
20
Sullivan h-Conformal Measures for Compactly

Nonrecurrent Elliptic Functions

In this chapter, we deal systematically with one of the primary concepts of
the book, namely that of (Sullivan) h-conformal (as always, h = HD(J (f )))
measures for compactly nonrecurrent elliptic functions. We will prove their
existence for this class of elliptic functions. In Section 20.3, we will introduce
an important class of regular compactly nonrecurrent elliptic functions. For
this class of elliptic functions, we will prove the uniqueness and atomlessness
of h-conformal measures along with their first basic stochastic properties such
as ergodicity and conservativity. We will then assume an elliptic function to be
compactly nonrecurrent regular throughout the entire book, unless explicitly
stated otherwise.

We have already met the concept of conformal measures in Sections 10.1
and 10.2, where we treated them in a very general setting in the former of these
two sections and in the latter in a setting and spirit quite close to the one we
will be dealing with in the current chapter. In particular, we will frequently use
the results of these two sections in the current chapter.

We gave, in Section 10.1, quite an extended historical account of the concept
of conformal measures, particularly the Sullivan ones. We repeat a part of it
here for the sake of completeness and for the convenience of the reader.

Conformal measures were first defined and introduced by Patterson in his
seminal paper [Pat1] (see also [Pat2]) in the context of Fuchsian groups.
Sullivan extended this concept to all Kleinian groups in [Su2] and [Su4]. He
then, in papers [Su5] and [Su7], defined conformal measures for all rational
functions of the Riemann sphere Ĉ; he also proved their existence therein. Both
Patterson and Sullivan came up with conformal measures in order to get an
understanding of geometric measures, i.e., Hausdorff and packing measures.
Although Sullivan had already noticed that there are conformal measures for
Kleinian groups that are not equal, nor even equivalent to any Hausdorff
or packing (generalized) measure, the main purpose of dealing with them
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308 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

is to understand Hausdorff and packing measures. Chapter 11 in Volume I,
Section 17.6, and, especially, the current Part VI of our book provide good
evidence.

Conformal measures, in the sense of Sullivan, have been studied in the
context of rational functions in greater detail in [DU3], where, in particular,
the structure of the set of their exponents was examined.

Since then, conformal measures in the context of rational functions have
been studied in numerous research works. We list here only a very few of them
that appeared in the early stages of the development of their theory: [DU1],
[DU5], [DU6]. Subsequently, the concept of conformal measures, in the sense
of Sullivan, has been extended to countable alphabet iterated function systems
in [MU1] and to conformal graph directed Markov systems in [MU2]. These
were treated at length in Chapter 11. This was, furthermore, extended to some
transcendental meromorphic dynamics in [KU2], [UZ1], and [MyU3]; see also
[UZ2], [MyU4], and [BKZ1]. Our current construction fits well with this line
of development.

Last, the concept of conformal measures also found its place in random
dynamics; we cite only [MSU].

20.1 Existence of Conformal Measures for Compactly
Nonrecurrent Elliptic Functions

In this section, we prove the existence of h-conformal measures for compactly
nonrecurrent elliptic functions. We also locate their potential atoms.

As a fairly straightforward application of Theorem 17.6.7, we shall prove
the following main result of this section.

Theorem 20.1.1 If f : C −→ Ĉ is a compactly nonrecurrent elliptic function,
then

DDh(J (f )) = DDχ (J (f )) = HD
(
Jer (f )

) = HD
(
Jr(f )

) = h = HD(J (f ))

(20.1)

and there exists an h-conformal measure mh for f (remember that its spherical
version is, as are all spherical conformal measures considered in this book,
finite; as a matter of fact, probabilistic) all of whose atoms are contained in
the set

Zf :=
∞⋃

n=0

f−n
(
Crit(J (f ))

) ∪ ∞⋃
n=1

f−n(∞).
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20 Sullivan h-Conformal Measures 309

Furthermore, mh is the measure produced in Claim 2◦ stated in the proof of
Theorem 17.6.7.

In addition, if mh(Crit(J (f )) = 0, then all atoms of mh are contained in
the set

I−(f ) =
∞⋃

n=1

f−n(∞).

Proof Let mh be the measure m produced in Theorem 17.6.7. In fact, because
of Corollary 18.3.6, we can, and we do, take the measure mh as produced in
Claim 2◦ stated in the proof of Theorem 17.6.7. In view of Proposition 18.3.4,
we have that J (f )\Jr(f ) ⊆ Sing−(f ). Since the set Sing−(f ) is countable, it
follows that h = HD(J (f )) = HD(Jr(f )) = sf . Thus, by virtue of Theorem
17.6.7, (20.1) holds and the measure mh is h-conformal.

Now by applying h-conformality of the measure mh, it follows from (17.32)
of Lemma 17.6.6 and Corollary 18.3.6 that if z ∈ J (f )\Sing−(f ), then

mh({z}) = 0.

Since, by Theorem 17.6.7, mh(�(f ))= 0, we conclude that if z∈ f−n(�(f ))

with some integer n ≥ 0, and m({z}) 	= 0, then

z ∈
∞⋃

n=0

f−n
(
Crit(J (f ))

)
.

Thus (note also that, by Theorem 17.6.7, mh(∞) = 0), all atoms of mh are
contained in the set

Zf =
∞⋃

n=0

f−n
(
Crit(J (f ))

) ∪ ∞⋃
n=1

f−n(∞).

In order to prove the last assertion of our theorem, assume that
mh(Crit(J (f ))= 0, z ∈ J (f ), and f n(z) ∈ Crit(J (f )) for some integer
n ≥ 0. Then let 0 ≤ k ≤ n be the least integer such that f k(z) ∈ Crit(J (f )).
Since mh({f k(z)}) = 0, we then conclude, by h-conformality of mh, that
mh({z}) = 0. The proof of Theorem 20.1.1 is, thus, complete. �

20.2 Conformal Measures for Compactly Nonrecurrent
Elliptic Functions and Holomorphic Inverse Branches

In this section, we keep f : C −→ Ĉ, a compactly nonrecurrent elliptic func-
tion. Let m be an almost t-conformal measure and me be its Euclidean version.
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310 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

The upper estimability and strongly lower estimability will be considered in
this section with respect to the measure me. When we speak about lower
estimability, we will make a stronger assumption, namely that the measure
m is t-conformal. Since the number of parabolic points is finite, passing to an
appropriate iteration, we assume without loss of generality, in this and the next
section, that all parabolic periodic points of f are simple.

Consider a closed forward f -invariant subset E of C such that

‖f ′‖E := sup{|f ′(z)| : z ∈ E} < +∞.

Such sets will be called f -pseudo-compact. Obviously, each f -invariant
compact subset E of C is f -pseudo-compact. Recall that θ = θ(f ) > 0 was
defined in (18.19), β = βf > 0 was defined in (18.21), αt (ω) in Lemma
15.4.1, and that τ > 0 is so small as required in Lemma 15.3.2.

The proofs of Propositions 4.15 and 4.16 from [KU4] translate verbatim to
our current case. We present them now.

Proposition 20.2.1 Let f : C → Ĉ be a compactly nonrecurrent elliptic
function. Fix an f -pseudo-compact subset E of J (f ). Let z ∈ E, λ > 0,
and 0 < r ≤ τθ min{1,‖f ′‖−1

E }λ−1 be a real number. Suppose that at least
one of the following two conditions is satisfied:

z ∈ E\
⋃
n≥0

f−n(Crit(J (f ))

or

z ∈ E and r > τθ min
{
1,‖f ′‖−1

E }λ−1 inf{|(f n)′(z)|−1 : n = 1,2, . . .
}
.

