
7
Existential Problems

7.1 Some Questions

The topics of this chapter can be motivated from several points of view. The
first one is straightforward enough: what kind of existence theorems can be
counterparts of the uniqueness statement that is the Borel conjecture?

Another point of view is that, given the Borel conjecture says that the funda-
mental group of an aspherical manifold determines it, it should follow that all
properties of aspherical manifolds should be properties of their fundamental
groups alone, and it is interesting to then inquire to what extent we can create
such a dictionary.

A third point of view, like in Chapter 6, is to take the geometrical reasoning of
the Borel conjecture seriously, and try to elaborate on the connection between
the Riemannian geometry and topology.

Let me now be more specific, starting, as we often do, with some theorems of
Borel (see Borel, 1983) regarding compact group actions on compact aspherical
manifolds. First, he provided a lot of information about the identity component
in the following theorem.

Theorem 7.1 If M is a closed aspherical manifold, and G is a connected Lie
group acting effectively on M , then π1(G) → π1(M), induced by the inclusion
of an orbit, is injective, with image lying in the center of π1(M).
Corollary 7.2 Under the above conditions G is a torus, and if, in addition,
π1M is centerless, it must be trivial.

For, in a noncommutative compact Lie group, the maximal torus does not
inject on the fundamental group. And, the centrality of the image of the orbit
is because there is a continuous map G × M → M .

This theorem concentrates one’s attention on finite groups.
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Theorem 7.3 If π1M is centerless, then for any G-action on M the map
G → Out

(
π1(M)

)
is injective.

Note that this also includes the previous corollary (since Out
(
π1(M)

)
is

discrete). Note that Mostow rigidity implies that, for M = K\G/Γ, we have
Isom(M) = Out

(
π1(M)

)
. So the isometry group in this case is as large as can

be. Of course, since this is a finite group, there are many other metrics whose
isometry groups are as large as this one.

Among questions that we will focus on in this chapter are the following:

(1) If the fundamental group of an aspherical manifold M has center, does the
manifold admit a circle action? (Conner–Raymond conjecture.)

(2) If G is a finite subgroup of Out
(
π1(M)

)
for an aspherical manifold whose

fundamental group is centerless, is G realized by a group of homeomor-
phisms of M? (Nielsen realization problem.)

(3) In what senses is the symmetric metric on K\G/Γ the most symmetric
one?

The discussion can start on general spaces. The first important negative
examples are due to Raymond and Scott (1977); they show that for certain three-
dimensional nilmanifolds, there are finite subgroups of Out

(
π1(M)

)
that are

not realized by any group actions at all on any space with the given fundamental
group!

These are based on an algebraic obstruction: they show that (in their situation)
there is no group extension

1→ Γ→ π → G → 1

(where G has the given action on Γ) because of an obstruction that lies in
H3 (G, Z(Γ)) . This prevents the group action from being realized on any space
with fundamental group Γ and has nothing to do with asphericity!

If the center of Γ is trivial, then an extension always exists, and the phe-
nomenon lies deeper. For example, there is always then a G-action on some
space homotopy equivalent to the K(π,1) on which G acts in the desired way
(i.e. the regular G-fold cover of K(π,1)). However, this will typically be an
infinite-dimensional space – e.g. if π has elements of finite order.

This is the result of building the group action as a free one rather than allowing
fixed points. (If π has torsion, this will be infinite-dimensional, although, by
taking a skeleton, we can always avoid that.)

When there is a global fixed point to the action, then the map G →
Out(π1(M)) lifts to Aut(π1(M)). For actions that are “as aspherical as pos-
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sible” (i.e. associated to the action of G on Eπ/Γ, i.e. so that on the universal
cover all finite subgroups have contractible fixed sets), the converse holds.1

The opposite extreme is where no nontrivial element of G lifts to Aut(Γ).
In that case the group2 π automatically satisfies Poincaré duality. The Nielsen
conjecture being true would then boil down to the following statement.

Conjecture 7.4 An aspherical Poincaré complex is homotopy-equivalent to
a manifold if it has a finite sheeted cover that is.

(We have tacitly used the fact that a finite complex satisfies Poincaré duality
iff a finite sheeted cover does.)

