Equ. 52(2007), 629653.CrossRefGoogle Scholar
Arcozzi, N., Rochberg, R., and Sawyer, E., Carleson measures for analytic Besov spaces. Rev. Mat. Iberoam. 18(2002), 443510.CrossRefGoogle Scholar
Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76(1962), 547559.CrossRefGoogle Scholar
Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of ${{\mathcal{Q}}}_K$ type . Uppsala Univ. Dept. Math. Rep. 32(2000), 1–26. Ill. J. Math. 46(2002), 12331258.Google Scholar
Essén, M., Wulan, H., and Xiao, J., Several function-theoretic characterizations of Möbius invariant ${{\mathcal{Q}}}_K$ spaces . J. Funct. Anal. 230(2006), 78115.CrossRefGoogle Scholar
Galanopoulos, P., Merchán, N., and Siskakis, A. G., A family of Dirichlet-Morrey spaces. Complex Var. Elliptic Equ. 64(2019), 16861702.CrossRefGoogle Scholar
Girela, D. and Peláez, J., Carleson measures for spaces of Dirichlet type. Integr. Equ. Oper. Theor. 55(2006), 415427.CrossRefGoogle Scholar
Kerman, R. and Sawyer, E., Carleson measures and multipliers of Dirichlet-type spaces. Trans. Amer. Math. Soc. 309(1988), 8798.CrossRefGoogle Scholar
Li, P., Liu, J., and Lou, Z., Integral operators on analytic Morrey spaces. Sci. China Math. 57(2014), 19611974.CrossRefGoogle Scholar
Liu, J. and Lou, Z., Properties of analytic Morrey spaces and applications. Math. Nachr. 288(2015), 16731693.CrossRefGoogle Scholar
Liu, J., Lou, Z., and Zhu, K., Embedding of Möbius invariant function spaces into tent spaces. J. Geom. Anal. 27(2017), 10131028.CrossRefGoogle Scholar
Morrey, B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43(1938), 126166.CrossRefGoogle Scholar
Oleinik, V., Embedding theorems for weighted classes of harmonic and analytic functions (in Russian). Zap. Nauch. Sem. LOMI Steklov 47(1974), 120137, translation in J. Soviet Math. 9(1978), 228–243.Google Scholar
Ortega, J. and Fàbrega, J., Pointwise multipliers and corona type decomposition in BMOA. Ann. Inst. Fourier (Grenoble) 46(1996), 111137.CrossRefGoogle Scholar
Pau, J. and Peláez, J. Á., Multipliers of Möbius invariant ${{\mathcal{Q}}}_s$ spaces . Math. Z. 261(2009), 545555.CrossRefGoogle Scholar
Pau, J. and Peláez, J. Á., Composition operators acting on weighted Dirichlet spaces. J. Math. Anal. Appl. 401(2013), 682694.CrossRefGoogle Scholar
Pau, J. and Zhao, R., Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces. Integr. Equ. Oper. Theory 78(2014), 483514.CrossRefGoogle Scholar
Peetre, J., On the theory of ${L}_{p,\lambda }$ spaces . J. Funct. Anal. 4(1964), 7187.CrossRefGoogle Scholar
Qian, R. and Li, S., Volterra type operators on Morrey type spaces. Math. Ineq. Appl. 18(2015), 15891599.Google Scholar
Rochberg, R. and Wu, Z., A new characterization of Dirichlet type spaces and applications. Ill. J. Math. 37(1993), 101122.Google Scholar
Stegenga, D., Multipliers of the Dirichlet space. Ill. J. Math. 24(1980), 113139.Google Scholar
Wu, Z., Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal. 169(1999), 148163.CrossRefGoogle Scholar
Wu, Z. and Xie, C., $Q$ spaces and Morrey spaces . J. Funct. Anal. 201(2003), 282297.CrossRefGoogle Scholar
Wulan, H. and Zhou, J., ${{\mathcal{Q}}}_K$ and Morrey type spaces . Ann. Acad. Sci. Fenn. Math. 38(2013), 193207.CrossRefGoogle Scholar
Wulan, H. and Zhu, K., Möbius invariant ${{\mathcal{Q}}}_K$ spaces. Springer, Cham, 2017.Google Scholar
Xiao, J., Holomorphic ${\mathcal{Q}}$ classes. Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001.Google Scholar
Xiao, J., Geometric ${{\mathcal{Q}}}_p$ functions. Frontiers in Mathematics, Birkhäuser, Verlag, Basel, 2006.Google Scholar
Xiao, J., The ${{\mathcal{Q}}}_p$ Carleson measure problem . Adv. Math. 217(2008), 20752088.CrossRefGoogle Scholar
Zhao, R., On logarithmic Carleson measures. Acta Sci. Math. (Szeged) 69(2003), 605618.Google Scholar
Zhu, K., Operator theory in function spaces. 2nd ed., Math. Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007.CrossRefGoogle Scholar
Zorko, C., Morrey space. Proc. Amer. Math. Soc. 98(1986), 586592.CrossRefGoogle Scholar