Then there exists an integer u = u(λ,r,z) ≥ 0 such that

r|(f j )′(z)| ≤ λ−1θτ

for all 0 ≤ j ≤ u and the following four conditions are satisfied:

diame

(
Comp(f j (z),f u−j,λr|(f u)′(z)|)) ≤ β = βf (20.2)

for every j = 0,1, . . . ,u.
Let m be an almost t-conformal measure. Then, for every η > 0, there exists

a continuous function [0,∞) � t �−→ Bt = Bt(λ,η) > 0 (independent of z, n,
and r) such that if f u(z) ∈ Be(ω,θ) for some ω ∈ �(f ), then

f u(z) is (ηr|(f u)′(z)|,Bt )− αt (ω)-u.e. (20.3)

with respect to the almost t-conformal measure m, and there exists a function
Wt = Wt(λ,η) : (0,1] −→ (0,1] (independent of z, n, and r) such that if
f u(z) ∈ Be(ω,θ) for some ω ∈ �(f ), then, for every σ ∈ (0,1],
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f u(z) is (ηr|(f u)′(z)|,σ,Wt(σ ))− αt (ω)-s.l.e. (20.4)

with respect to the almost t-conformal measure m. If f u(z) /∈ Be(�(f ),θ),
then (20.3) and (20.4) are also true with

αt (ω) replaced by t . (20.5)

Proof Suppose, first, that

sup{λr|(f j )′(z)| : j ≥ 0} > θτ min{1,‖f ′‖−1
E }. (20.6)

Let n = n(λ,z,r) ≥ 0 be the least integer for which

λr|(f n)′(z)| > θτ min{1,‖f ′‖−1
E }. (20.7)

Then n ≥ 1 (owing to the assumption imposed on r),

λr|(f j )′(z)| ≤ θτ min{1,‖f ′‖−1
E } (20.8)

for all 0 ≤ j ≤ n− 1, and also

λr|(f n)′(z)| ≤ θτ . (20.9)

If f n(z) /∈ Be(�(f ),θ), set u = u(λ,r,z) := n. Then items (20.3)–(20.5)
are obvious in view of (20.7) and (20.9), while (20.2) follows from (18.22) and
(18.23) along with (20.9). Thus, we are done in this subcase.

So, suppose that

f n(z) ∈ Be(�(f ),θ), (20.10)

say f n(z) ∈ Be(ω,θ), ω ∈ �(f ). Let 0 ≤ k = k(λ,z,r) ≤ n be the least
integer such that f j (z) ∈ Be(�(f ),θ) for every j = k,k + 1, . . . ,n. Consider
all the numbers

ri := |f i(z)− ω||(f i)′(z)|−1,

where i = k,k + 1, . . . ,n. Put

‖f ′‖+E := max{1,‖f ′‖E}.
By (20.7), we have that

rn = |f n(z)− ω||(f n)′(z)|−1 ≤ θ‖f ′‖+Eθ−1τ−1λr = ‖f ′‖+Eτ−1λr;
therefore, there exists a minimal k ≤ u = u(λ,r,z) ≤ n such that ru ≤
‖f ′‖+Eτ−1λr . In other words,

|f u(z)− ω| ≤ ‖f ′‖+Eτ−1λr|(f u)′(z)|. (20.11)
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Now suppose that

sup{λr|(f j )′(z)| : j ≥ 0} ≤ θτ min{1,‖f ′‖−1
E }. (20.12)

Then it follows from Corollary 18.3.6 and our hypotheses that

z ∈
∞⋃

j=0

f−j (�(f )).

Define then the three numbers u(λ,z,r), k(λ,z,r), and n(λ,z,r) to all be equal
to the least integer j ≥ 0 such that f j (z) ∈ �(f ). Denote

ω = f u(z).

Notice that, in this case, (20.9) and (20.11) are also satisfied. Our further
considerations are valid in both cases (20.6) with (20.10), and (20.12). First
note that, by (20.11), we have that

Be(f
u(z),ηr|(f u)′(z)|) ⊆ Be(ω,(1+ ‖f ′‖+Eτ−1η−1λ)ηr|(f u)′(z)|).

(20.13)

In view of Lemma 15.4.1 along with (20.8) and (20.9), we get that

me

(
Be(f

u(z),ηr|(f u)′(z)|))≤C(1+‖f ′‖+Eτ−1η−1λ)αt (ω)(ηr|(f u)′(z)|)αt (ω).

So, item (20.3) is proved. Also applying (20.11), Lemmas 15.4.5 and 10.4.4,
and (20.9), we see that the point f u(z) is(‖f ′‖+Eτ−1λr|(f u)′(z)|,στ‖f ′‖−1

E ηλ−1,2αt (ω)L(ω,2‖f ′‖+Eθ,

στ(2‖f ′‖+E)−1ηλ−1)
)− αt (ω)-s.l.e.

So, if ‖f ′‖+Eτ−1λ ≥ η, then, by Lemma 10.4.5, f u(z) is(
ηr|(f u)′(z)|,σ,(2‖f ′‖+Eτ−1λη−1)αt (ω)L(ω,2‖f ′‖+Eθ,

στ(2‖f ′‖E)−1η)λ−1)− αt (ω)-s.l.e.

If, instead, ‖f ′‖Eτ−1λ ≤ η, then, again, it follows from (20.11), Lemmas
15.4.5 and 10.4.4, and (20.9) that the point f u(z) is(

ηr|(f u)′(z)|,σ,2αt (ω)L(ω,2θτλ−1η,σ/2)
)− αt (ω)-s.l.e.

So, part (20.4) is also proved.
In order to prove (20.2), suppose, first, that u = k. In particular, this is

the case if z ∈ ⋃
j≥0 f−j (�(f )). If k = 0, we are done since λr ≤ τθ by

our hypotheses, while τθ ≤ βf by (18.23). So, suppose that k ≥ 1. Since
0 ≤ u ≤ n, it then follows from (20.8) and (20.9) that

Comp(f k−1(z),f ,r|(f u)′(z)|) ⊆ Comp(f k−1(z),f ,θτ ),
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and, by the choice of k and (15.58), we have that f k−1(z) /∈ Be(�(f ),θ).
Therefore, (20.2) follows from (18.22)) and (18.23).

If u > k (so, we are in the case of (20.6) and (20.10)), then ru−1 >

‖f ′‖+Eτ−1λr ≥ ‖f ′‖Eτ−1λr . Also using (15.58), we get that

ru = |f u(z)− ω|
|f u−1(z)− ω| |f

′(f u−1(z))|−1ru−1 ≥ ‖f ′‖−1
E ru−1 ≥ τ−1λr .

Hence, λr|(f u)′(z)| ≤ τ |f u(z)−ω| and, applying Lemma 15.3.2 and (15.58)
u− k times, we conclude that, for every k ≤ j ≤ u,

diame

(
Comp(f j (z),f u−j,λr|(f u)′(z)|)) ≤ θτ < βf .

And now, for all j = k − 1,k − 2, . . . ,1,0, the same argument as in the case
of u = k finishes the proof. �

Proposition 20.2.2 Let f : C −→ Ĉ be a compactly nonrecurrent elliptic
function. Fix an f -pseudo-compact subset E of J (f ). Let both ε and λ

be positive numbers such that ε < λ min{1,τ−1,θ−1τ−1γ }. If 0 < r <

τθ min{1,‖f ′‖−1
E }λ−1 and z ∈ E\Crit(J (f )), then there exists an integer

s = s(λ,ε,r,z) ≥ 1 with the following three properties:

|(f s)′(z)| 	= 0. (20.14)

If u = u(λ,r,z) of Proposition 20.2.1 is well defined, then s ≤ u(λ,r,z).
If either u is not defined or s < u, then there exists a critical point c ∈

Crit(f ) such that

|f s(z)− c| ≤ εr|(f s)′(z)|. (20.15)

In any case,

Comp
(
z,f s,(KA2)−12−Nf εr|(f s)′(z)|) ∩ Crit(f s) = ∅, (20.16)

where A was defined in (18.20).