This is a special case of a conjecture of Wall.3

Conjecture 7.5 If π is a group satisfying Poincaré duality, then there is a
closed aspherical manifold with fundamental group π.

This is very natural from the point of view that every uniqueness statement,
like the Borel conjecture, should have an existence statement that goes along
with it. Thus, one should ask whether every K(π,1) which could conceivably
be a manifold is one.4 , 5

A similar question would be:

Conjecture 7.6 An aspherical manifold is a product of two manifolds iff its
fundamental group is a nontrivial product.

This is a consequence of the Wall conjecture, as we leave as an exercise.
One might be so bold as to make similar conjectures about fiber bundles

and so on. The stage is set for the problems we plan to address in this chapter.
Section 7.2 begins with the Wall conjecture.

1 One can construct actions on finite aspherical complexes where there is a map
G → Aut

(
π1(M)

)
, but there are no fixed points for the action. This requires G not to be a

p-group. The manifold case is more difficult. In recent work with Cappell and Yan (Cappell et
al., 2020) we show that indeed, for each non-p-group, one can find actions without fixed
points that lift to Aut(Γ).

2 That is, K(π, 1) does.
3 Wall did not conjecture this: he asked it as a question (Wall, 1979). We are here commiting a

standard historical crime of attributing the positive answer to a question as a conjecture of the
proponent if it lasts more than a few minutes. This is especially venal in my case, since I do not
believe this conjecture.

4 I had originally planned on using Wall’s conjecture as the first existential problem, but I
decided instead to follow Borel’s trail.

5 Exercise: Show that the question of whether the universal cover of an aspherical manifold is
Rn only depends on the fundamental group.
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7.2 The “Wall Conjecture” and Variants

As Poincaré duality would follow from the existence of an aspherical homology
manifold, it is much more reasonable6 to conjecture that that is what exists in
the presence of Poincaré duality.

Expanding the Borel conjecture in this way, i.e. in the uniqueness statement,
is actually equivalent to the version if one allows ANR DDP (Absolute Neigh-
borhood Retract Disjoint Disk Property) homology manifolds in the class of
objects among which the manifold is unique. (If there were a non-resolvable
homology manifold homotopy-equivalent to M , namely a K(π,1) manifold,
then there would be a manifold homotopy-equivalent to M × T4 with different
p1.) And, if one works in this setting, one would at least expect to get the
uniqueness of the homology manifold up to s-cobordism.7

However, the Nielsen part would be expected, because the DDP homology
manifold would have a cover that is (s-cobordant to) a manifold, and that would
make it a manifold. The following seems reasonable to me.8

Conjecture 7.7 The question of whether a torsion-free group is the fun-
damental group of a closed aspherical manifold only depends on the coarse
quasi-isometry type of the group.

This seems to me quite believable, at least modulo the Borel conjecture. I
will explain some of the evidence below and give some heuristic. In particular,
we will see, following Bartels et al. (2010), that it’s true for hyperbolic groups.

For hyperbolic groups, something slightly stronger is suspected (the follow-
ing is an analogue of the “Cannon conjecture”, which we will soon get to).

Conjecture 7.8 The question of whether a torsion-free hyperbolic group is
the fundamental group of a closed aspherical manifold only depends on the
boundary of the group.

Let me remind the reader a little about the theory of hyperbolic groups9

(Gromov, 1987). The property of a group being hyperbolic is a property of its
Cayley graph. Perhaps the simplest description would be that all closed curves
in the Cayley graph bound “disks” of area that grows linearly in the length of
the curve.10

6 At least in my view.
7 Unfortunately, the surgery exact sequence in Bryant et al. (1993) is only completely proved

there for homology manifolds that satisfy an orientability condition; I believe it is true in full
generality. But, in any case, we would not have uniqueness up to homeomorphism because we
don’t have any s-cobordism theorem for homology manifolds.

8 At least in dimensions other than 4, where I have no feeling for what is reasonable.
9 We already had a brief orientation on this in §2.4.

10 Or, equivalently, for any Riemannian metric on any compact manifold with that fundamental
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However, the more traditional, and probably more intuitive, definition is in
terms of “thin triangles.” Every triangle in the graph (i.e. a union of three
geodesics) is uniformly thin: there is a constant δ such that each side is within
δ of the union of the other two sides.