Proof Since z /∈ Crit(J (f )) and in view of Proposition 20.2.1, there exists
a minimal number s = s(λ,ε,r,z) for which at least one of the following two
conditions is satisfied:

|f s(z)− c| ≤ εr|(f s)′(z)| (20.17)

for some c ∈ Crit(J (f )) or

u(λ,r,z) is well defined and s(λ,ε,r,z) = u(λ,r,z). (20.18)

Since |(f s)′(z)| 	= 0, the parts (20.14) and (20.15) are proved.
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In order to prove (20.16), notice, first, that no matter which of the two numbers
s is, in view of Proposition 20.2.1, we always have that

εr|(f s)′(z)| ≤ ελ−1θτ . (20.19)

Let us now argue that, for every 0 ≤ j ≤ s,

diame

(
Comp(f s−j (z),f j,εr|(f s)′(z)|)) ≤ βf . (20.20)

Indeed, if s = u, it follows immediately from Proposition 20.2.1 and (20.2)
since ε ≤ λ. Otherwise, |f s(z)− c| ≤ εr|(f s)′(z)| ≤ ελ−1θτ < θ ; therefore,
by (18.19), f s(z) /∈ Be(�(f ),θ). Thus, (20.20) follows from (18.22).

Now, by (20.20) and Lemma 18.1.11, there exist 0 ≤ p ≤ Nf , an increasing
sequence of integers 1 ≤ k1 < k2 < · · · < kp ≤ s, and mutually distinct
critical points c1,c2, . . . ,cp of f such that

{cl} = Comp
(
f s−kl (z),f kl,εr|(f s)′(z)|) ∩ Crit(f ), (20.21)

for every l = 1,2, . . . ,p, and if j /∈ {k1,k2, . . . ,kp}, then

Comp
(
f s−j (z),f j,εr|(f s)′(z)|) ∩ Crit(f ) = ∅. (20.22)

Setting k0 = 0, we shall show by induction that, for every 0 ≤ l ≤ p,

Comp
(
f s−kl (z),f kl,(KA2)−12−lεr|(f s)′(z)|) ∩ Crit(f kl ) = ∅. (20.23)

Indeed, for l = 0, there is nothing to prove. So, suppose that (20.23) is true for
some 0 ≤ l ≤ p − 1. Then, by (20.22),

Comp
(
f s−(kl+1−1)(z),f kl+1−1,(KA2)−12−lεr|(f s)′(z)|) ∩Crit(f kl+1−1) = ∅.

So, if

cl+1 ∈ Comp(f s−kl+1(z),f kl+1,(KA2)−12−(l+1)εr|(f s)′(z)|),
then, by Lemma 8.4.3 applied for holomorphic maps H = f , Q = f kl+1−1,
and the radius R = (KA2)−12−(l+1)εr|(f s)′(z)| < γ , we get that

|f s−kl+1(z)− cl+1|
≤ KA2|(f kl+1)′(f s−kl+1(z))|−1(KA2)−12−(l+1)εr|(f s)′(z)|
= 2−(l+1)εr|(f s−kl+1(z))′|
≤ εr|(f s−kl+1)′(z)|,

which contradicts the definition of s and proves (20.23) for l+ 1. In particular,
it follows from (20.23) that

Comp
(
z,f s,(KA2)−12−Nf εr|(f s)′(z)|) ∩ Crit(f s) = ∅.

The proof is finished. �
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We will also need the following similar result.

Lemma 20.2.3 Let f : C −→ Ĉ be a compactly nonrecurrent elliptic function.
Assume that �(f ) = ∅. Then there exist two constants a,ξ > 0 such that the
following holds. Suppose that

z ∈ J (f )\
∞⋃

n=0

f−n({∞} ∪ Crit(f )).

Suppose also that r ∈ (0,γ (aξ)−1), where γ > 0 was defined in (18.22).
Then there exists an integer s ≥ 0 with the following properties:

(a) raξ |(f s)′(z)| ≥ γ , or
(b) raξ |(f s)′(z)| < γ ,

and
(c) there exists a critical point c ∈ Crit(J (f )) such that |(f s)(z) − c| <

rξ |(f s)′(z)|, or
(d) there exists a pole b ∈ f−1(∞) such that |(f s)(z)− b| < rξ |(f s)′(z)|.
In either case,

Comp
(
z,f s,2ξr|(f s)′(z)|) ∩ Crit(f s) = ∅.

Proof Put a = 2KA22Nf , where A was defined in (18.20). Fix ρ ∈ (0,1/2)

so small that, for every w ∈ C\(Crit(f ) ∪ f−1(∞)), the map f restricted to
the set

Be

(
w,2ρ diste

(
w,Crit(f ) ∪ f−1(∞)

))
is one-to-one. Set ξ = 2−4ρ. Take λ > 0 in Proposition 20.2.2 such that ε > 0
appearing there can be taken to be equal to aξ . In view of Corollary 18.3.6,
there exists a least integer n ≥ 0 such that raξ |(f n)′(z)| ≥ γ . Since r <

γ (aξ)−1, we see that n ≥ 1. If there exists an integer 0 ≤ j ≤ n− 1 satisfying
(c) or (d), take s to be the least one. Otherwise, take s = n. By the definition
of n, it follows from (18.22) that

diame(Comp(z,f k,2ξr|(f k)′(z)|)) < βf

for all k = 0, . . . ,n− 1. Thus, we see that (20.20) is satisfied if s ≤ n− 1 and
the proof of the last formula in our lemma is complete by verbatim repetition
of the fragment of the proof of Lemma 20.2.2 from “Now, by (20.20)” to its
end. If s = n, the same argument shows that

Comp
(
z,f n−1,2ξr|(f n−1)′(z)|) ∩ Crit(f n−1) = ∅. (20.24)
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By the choice of ξ and the definition of n, we also know that the map f n−1

restricted to the ball Be(f
n−1(z),16ξr|(f n−1)′(z)|) is injective. Thus, by the

1
4 -Koebe Theorem (Theorem 8.3.3),

f
(
Be(f

n−1(z),16ξr|(f n−1)′(z)|)) ⊃ Be(f
n(z),4ξr|(f n)′(z)|);

therefore,

Comp
(
f n−1(z),f ,2ξr|(f n−1)′(z)|) ⊆ Be(f

n−1(z),16ξr|(f n−1)′(z)|).
Combining this with (20.24) and injectivity of f restricted to

Be(f
n−1(z),16ξr|(f n−1)′(z)|),

we conclude that

Comp
(
z,f n,2ξr|(f n)′(z)|) ∩ Crit(f n) = ∅.

We are done. �

20.3 Conformal Measures for Compactly Nonrecurrent
Regular Elliptic Functions: Atomlessness, Uniqueness,

Ergodicity, and Conservativity

In this section, we continue dealing with conformal measures. We already have
their existence, and our goal now is to prove their uniqueness, atomlessness,
ergodicity, and conservativity. This will require stronger hypotheses than mere
compact nonrecurrence. In fact, it will require one more hypothesis. This
hypothesis is the regularity of a compactly nonrecurrent elliptic function
introduced at the beginning of Section 18.4; see, especially, (18.51). First,
we need it to be able to show that the h-conformal measure constructed in
Theorem 20.1.1 is atomless. This, in turn, is a prerequisite for, essentially all,
our considerations concerning geometric measures (Hausdorff and packing)
and measurable dynamics with respect to the measure class generated by the
conformal measure mh. In this book, we need regularity from the proof of
Lemma 20.3.9 onward. Let us record the following immediate observation.

Observation 20.3.1 Every compactly nonrecurrent elliptic function f : C
−→ Ĉ with Crit∞(f ) = ∅ is regular.

This simple observation starkly indicates that the class of all regular nonrecur-
rent elliptic functions is large indeed; see also the entire Section 19 devoted to
examples of nonrecurrent elliptic functions. As an immediate consequence of
Observation 20.3.1, we have the following corollary.
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Corollary 20.3.2 Every expanding and parabolic elliptic function is regular.

Another sufficient condition, immediately following from Theorem 17.3.1 for
a nonrecurrent elliptic function to be regular, is this.

Proposition 20.3.3 If f : C −→ Ĉ is a compactly nonrecurrent elliptic
function and

2qmax(f )

qmax(f )+ 1
>

2l∞
l∞ + 1

,

then f is regular.

Now we derive from (18.51) a technical condition, (20.27), which will be
directly needed in our considerations involving the continuity of conformal
measures. It immediately follows from (18.51) that, for every c ∈ Crit∞(f ),
h >

2pcqc

pcqc+1 . Hence,

pc − 1

pc

h < (qc + 1)h− 2qc.

So there exists h− ∈ (1,h) such that

pc − 1

pc

h− < (qc + 1)h− − 2qc; (20.25)

therefore, there exists κc > 0 such that

pc − 1

pc

h− < κc < (qc + 1)h− − 2qc. (20.26)

The right-hand side of this formula is equivalent to the following:(
h− − κc

2− κc

)(
qc + 1

qc

)
> 1. (20.27)

We now pass to more general considerations. Let ms be a Borel probability
measure on C and me be its Euclidean version, i.e.,

dme

dms

(z) := (1+ |z|2)t .

We shall prove the following.

Lemma 20.3.4 If z ∈ C, rn↘0, and there are two constants M ≤ M such that

M ≤ lim inf
n→∞

me(Be(z,rn))

rt
n

≤ lim sup
n→∞

me(Be(z,rn))

rt
n

≤ M,
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then

lim sup
n→∞

ms

(
Bs(z,(2(1+ |z|2))−1rn)

)
((2(1+ |z|2))−1rn)t

≤ 2tM

and

lim inf
n→∞

ms

(
Bs(z,2(1+ |z|2)−1rn)

)
(2(1+ |z|2)−1rn)t

≥ 2−tM .

Proof Since, for every r > 0 sufficiently small,

Be(z,2−1(1+ |z|2)−1r) ⊆ Bs(z,r) ⊆ Be(z,2(1+ |z|2)r)

and since

lim
r↘0

me(Be(z,r))

ms(Be(z,r))
= (1+ |z|2)t,

we get that

lim sup
n→∞

ms

(
Bs(z,(2(1+ |z|2))−1rn)

)
((2(1+ |z|2))−1rn)t

≤ lim
n→∞

ms(Be(z,rn))

2−t (1+ |z|2)−t r t
n

= 2tM

and

lim inf
n→∞

m
(
Bs(z,2(1+ |z|2)−1rn)

)
(2(1+ |z|2)−1rn)t

≥ lim
n→∞

ms(Be(z,rn))

2t (1+ |z|2)−t r t
n

= 2−tM .

We are done. �

Assuming that the compactly nonrecurrent elliptic function f : C → Ĉ is
regular, our first goal is to show that the h-conformal measure m proven to
exist in Theorem 20.1.1 is atomless and that

Hh
s (J (f )) = 0

whenever h < 2. The regularity assumption will be needed only from Lemma
20.3.9 onward. We will now consider for f almost t-conformal measures ν

with t ≥ 1. The notion of upper estimability introduced in Definition 10.4.2
is considered with respect to the Euclidean almost t-conformal measure νe.
Recall that l = l(f ) ≥ 1 is the integer produced in Lemma 18.2.15 and put

Rl(f ) := inf
{
R(f j,c) : c ∈ Crit(f ) and 1 ≤ j ≤ l(f )

}
= min

{
R(f j,c) : c ∈ Crit(f ) ∩R and 1 ≤ j ≤ l(f )

}
< ∞

(20.28)

and

Al(f ) := sup
{
A(f j,c) : c ∈ Crit(f ) and 1 ≤ j ≤ l(f )

}
= max

{
A(f j,c) : c ∈ Crit(f ) ∩R and 1 ≤ j ≤ l(f )

}
,

(20.29)
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where the numbers R(f j,c) and A(f j,c) are defined in Section 8.4. Since

O+(f (Critc(J (f ))))

is a compact f -invariant subset of C (so disjoint from f−1(∞)) and since

PC0
c(f ) = O+(Critc(J (f ))) = Critc(J (f )) ∪O+(f (Critc(J (f )))),

we have the following straightforward but useful fact.

Lemma 20.3.5 If f : C −→ Ĉ is a compactly nonrecurrent elliptic function,

then the set PC0
c(f ) is f -pseudo-compact.

Recall, for the purpose of proving the next two lemma, that the sequence
{Cri(f )}pi=1 was defined inductively by (18.33) and the sequence {Si(f )}pi=1
was defined by (18.35), while the number p, here and in what follow in this
section, comes from Lemma 18.2.11(c).

Since the number Nf of equivalence classes of the relation ∼f between
critical points of an elliptic function f : C −→ Ĉ is finite, looking at Lemmas
18.2.15 and 17.6.6, the following lemma follows immediately from Lemma
10.4.10.

Lemma 20.3.6 Let f : C −→ Ĉ be a compactly nonrecurrent elliptic function.
Fix an integer 1 ≤ i ≤ p − 1. If R

(u)
i > 0 is a positive constant and t �−→

C
(u)
t,i ∈ (0,∞), t ∈ [1,∞), is a continuous function such that all points z ∈

PC0
c(f )i are (r,C

(u)
t,i )-t-u.e. with respect to some Euclidean almost t-conformal

measure νe (with t ≥ 1) for all 0 < r ≤ R
(u)
i , then there exists a continuous

function t �−→ C̃
(u)
t,i > 0, t ∈ [1,∞), such that all critical points c ∈ Cri+1(f )

are (r,C̃
(u)
t,i )-t-u.e. with respect to the measure νe for all 0 < r ≤ A−1

l R
(u)
i .

In the above lemma, the superscript u stands for “upper.” In the lemma
below, it has the same connotation. The number u is also used to denote the
value of the function u(λ,r,z) defined in Proposition 20.2.1. This should not
cause any confusion.

Lemma 20.3.7 Let f : C −→ Ĉ be a compactly nonrecurrent elliptic
function. Fix an integer 1 ≤ i ≤ p. If R

(u)
i,1 > 0 is a positive constant and

[1, +∞) ��−→ C
(u)
t,i,1 ∈ (0,∞), is a continuous function such that all critical

points c ∈ Si(f ) are (r,C
(u)
t,i,1)-t-u.e. with respect to some Euclidean almost

t-conformal measure νe (with t ≥ 1) for all 0 < r ≤ R
(u)
i,1 , then there exist a

continuous function [1, +∞) ��−→ C̃
(u)
t,i,1 > 0, and R̃

(u)
i,1 > 0 such that all

https://doi.org/10.1017/9781009215985.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009215985.015


320 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

points z ∈ PC0
c(f )i are (r,C̃

(u)
t,i,1)-t-u.e. with respect to the measure νe (with

t ≥ 1) for all 0 < r ≤ R̃
(u)
i,1 .