This condition is typical of trees and (the universal cover) of negatively
curved Riemannian manifolds. Euclidean spaces of dimension greater than 1
are not hyperbolic, and, for example, hyperbolic groups never contain a Z2.
Part of their joy is that they exist in great profusion. One can add large random
relations to non-elementary (i.e. not virtually Z) hyperbolic groups to get new
ones; there are gluing or combination theorems for certain amalgamated free
products. And, from some point of view, almost all groups are hyperbolic.11

The boundary of a hyperbolic group consists of equivalence classes of
geodesic rays. An important property of hyperbolic metric spaces is that any
“quasi-geodesic,” that is, a path that is uniformly embedded in the space, is a
finite distance from a geodesic. As a result, this notion of boundary is a coarse
quasi-isometry invariant. For trees, this is just the end-point compactification
(and usually consists of a Cantor set). For the usual examples of co-compact
lattices, the boundary is a topological sphere.

For torsion-free word hyperbolic groups, the boundary is one dimension
smaller than the group. Its homology is usually, as in the case of the free group,
infinitely generated in at least one dimension. If it is not, then one can show
that the group is actually Z in one dimension, k, and the hyperbolic group is
then a Poincaré duality group of dimension k + 1.

In dimension 2, the above conjecture is known to be true. According to
Eckmann (1986)), all two-dimensional Poincaré duality groups are fundamental
groups of surfaces. In dimension 3, in light of the geometricization theorem, this
problem is closely related to Cannon’s conjecture that torsion-free hyperbolic
groups whose boundaries areS2 are fundamental groups of closed hyperbolic 3-
manifolds. Once one gets the 3-manifold in the above statement, the hyperbolic
structure will be automatic.12

Dimension 4 is out of reach, but in higher dimensions this last conjecture is
true.

group, any null-homotopic curve bounds a disk with area linearly bounded by the length of the
curve.

11 This last makes one extremely pleased with the result that the Baum–Connes conjecture is true
for hyperbolic groups (Lafforgue, 2002; Mineyev and Yu, 2002), even with coefficients
(Lafforgue, 2012) and so is the Borel conjecture – and indeed the whole package – (Bartels
and Lück, 2012a).

12 One cannot hope in dimension 4 to hyperbolize aspherical manifolds with boundary an S3

because of complex hyperbolic manifolds and the Gromov–Thurston examples (discussed in
§2.3).
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Theorem 7.9 (Bartels et al., 2010) Two torsion-free hyperbolic groups with
the same boundary of dimension greater than 5 are simultaneously fundamental
groups of closed aspherical manifolds or are not.13

Corollary 7.10 So, if the boundary is a sphere, the hyperbolic group is the
fundamental group of a closed aspherical manifold.

This is as per the conjecture by Wall. (Consider the other group to the
fundamental group of a closed hyperbolic manifold.)

To see this, cross with a circle, and then use the Borel conjecture to guarantee
that there exists a homology manifold realizing these Poincaré complexes. (This
uses the total surgery obstruction, and the result of Bryant et al. (1993) that,
whenever the total surgery obstruction vanishes, there is a homology manifold
realizing the object if one is in dimension greater than 5.) One can then take the
cover corresponding to the group Z (as subgroup) and compactify by gluing
to each of these homology manifolds the common boundary. It is not hard to
prove that there is stratified homotopy equivalence between these homology-
manifold-stratified spaces and thus an element of the relative to the singularity
set structures. That group vanishes (consider Sstrat(Sn+2relSn) as a typical
example), so these covers are h-cobordant, and thus have the same local index.14

Is there any good reason to believe Wall’s conjecture regarding its aspect that
goes beyond the Borel conjecture?

One can try to guess the analogue of pseudo-equivalence (see §6.7) and then
consider the Borel and Wall conjectures in this setting. The following seems
like a reasonable choice (to me).

Definition 7.11 A space X is “haspherical” if the map X → Bπ1(X) is a
Z-homology isomorphism.