Proof Put

ε := 2K(KA2)2Nf ,

where A ≥ 1 was defined in (18.20). Then fix λ > 0 so large that

ε < λ min
{
1,τ−1,θ−1τ−1 min{ρ,R

(u)
i,1 /2}}, (20.30)

where ρ was defined in (18.38). We shall show that one can take

R̃
(u)
i,1 := min

{
τθλ−1 min

{
1,‖f ′‖−1

PC0
c (f )i

}
,R

(u)
i,1 ,1

}
and

C̃
(u)
t,i,1 := max{K22tC

(u)
t,i,1,K

2tBt },
where Bt = Bt(λ,η) > 0 comes from Proposition 20.2.1 with η = 2K .

Consider 0 < r ≤ R̃
(u)
i,1 and z ∈ PC0

c(f )i . If z ∈ Crit(J (f )), then z ∈
Critc(J (f )) and z ∈ Si(f ), and we are, therefore, done. Thus, we may assume
that z /∈ Crit(J (f )). Let s = s(λ,ε,r,z). By the definition of ε,

2Kr|(f s)′(z)| = (KA2)−12−Nf εr|(f s)′(z)|. (20.31)

Suppose first that u(λ,r,z) is well defined and s = u(λ,r,z). Then, by
item (20.3) in Proposition 20.2.1 or by item (20.5) in Proposition 20.2.1, we
see that the point f s(z) is (2Kr|(f s)′(z)|,Bt )-t-u.e. Using (20.31), we obtain,
from item (20.16) in Proposition 20.2.2 and Lemma 10.4.7, that the point z is
(r,K2hBt )-t-u.e..

If either u is not defined or s < u(λ,r,z), then, in view of item (20.16)
in Proposition 20.2.2, there exists a critical point c ∈ Critc(J (f )) such that
|f s(z) − c| ≤ εr|(f s)′(z)|. Since s ≤ u, by Proposition 20.2.1 and (20.30),
we get that

2Kr|(f s)′(z)| ≤ εr|(f s)′(z)| < min{ρ,R
(u)
i,1 /2}. (20.32)

Since z ∈ PC0
c(f )i , this implies that c∈ Si(f ). Therefore, using (20.32), the

assumptions of Lemma 20.3.7, and (20.31) and then applying item (20.16)

in Proposition 20.2.2 (remember that, by Lemma 20.3.5, the set PC0
c(f ) is

f -pseudo-compact) and Lemma 10.4.7, we conclude that z is (r,K22tC
(u)
t,i,1)-

t-u.e. The proof is complete. �
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Given an arbitrary integer k ≥ 1, recall that, for any pole b of f k , the
number qb denotes its multiplicity and Bk

b(R) is the connected component
of f−k(B∗∞(R)) containing b. We have proved Lemma 4.21 in [KU4] with
no constraints imposed on the elliptic function f . In fact, the following more
general lemma is true (with the same proof), where f−1 is replaced by f−k .

Lemma 20.3.8 Let f : C −→ Ĉ be an elliptic function. Fix an integer k ≥ 1
and a point b ∈ f−k(∞).

If νe is a Euclidean almost t-conformal measure with t >
2qb

qb+1 such that
νe(b) = 0, and if m is the h-conformal measure proven to exist in Theorem
20.1.1, then

νe(B
k
b (R)) � R

2− qb+1
qb

t

and

me(B(b,r)) $ r(qb+1)h−2qb

for all sufficiently small radii 0 < r ≤ 1.

Proof It follows from Lemma 17.6.6 that me({z ∈ C : R ≤ |z| < 2R}) � R2

and νe({z ∈ C : R ≤ |z| < 2R}) � R2 for all R > 0 large enough. It,
therefore, follows from (17.13) that

me

(
Bk

b(R)\Bk
b(2R)

) � R2R
− qb+1

qb
h

(20.33)

and

νe

(
Bk

b(R)\Bk
b(2R)

) � R2R
− qb+1

qb
t
. (20.34)

Now fix r > 0 so small that R = (r/Lk)−qb is large enough for (20.33) and
(20.34) to hold. Using (17.16) and (20.34), we get that

νe(B
k
b (R)) = νe

⎛⎝⋃
j≥0

(Bk
b (2j R)\Bk

b(2j+1R))

⎞⎠
=

∞∑
j=0

νe(B
k
b (2j R)\Bk

b(2j+1R))

�
∞∑

j=0

(2j R)2(2j R)
− qb+1

qb
t

= R
2− qb+1

qb
t
∞∑

j=0

2
j
(

2− qb+1
qb

t
)
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= L
qb

(
2− qb+1

qb
t
)

k r(qb+1)t−2qb

∞∑
j=0

2
j
(

2− qb+1
qb

t
)

� r(qb+1)t−2qb, (20.35)

where the last comparability sign holds since qb+1
qb

t > 2. We are done with the
first part of our lemma.

Now replace νe by me and t by h (which is greater than 2qb

qb+1 because of
Theorem 17.3.1) in the above formula. In this case, the “�” sign in (20.35) can,
by virtue of (20.33), be replaced by the comparability sign “�.” Since the first
equality sign in (20.35) becomes “≥” (we have not ruled out the possibility
that me(b) > 0 yet) and me(B(b,r)) ≥ me(Bb(R)), we are also done in this
case. �

From now onward, in all our considerations in this chapter, we assume that
f : C −→ Ĉ to be a compactly nonrecurrent regular elliptic function.
We shall now prove the following.

Lemma 20.3.9 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic
function, then the h-conformal measure mh, for f : J (f ) −→ J (f ) ∪ {∞},
proven to exist in Theorem 20.1.1, is atomless.

Proof By induction on i = 0,1, . . . ,p (remember that p comes from Lemma
18.2.11(c)), it follows from Lemma 20.3.7 (this lemma provides the base of
induction as S0(f ) = ∅ and, simultaneously, contributes to the inductive step),
Lemma 20.3.6, and Lemma 18.2.14 that there exists a continuous function
t �−→ Ct ∈ (0,∞), t ∈ [1,∞), such that if ν is an arbitrary almost t-conformal
measure on J (f ), then

νe(B(x,r)) ≤ Ctr
t (20.36)

for all x ∈ PC0
c(f ) and all r ≤ r0 for some r0 > 0 sufficiently small. Consider

now the almost sj -conformal measures

ms
j := mVj

, j ≥ 1,

and their Euclidean versions

me
j := (

mVj

)
e
,

both introduced at the beginning of the proof of Theorem 17.6.7, where the
numbers sj = s(Vj ) also come from the proof of Theorem 17.6.7. Letting
j →∞ and recalling that, according to Theorem 20.1.1, mh,s is a weak limit,
coming from Claim 2◦ stated in the proof of Theorem 17.6.7, of measures ms

j ,
j ≥ 1, we see from (20.36) that
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mh,e(B(x,r)) ≤ Chrh (20.37)

for all x ∈ PC0
c(f ) and all r ≤ r0. It now follows from Lemma 20.3.4 that

lim sup
r↘0

ms(B(x,r))

rh
≤ 2hCh (20.38)

for all x ∈ PC0
c(f ). In particular,

mh,s(Critc(f )) = 0. (20.39)

Now fix k ≥ 1, b ∈ f−k(∞), and u ∈ ( 2qb

qb+1,h
)
. Consider all integers j ≥ 1

so large that sj ≥ u. Since me
j (f−k(∞)) ≤ me

j (f−k(Vj )) = 0, it follows from
Lemma 20.3.8 that

me
j (Bk

b (R)) � R
2− qb+1

qb
sj ≤ R

2− qb+1
qb

u
.