Note that the Borel conjecture implies that, if X is haspherical and π is
torsion-free, then X is rigid, i.e. has vanishing structure set if it’s a manifold
(and if it has a boundary, then working relative to the boundary).

So, we now can ask the Wall question: if X is a Poincaré complex and
haspherical, is X homotopy-equivalent to a manifold?

13 If the boundary is a sphere, then the L∗(Z) orientability holds automatically (and indeed a
normal invariant can be constructed from the action of the group on the boundary). In general,
the Quinn invariant is detected by the controlled at infinity homotopy type of the universal
cover of BΓ. Recent work of Ferry et al. (2019) gives information in low dimensions: in
particular, it also handles the case of S4 as boundary.

14 The original proof, which loses a dimension, is to consider the universal cover of the
homology manifolds, compactify these, and glue them together to obtain a connected
homology manifold with each of these universal covers being open subsets. Ferry et al. (2019)
use a different variant by crossing with S1.
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Proposition 7.12 Assuming the Borel conjecture for π, then X , as above,
is homotopy-equivalent to an ANR homology manifold, but not necessarily a
manifold.

It is an interesting question to inquire if any π has an haspherical X that is not
a manifold. For π a product of fundamental groups of surfaces of high genus,
the answer is no (using the Atiyah–Kodaira fibration and their application to the
Novikov conjecture, just as we did in §5.3). However, we will presently see that
it’s doable with π1X free abelian, so that the space X is an integral homology
torus.

That X is homotopy-equivalent to a homology manifold follows from the
argument above. Now, for the counterexample, we start with a torus Tk . We
take a regular neighborhood of the 2-skeleton and do a Wall realization applied
to an element of the form x ⊗ Tk for a nontrivial element x of L0(e) on the
boundary, ∂, of this regular neighborhood. (This produces a normal cobordism
V : ∂ → ∂ ′ whose surgery obstruction – as a map to ∂ × [0,1] – is x ⊗ Tk in
Lk(Zk).) Split the torus along ∂ and glue in a copy of V , by a homeomorphism
to the boundary of the regular neighborhood, and by a homotopy equivalence
to the complement.

This is almost X . The trouble is that we have not controlled its integral
homology. If we could arrange for our normal cobordism V to be a Z-homology
equivalence, we would be done. But that is exactly what the Cappell and
Shaneson (1974) homology surgery theory is for. We exactly need to know for
this that our element vanishes in Γk(Z[Zk] → Z). For k odd, this is trivial,
because that group is trivial for general reasons about odd Γ groups (they inject
in the L-group of their target, which is here Lodd(e) = 0). After arranging
for the normal cobordism to be an integral homology h-cobordism, we obtain
the desired haspherical Poincaré complex. It obviously has a vanishing total
surgery obstruction, and is homotopy-equivalent to a homology manifold, but
it is not resolvable.

Once we have examples for odd-dimensional tori, we can cross with a circle
and get examples in even dimensions as well.

Remark 7.13 One could have asked a different question that might seem more
natural: If a group π satisfies Poincaré duality overZ, is it the fundamental group
of a haspherical (homology) manifold?

The answer to this is no. Apply the Baumslag et al. (1980) construction
to a finite simply connected Poincaré complex that does not have any normal
invariants (i.e. whose Spivak fibration does not have a lifting – see §3.8).
This will be an aspherical Z-Poincaré complex, which cannot be a homology
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manifold, because, if it were, you can see that the Spivak fibration would have
to be reducible.

Another analogue of the Wall conjecture was suggested by Mike Davis
(2000). Accepting the idea that one should only ask for Z-homology manifolds
from Z-Poincaré duality, the question becomes15 If π is a group (with suitable
finiteness properties) that satisfies Rπ Poincaré duality, for a ring R that is a
subring of Q, then is there an R-homology manifold with fundamental group π
whose universal cover is R-acyclic?

This conjecture has at least one thing to recommend it over Wall’s: Wall’s
conjecture is so hard16 partly because it is currently very hard to come up with
newZ-Poincaré duality groups that are not manifolds by their very construction.
For Q there is a very natural source – namely, any uniform lattice that has
torsion. (The action of π on G/K has finite isotropy, but inverting the orders of
these groups restores the Poincaré duality that one would have had in the free
situation.)