Hence, mh,e(b) = 0. Since mh,s and mh,e are equivalent on C, this gives
mh,s(b) = 0. Consequently,

mh,s

⎛⎝⋃
n≥1

f−n(∞)

⎞⎠ = 0. (20.40)

In particular,

mh,s(Critp(f )) = 0. (20.41)

We now move on to dealing with the set Crit∞(f ). Since sj ↗ h and since
h− < h (h− was defined in (20.25)), disregarding finitely many js, we may
assume without loss of generality that

sj > h− (20.42)

for all j ≥ 1.
Fix c ∈ Crit∞(f ). Fix also j ≥ 1 and put

t := sj .

Since limn→∞ f n(c) = ∞, there exists an integer k ≥ 1 such that qbn ≤ qc

(where bn ∈ f−1(∞), defined in (18.48), is near f n(c), and qc was defined in
(18.49)) and

|f n(c)| > max
{
1,2Diste(0,f (Crit(f )))

}
(20.43)

for all n ≥ k. We may need in the course of the proof the integer k ≥ 1 to be
appropriately bigger. Put

a := f k(c).

We recall that κc was defined in (20.26). We shall prove the following.
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Claim 1◦. There exists a constant c1 ≥ 1, independent of j , such that

me
j (Be(a,r)) ≤ c1rκc

for all r > 0 small enough independently of j .

Proof Put q = qc. In view of (20.43) and Theorem 17.1.8, for every n ≥ 1,
there exists a unique holomorphic inverse branch

f−1
n : Be

(
f n(a),

1

2
|f n(a)|

)
−→ C

of f sending f n(a) to f n−1(a). Then, by Lemma 8.3.13 and (18.48), we have,
for every n ≥ k, that

f−1
n

(
Be

(
f n(a),

1

4
|f n(a)|

))
⊂ Be

(
f n−1(a),

K

4
|f n(a)| · |f ′(f n−1(a))|−1

)
⊆ Be

(
f n−1(a),C|f n(a)| · |f n(a)|− q+1

q

)
= Be

(
f n−1(a),C|f n(a)|− 1

q

)
⊆ Be

(
f n−1(a),

1

2
|f n−1(a)|

)
with some constant C > 0, where the last inclusion was written assuming that

|f n−1(a)| ≥ 2C|f n(a)|− 1
q , which holds if the integer k is taken large enough.

So, the composition

f−n
a = f−1

1 ◦ f−1
2 ◦ · · · ◦ f−1

n : Be

(
f n(a),

1

4
|f n(a)|

)
−→ C,

sending f n(a) to a, is well defined and forms a holomorphic branch of f−n.
Take 0 < r < 1

16 |a| and let n+ 1 ≥ 1 be the least integer such that

r|(f n+1)′(a)| ≥ 1

16
|f n+1(a)|.

Such an integer exists since |f ′(z)| � |f (z)|
qb+1

qb if z is near a pole b. By
definition n ≥ 0 and since r < 1

16 |a|, we have that

r|(f n)′(a)| < 1

16
|(f n)(a)|.

Then, by the 1
4 -Koebe Distortion Theorem (Theorem 8.3.3), we have that

Be(a,r) ⊆ f−n
a

(
Be(f

n(a),4r|(f n)′(a)|)). (20.44)

Now we consider three cases determined by the value of r|(f n)′(a)|.
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Case 1. δ(f−1(∞)) ≤ r|(f n)′(a)| < 1
16 |f n(a)|, where δ(f−1(∞)) comes

from (18.47).
In view of (20.44) and the Koebe Distortion Theorem along with almost

conformality of the measure me
j , we get that

me
j (Be(a,r)) ≤ Kt |(f n)′(a)|−tme

j (Be(f
n(a),4r|(f n)′(a)|))

� Kt |(f n)′(a)|−t (4r|(f n)′(a)|)2

� r2|(f n)′(a)|2−t .

(20.45)

Put

qn := qbn .

Since t > h− (see (20.42)) and qn ≤ qc, it follows from (20.27) that(
t − κc

2− κc

)(
qn + 1

qn

)
> 1.

Hence,

|f n(a)| < |f n(a)| t−κc
2−κc

qn+1
qn � |f ′(f n−1(a))| t−κc

2−κc

� |(f n)′(a)| t−κc
2−κc = |(f n)′(a)||(f n)′(a)| t−2

2−κc .

Combining this and the Case 1 assumption, we get that

r <
1

16
|(f n)′(a)|−1|f n(a)| � |(f n)′(a)| t−2

2−κc .

Therefore, r2−κc � |(f n)′(a)|t−2, or, equivalently, r2|(f n)′(a)|2−t � rκc .
Together with (20.45), we obtain that

me
j (B(a,r)) � rκc . (20.46)

Case 2. |f n(a) − bn| ≤ 32A
qmin+1

qmin r|(f n)′(a)| < 32A
qmin+1

qmin δ(f−1(∞)),
where A > 0 was defined in (18.20) and qmin is the minimal order of all
critical points and poles.

Put α := 32A
qmin+1

qmin . Then

Be(f
n(a),4r|(f n)′(a)|) ⊆ Be(bn,(4+ c)r|(f n)′(a)|)

⊆ Be(bn,(4+ α)δ(f−1(∞)))

and it follows from Lemma 20.3.8 that

me
j (Be(f

n(a),4r|(f n)′(a)|)) � (4r|(f n)′(a)|)(qn+1)t−2qn .

https://doi.org/10.1017/9781009215985.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009215985.015


326 Part VI Fractal Geometry, Stochastic Properties, and Rigidity

Thus,

me
j (Be(a,r)) ≤ Kt |(f n)′(a)|−t (4r|(f n)′(a)|)(qn+1)t−2qn

� r(qn+1)t−2qn |(f n)′(a)|(t−2)qn

≤ r(qn+1)t−2qn .

But, as qn ≤ qc and t > h−, it follows from (20.26) that

(qn + 1)t − 2qn ≥ (qn + 1)t − 2qc > κc;
therefore,

me
j (B(a,r)) ≤ rκc .

It remains for us to consider the following.

Case 3. r|(f n)′(a)| < 1
32A

− qmin+1
qmin |f n(a)− bn|.

But then

r|(f n+1)′(a)| = r|(f n)′(a)||f ′(f n(a))|

<
1

32
A
− qmin+1

qmin |f n(a)− bn|(A|f n+1(a)|) qn+1
qn

≤ 1

32
A
− qmin+1

qmin A
1

qn
+1|f n+1(a)|

≤ 1

32
|f n+1(a)|

≤ 1

16
|f n+1(a)|

contrary to the definition of n. So, Claim 1◦ is proved. �

The last step of our proof is to demonstrate the following.

Claim 2◦. There exist c2 ≥ and R > 0, both independent of j , such that

me
j (Be(c,r)) ≤ c2rpcκc+h(1−pc)

for all j ≥ 1 and for all r ≤ R, where pc is the order of critical point c of the
map f k .

Proof Let p := pc ≥ 2. There exists R > 0 so small that

f k(Be(c),R) ⊆ Be(f
k(c),2−4|f k(c)|)

and that there exists M ≥ 1 such that

M−1|z− c|p ≤ |f k(z)− f k(c)| ≤ M|z− c|p
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and

M−1|z− c|p−1 ≤ |(f k)′(z)| ≤ M|z− c|p−1

for all z ∈ Be(c,R). Thus, for all k ≥ 0 and all r ≤ R,

f k(A(c;2−(l+1)r,2−lr)) ⊆ A
(
f k(c);M−1rp2−p(l+1),Mrp2−pl

)
.