The bad news is that this conjecture is very badly false.

Theorem 7.14 (Fowler, 2009) If π is a non-torsion-free uniform lattice, and
π contains an element of odd order (� 1), then there is no ANR Q-homology
manifold with fundamental group π and Q-acyclic universal cover.

It is an open problem whether the same holds in the presence of only 2-
torsion. (You will soon see the issue when we sketch the argument in the next
paragraph.) However, lest one conjecture that Davis’s conjecture is missing
a torsion-free hypothesis, Fowler has given examples where the Q-homology
manifold exists despite the existence of torsion. Interestingly enough, his con-
struction is a Davis construction (see §2.3).

Here’s a sketch of why Fowler’s theorem is true. Suppose Xn is aQ-Poincaré
complex. Then it has a symmetric signature17 in Ln(Qπ). This is a rational
homotopy invariant.18 If X were a Q-homology manifold, then one could lift
the symmetric signature back to Hn(Bπ, L∗(Q)) under the assembly map:

Hn(Bπ, L∗(Q)) → Ln(Qπ).
15 Davis actually asked a slightly different question, and only for torsion-free groups, that Fowler

(2012) disproved.
16 If it’s false, that is!
17 The reader might wish to review some of the discussion in §6.7 at this point.
18 Actually, there is a slight technical issue. In the Z case, the symmetric signature is defined up

to sign unless one chooses an orientation. We have let this go without saying. In the case of Q,
the fundamental class can be sent to any nonzero multiple under a rational homotopy
equivalence. This can change, e.g. the 1 × 1 quadratic form (1) to (k) for some positive integer
k. This can change the symmetric signature in L∗(Q) by an element of order 2 or 4. One can
live with this issue (say by ignoring the prime 2) or avoid it by keeping track of fundamental
classes (like careful people keep track of orientations).
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The point is this. When π is torsion-free, this map should be an isomorphism19

(as part of the Borel package), but when π is not, the right-hand side has
additional elements coming from

Hn(Eπ /π, L∗(Qπx)).
The question, then, is where does σ∗(X) lie with respect to these extra

pieces? Actually it’s pretty clear what element it is: we have the equivariant
symmetric signature of G/K that lies in the same group and is clearly equal
to a lift of σ∗(X). At that point, we can use localization theorem technology
borrowed from Atiyah and Segal (1968) or (what Fowler does) use a proof
of the equivariant Novikov conjecture in this case by going to a g-equivariant
symmetric signature of the universal cover G/K in its “bounded L-theory.”
One gets an obstruction in this way from the ρ-invariant (see §4.10) of the lens
space that is normal to a generic point in a stratum of π\G/K . It is here that one
needs a condition. For the free involution on a sphere, the ρ-invariant happens
to vanish and the proof breaks down, but for odd primes, the formula in Atiyah
and Bott (1967, 1968) shows that the ρ-invariant is never zero and the proof is
complete.

Remark 7.15 In many cases where there is 2-primary torsion, the above argu-
ment can be applied as well. (In many cases, a more elementary argument using
algebraic K-theory suffices Fowler (2012) – a necessary condition is that all
the singular strata corresponding to cyclic subgroups have Euler characteristic
equal to 0.)

Even the torsion-free case of the Davis question strikes me as unlikely, despite
the failure of the ideas above to disprove it.20 My main reason for hesitation
is that we do not have a good theory for surgery on R-homology manifolds for
R � Z. The assembly map being an isomorphism does not imply that there is
a unique homology h-cobordism class of homology manifolds with the given
R-homotopy type (as far as I know). Even for manifolds, local surgery theory
has a more complicated normal invariant set than ordinary surgery theory (see
Taylor and Williams, 1979b).

Despite the falsity of these many variations on the Wall conjecture,21 we will
continue to exploit and expand these ideas in the following section.
19 And this is a case that is actually known, again by the remarkable paper of Bartels and Lück

(2012a).
20 Obviously, when the Borel package is in place, the method above gives no restriction.
21 By the way, there is a form that is as well founded as the Borel conjecture: Suppose X is a

Poincaré space whose non-empty boundary is a manifold M (i.e. (X , M) is a Poincaré pair).
Then if X is (h)aspherical, it is homotopy-equivalent relative to the boundary to a (unique)
manifold, rel M .
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7.3 The Nielsen Problem and the Conner–Raymond
Conjecture

The best evidence for the free Nielsen problem comes from Borel conjecture
via the Wall conjecture. When there are fixed points, the situation is much more
complicated.22

We will, following Block and Weinberger (2008) and Cappell et al. (2013),
concentrate on G = Z2. In this case, Smith theory determines the 2-adic
equivariant homotopy type of the action. Indeed, any action will be pseudo-
equivalent to the action of Z2 on Eπ/Γ (in the notation of §7.1).

(This observation explains why, whenever G is a p-group, a lifting to Aut(Γ)
guarantees a global fixed point, because the lift to Eπ has a fixed point by
Smith’s theorem. However, for Zn, with n composite, there are fixed-point free
actions on Euclidean space (see Bredon, 1972) and this argument fails.23)

In Block and Weinberger (2008) it is observed that, for very low-dimensional
fixed-point sets, the fact that the fixed set is an F2-homology manifold implies
that it’s a manifold (see Bredon, 1972) and that the map is an equivariant
homotopy equivalence. Cappell et al. (2013) deal more directly with the fact
that it’s a pseudo-equivalence. By being more careful, we can achieve:

Theorem 7.16 There are closed manifolds W with word hyperbolic group
fundamental group Γ such that Z2 ⊂ Aut(Γ) but for which there is no involution
realizing this homotopy involution. Indeed, this involution is not realized on
any closed ANR homology manifold homotopy-equivalent to W .

We take our inspiration from the Gromov and Piatetski-Shapiro method24

(see method three in §2.2.3). In other words, we will build two involutions on
aspherical manifolds with (incompressible25 aspherical) boundary W1 and W2
so that we have an equivariant homotopy equivalence

h : ∂W1 → ∂W2.

22 See Farrell and Lafont (2004) for examples of fixed sets of automorphisms of aspherical
manifolds that don’t have integral Poincaré duality, so the extension does not correspond to an
aspherical orbifold.

23 Thus, for X a finite-dimensional aspherical complex, the lifting condition suffices for prime
powers. And, as we mentioned in Footnote 1, conversely, for Zpq , with p and q distinct
primes, in Cappell et al. (2020), we construct an aspherical manifold with Zpq in Aut(π), but
which has a fixed-point free action by combining the argument in Bredon (1972) with a Davis
construction.

24 We could have been inspired by the way we produced haspherical homology manifolds that are
not homotopy-equivalent to manifolds by realizing a surgery obstruction by gluing, or the
construction of non-resolvable homology manifolds (Bryant et al., 1993). These, in turn, were
inspired by the work Jones (1973) on patch-space decompositions for Poincaré spaces. Of
course, we have to recognize a common thread in all these examples.

25 i.e. π1-injective
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We will arrange that h is homotopic to a homeomorphism h′ (this would be
automatic if the Borel conjecture were true), so we can form the manifold

W = W1 ∪h′ W2.

It is homotopy-equivalent to the result of gluing using h – but that will only
give a Poincaré complex with an involution, not a manifold. Since h is not
equivariantly homotopic to a homeomorphism, there isn’t an obvious reason
why W should have an involution in this pseudo-equivalence class (i.e. realizing
the same automorphism of π1) and it will be our problem to eliminate this
unlikely possibility.

The involutions and equivariant-homotopy equivalence h : ∂W1 → ∂W2 will
be the UNil counterexamples to the Borel conjecture discussed in the previous
chapter (see §6.5). Then the Wi will be built using cobordism theory and relative
hyperbolization (see §§2.3 and 2.4).

The UNil obstruction to the Borel uniqueness for ∂W1 gives rise to a UNil
obstruction to the existence of an involution for W . By choosing the initial ∂W1
to be hyperbolic, the remaining parts of the construction can be done carefully
enough to give word hyperbolicity of W .