Since the map f k
|Be(c,R) is p-to-one, using almost conformality of the measure

me
j and the right-hand side of (20.26), we get that

me
j

(
A
(
f k(c);M−1rp2−p(l+1),Mrp2−pl

))
≥ 1

p
M−h(2−(l+1)r)t (p−1)me

j

(
A(c;2−(l+1)r,2−lr)

)
≥ p−1M−h(2−(l+1)r)h(p−1)me

j

(
A(c;2−(l+1)r,2−lr)

)
.

Applying Claim 1◦, we, therefore, get that

me
j (Be( c, r))

=
∞∑
l=0

me
j (A(c,2−(l+1)r,2−lr))

≤ pMhrh(1−p)
∞∑
l=0

2h(p−1)(l+1)me
j

(
A
(
f k(c);M−1rp2−p(l+1),Mrp2−pl

))
≤ pMhc12h(p−1)rh(1−p)

∞∑
p=0

2h(p−1)l(Mrp2−pl)κc

= p2h(p−1)c1Mh+κc rh(1−p)+pκc

∞∑
l=0

2(h(p−1)−pκc)l

= p2h(p−1)c1Mh+κc (1− 2h(p−1)−pκc )−1rpκc+h(1−p),

where writing the last equality sign we used the fact that pκc + h(1− p) > 0
equivalent to the left-hand side of (20.26). Claim 2◦ is, thus, proved. �

Repeating again that pκc+h(1 − p) > 0, Claim 2◦ implies that mh(c)=
0. So,

mh,s(Crit∞(f )) = 0. (20.47)

Along with (20.39)–(20.41) and Theorem 20.1.1, this shows that the measure
mh is atomless and the proof of Lemma 20.3.9 is complete. �

The argument from the beginning of the proof of this lemma, based on
Lemmas 20.3.7 and 20.3.6, gives the following,
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Lemma 20.3.10 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic

function, then the set PC0
c(f ) is uniformly h-upper estimable with respect to

the measure mh constructed in Theorem 20.1.1.

Denote by Tr(f ) ⊆ J (f ) the set of all transitive points of f , i.e., the set of
points in J (f ) such that ω(z) = J (f ). The main and last result of this section
is the following.

Theorem 20.3.11 If f : C −→ Ĉ is a compactly nonrecurrent regular elliptic
function, then

(1)

DDh(J (f ))=DDχ (J (f ))=HD
(
Jer(f )

)=HD
(
Jr(f )

)=h=HD(J (f ))

(20.48)

and there exists a unique spherical h-conformal probability measure mh

for f : J (f ) −→ J (f ) ∪ {∞}. This measure is atomless.
(2) The spherical h-conformal measure mh is weakly metrically exact, in

particular ergodic and conservative.
(3) All other conformal measures are purely atomic, supported on Sing−(f )

with exponents larger than h.
(4) mh(Tr(f )) = 1.

In what follows, the h-conformal measure m, either spherical ms or its
Euclidean version me, will be denoted by mh. Following the convention of this
book, the spherical and Euclidean versions of mh will be, respectively, denoted
by mh,s and mh,e.

Proof Formula (20.48) is a part of Theorem 20.1.1. In view of Lemma 20.3.9,
there exists an atomless h-conformal measure mh for f : J (f ) −→ J (f ) ∪
{∞}. So, the existence part of (1) is done.

Continuing the proof, let R > 0 be so large that the ball Be(0,R) contains
a fundamental domain of F . For every w ∈ C, fix w′ ∈ B(0,R) such that

w ∼f w′.

Suppose that νe is an arbitrary Euclidean t-conformal measure for f and some
t ≥ 0. By Lemma 17.6.4, t ≥ h. For each

z ∈ J (f )\Sing−(f ),

let (xk(z))∞k=1 be the sequence produced in Proposition 18.3.3. Define, for
every l ≥ 1,

Zl := {
z ∈ J (f )\Sing−(f ) : η(z) ≥ 1/l

}
.
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Fix l ≥ 1 and assume that z ∈ Zl . Disregarding finitely many terms if needed,
assume without loss of generality that∣∣f nk (z)− xk(z)

∣∣ <
1

32Kl
(20.49)

for all ≥ 1. Then, for each k ≥ 1,

B

(
f nk (z),

1

2l

)
⊆ B

(
xk(z),

1

l

)
and the holomorphic inverse branch

f−nk
z : Be

(
f nk (z),

1

2l

)
−→ C

produced in Proposition 18.3.4, sending f nk (z) to z, is well defined. Using
conformality of the measure ν along with the 1

4 -Koebe Theorem (Theorem
8.3.3), the Koebe Distortion Theorem I, Euclidean version (Theorem 8.3.8),
and Proposition 17.6.2, we get the following:

νe

(
Be

(
z,

1

16l
|(f nk )′(z)|−1

))
≤ νe

(
f−nk

z

(
Be

(
f nk (z),

1

4l

)))
≤ Kt |(f nk )′(z)|−t νe

(
Be

(
f nk (z),

1

4l

))
≤ Kt |(f nk )′(z)|−t νe

(
Be

(
xk(z),

1

2l

))
= Kt |(f nk )′(z)|−t νe

(
Be

(
x′k(z),

1

2l

))
≤ Ktνe(Be(0,R + 1))|(f nk )′(z)|−t .

(20.50)

Likewise, using Lemma 8.3.13, the Koebe Distortion Theorem I, Euclidean
version (Theorem 8.3.8), and Corollary 17.6.3, we get the following:

νe

(
Be

(
z,

1

16l
|(f nk )′(z)|−1

))
≥ νe

(
f−nk

z

(
Be

(
f nk (z),

1

16Kl

)))
≥ K−t |(f nk )′(z)|−t νe

(
Be

(
f nk (z),

1

16Kl

))
≥ K−t |(f nk )′(z)|−t νe

(
Be

(
xk(z),

1

32Kl

))
= K−t |(f nk )′(z)|−t νe

(
Be

(
x′k(z),

1

32Kl

))
≥ KtM

(
t,

1

32Kl

)
|(f nk )′(z)|−t,

(20.51)
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where the constant M
(
t, 1

32Kl

)
comes from Corollary 17.6.3. Summarizing

(20.50) and (20.51), we obtain that

B(νe,l)
−1|(f nk )′(z)|−t ≤ νe

(
Be

(
z,

1

16l
|(f nk )′(z)|−1

))
≤ B(νe,l)|(f nk )′(z)|−t, (20.52)

where B(νe,l) ≥ 1 is some constant depending only on R, νe, and l.
Fix now E, an arbitrary bounded Borel set contained in Zl . Since mh,e is

outer regular, for every x ∈ E, there exists a radius r(x) > 0 of the form from
(20.52) such that

mh,e

(⋃
x∈E

Be(x,r(x))\E
)

< ε. (20.53)

Now, by the Besicovitch Covering Theorem, i.e., Theorem 1.3.5, we can
choose a countable subcover

{Be(xi,r(xi))}∞i=1,

r(xi) ≤ ε, from the cover {Be(x,r(x))}x∈E of E, of multiplicity bounded by
some constant C ≥ 1, independent of the cover. Therefore, by (20.52) and
(20.53), we obtain that

νe(E) ≤
∞∑

i=1

νe(Be(xi,r(xi))) ≤ B(νh,e,l)

∞∑
i=1

r(xi)
t

≤ B(νe,l)B(mh,e,l)

∞∑
i=1

r(xi)
t−hme,h(Be(xi,r(xi)))

≤ B(νe,l)B(mh,e,l)Cεt−hmh,e

( ∞⋃
i=1

Be(xi,r(xi))

)
≤ CB(νe,l)B(mh,e,l)ε

t−h(ε +mh,e(E)).

(20.54)

In the case when t > h, letting ε ↘ 0, we obtain that νe(Zl) = 0. Since

J (f )\Sing−(f ) =
∞⋃
l=1

Zl,

we, therefore, get that

νe(J (f )\ ∪ Sing−(f )) = 0,

which means that νe(Sing−(f )) = 1. Thus, item (3) of our theorem is proved.
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Suppose now that t = h. Then, letting ε ↘ 0, (20.54) takes on the form

νe(E) ≤ CB(νe,l)B(mh,e,l)mh,e(E). (20.55)

Since this holds for every integer l ≥ 1, we, thus, conclude that

νe|J (f )\Sing−(f ) ≺ mh,e|J (f )\Sing−(f ) � mh,s |J (f )\Sing−(f ).

Reversing the roles of mh,e and νe, we infer that

νe|J (f )\Sing−(f ) � mh,s |J (f )\Sing−(f ). (20.56)

Suppose that νe(Sing−(f )) > 0. Then there exists

y ∈ Crit(J (f )) ∪�(f ) ∪ f−1(∞)

such that νs(y) > 0. But then∑
ξ∈y−

|(f n(ξ))′(ξ)|−h
s < +∞,

where y− = ⋃
n≥0 f−n(y) and, for every ξ ∈ y−, n(ξ) is the least integer

n ≥ 0 such that f n(ξ) = y. Hence,

νy :=
∑

ξ∈y− |(f n(ξ))′(ξ)|−h
s δξ∑

ξ∈y− |(f n(ξ))′(ξ)|−h
s

is a spherical h-conformal measure supported on y− ⊆ Sing−(f ). This contra-
dicts the, already proven (see (20.56)), fact that the measures νy |J (f )\Sing−(f )

and mh,s |J (f )\Sing−(f ) are equivalent and mh,s(J (f )\Sing−(f )) = 1. Thus,
νe and mh,s are equivalent.

Let us now prove that any probability spherical h-conformal measure νs is
ergodic. Indeed, suppose, to the contrary, that f−1(G) = G for some Borel set
G ⊆ J (f ) with 0 < νs(G) < 1. But then the two conditional measures νG

and νJ(f )\G

νG(B) := νs(B ∩G)

νs(G)
and νJ(f )\G(B) := νs(B ∩ (J (f )\G))

νs(J (f )\G)

would be h-conformal and mutually singular; a contradiction.
If now νs is again an arbitrary probability spherical h-conformal measure,

then, by a simple computation based on the definition of conformal measures,
we see that the Radon–Nikodym derivative φ := dνs/dmh,s is constant on
grand orbits of f . Therefore, by ergodicity of mh,s , we conclude that φ is
constant mh,s-a.e. As both mh,s and νs are probability measures, this implies
that φ = 1 a.e.; hence, νs = mh,s . Thus, item (1) of our theorem is established.
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Let us now show that the probability spherical h-conformal measure mh,s

is conservative. We shall prove first that E, any forward invariant (f (E)⊆E)

Borel subset of J (f ), is of measure either 0 or 1. Indeed, suppose to the
contrary that

0 < mh,s(E) < 1.

Let

Ê := �f + E = {w + y : w ∈ �f, y ∈ E}.
Then the set Ê is �f -translation invariant, i.e.,

w + Ê = Ê (20.57)

for all w ∈ �f . Furthermore,

E ⊆ Ê, mh,s(Ê) > 0,

and

f (Ê) = f (E) ⊆ E ⊆ Ê.

Since mh,s(E) < 1 and since f maps the sets of measure mh,s equal to zero
into sets of measure mh,s equal to zero, it follows from this that

mh,s(Ê) < 1.

Since

mh,s(Sing−(f )) = 0,

in order to get a contradiction, it suffices to show that

mh,s(Ê\Sing−(f )) = 0.

Fix an arbitrary point x ∈ J (f ) and an arbitrary radius R > 0. Seeking
contradiction, suppose that

mh,e(Be(x,R)\Ê) = 0.

Then also

mh,s(Be(x,R)\Ê) = 0.

By conformality of mh,s , we have that mh,s(f (Y )) = 0 for all Borel sets
Y ⊆ C such that mh,s(Y ) = 0. Hence, also using the fact that

f n(Be(x,R)\Ê) ⊇ f n(Be(x,R))\f n(Ê), (20.58)
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we get that

0 = mh,s

(
f n(Be(x,R)\Ê)

) ≥ mh,s

(
f n(Be(x,R))\f n(Ê)

)
≥ mh,s

(
f n(Be(x,R))\Ê) ≥ mh,s

(
f n(Be(x,R))

)−mh,s(Ê)
(20.59)

for all n ≥ 0. By virtue of Proposition 17.2.6, there exists an integer l ≥ 1
such that f l(Be(x,R)) = Ĉ. In particular,

mh,s

(
f l(Be(x,R))

) = 1.

Then (20.59) implies that 0≥ 1 − mh,s(Ê), which is a contradiction. Conse-
quently,

mh,e(Be(x,R)\Ê) > 0. (20.60)

Denote by Z the Borel set of all points z ∈ E\(I∞(f ) ∪ Sing−(f )) such
that

lim
r→0

mh,e

(
B(z,r) ∩ (Ê\(I∞(f ) ∪ Sing−(f )))

)
mh,e(B(z,r))

= 1. (20.61)

In view of the Lebesgue Density Theorem, i.e., of Theorem 1.3.7, we have that
mh,s(Z) = mh,s(Ê). Since mh,s(E) > 0, there exists at least one point z ∈ Z.
Since

z ∈ J (f )\(I∞(f ) ∪ Sing−(f )),

Proposition 18.3.3 applies. Let (xj (z))∞j=1, η(z) > 0, and an increasing
sequence (nj )∞j=1 be given by this proposition. Put

δ = η(z)/8.

It then follows from (20.60) and Proposition 18.3.3 that, for every j ≥ 1 large
enough, we have that

mh,e

(
Be(xj (z),δ)\Ê)

> 0. (20.62)

Therefore, as f−1(J (f )\E) ⊆ J (f )\E, the standard application of Theorem
8.3.8 and Lemma 10.4.7 shows that

lim sup
r→0

mh,e(B(z,r)\Ê)

mh,e(B(z,r))
> 0, (20.63)

which contradicts (20.61). Thus, either

mh,s(E) = 0 or mh,s(E) = 1. (20.64)
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Now conservativity is straightforward. One needs to prove that, for every
Borel set B ⊆ J (f ) with mh,s(B) > 0, one has mh,s(G) = 0, where

G :=
⎧⎨⎩x ∈ J (f ) :

∑
n≥0

11B(f n(x)) < +∞
⎫⎬⎭ .

Indeed, suppose that m(G) > 0. For all n ≥ 0, let

Gn :=
⎧⎨⎩x ∈ J (f ) :

∑
k≥n

11B(f n(x)) = 0

⎫⎬⎭
= {

x ∈ J (f ) : f k(x) /∈ B for all k ≥ n
}
.

Since

G =
⋃
n≥0

Gn,

there exists k ≥ 0 such that mh,s(Gk) > 0. Since all the sets Gn are forward
invariant, we get from (20.64) that

mh(Gk) = 1.

But, on the other hand, all the sets f−n(B), n ≥ k, are of positive measure and
are disjoint from Gk . This contradiction finishes the proof of conservativity of
mh,s . Item (2) is established. Because of (2) and since supp(mh,s) = J (f ),
we have that mh,s(Tr(f )) = 1, i.e., item (4). The proof of Theorem 20.3.11 is
complete. �
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