Remark 7.17 We can use pseudo-equivalences on the boundary to similar
effect in making this construction. We have so far only examined carefully
examples that come out of equivariant homotopy equivalences and using UNil.
Presumably there are also examples that come from Nil (i.e. the simple homo-
topy condition) or via embedding theory. Possibly pseudo-equivalence allows
for phenomena where one would get actions on CW-complexes that cannot
be realized on manifolds because there is no Fp homology manifold Fp[π]-
homology-equivalent to the fixed set. Among other advantages, these should
give rise to examples for p odd, for example.

Now for a few more details.
To obtain an aspherical manifold, one can start with an affine involution on

the torus.26 Such a manifold always bounds equivariantly. We can even make it
bound explicitly an equivariant aspherical manifold, so that it is incompressible.
This is W1. We then do the equivariant Wall realization to the free part (as in
§6.5). This will produce a smooth involution on the torus with an equivariant
null-cobordism (gluing on the null-cobordism of the affine torus). This can
be hyperbolized relative to the boundary (Davis et al., 2001) to produce the
null-cobordism with involution W2.

It is a diagram chase involving the equivariant total surgery obstruction

26 Note that this always obstructs the word hyperbolicity of π1W .
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(and Cappell’s splitting theorem) to see that this equivariant homotopy cannot
be realized by an involution on an ANR homology manifold; see Block and
Weinberger (2008). If the fixed set is of dimension ≤ 2, this suffices.27

However, one can get around this by considering the algebraic mapping cone
of the pseudo-equivalence M → W . It gives an element in Salg(W ×Z2 EZ2).
(One should be careful – this mapping cylinder often is not chain equivalent to
a finitely generated free chain complex. But, using Wall’s (1965) homological
criteria for finiteness, it is projective.) The existence analogue will be in the
delooped version of this – which naturally has a map to Sw−1(Bπ) which has a
map to the UNil, as before. (See Cappell et al., 2013 for some more discussion.)

To achieve word hyperbolicity, one starts with an involution on a hyperbolic
manifold M inducing the correct orientation character and with fixed set of
codimension greater than 2. This can be done as in §2.2 (together with the
observations in §6.7 about the splitting off of UNil factors in this situation).
(See especially §2.2.3 on grafting, where involutions with codimension-1 fixed
sets are constructed; it is easy to modify this to increase the codimension.)

Then we consider W1 = M ×[0,1] hyperbolized, to achieve acylindricalness.
We then build W2 as before (see Belegradek, 2006, for why this is incompress-
ible and relatively hyperbolic, with the boundary as the maximal “parabolic”).
Then, as in Belegradek (2006), the gluing theorem of Dahamani (2003), or
even the more basic one of Bestvina and Feighn (1992), shows that W has word
hyperbolic fundamental group.

Problem 7.18 Does there exist a counterexample to Nielsen when W is
genuinely negatively curved? Even non-positively curved is not obvious to me.

Now let us turn to the Conner–Raymond conjecture. Recall that this is the
question of whether every closed aspherical manifold X , with nontrivial center,
Z(π1X) � 0, has a topological circle action.

The X is quite simple: note that W as constructed above has a homeomor-
phism H inducing the relevant involution on π. Then X is the mapping torus
of H,

π1(X) � π1(W) � Z,

where the automorphism of π1(W) is H∗. Let t be the generator of Z.

Proposition 7.19 The center Z(π1X) � Z generated by t2.

27 Strictly speaking, one should use the equivariant analogue of taming theory (see Ancel and
Cannon, 1979; Ferry, 1992) to replace the action by one where the fixed set is embedded
locally flatly. Then the action would be necessarily equivariant homotopy-equivalent to the
action of the Poincaré complex W .
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As a result, because of the work of Borel (explained in the introduction) any
circle action on X must have orbits in the homology class of some nontrivial
even power of t. In particular, they must represent nontrivial one-dimensional
rational homology classes.

We claim that, in fact, X has no circle actions. Our proof will be based on a
lovely theorem of Conner and Raymond.28

Theorem 7.20 (Conner and Raymond, 1971) If X is a connected space29

with a circle action so that the orbits are nontrivial in H1(X;Q), then there
is a space Y with a Zn-action such that X can be identified with (Y × R)/nZ,
where Z acts diagonally on Y ×R factoring through the Zn-action on Y and by
translation on R. The action of the circle on X is via the left action of R/nZ.

The n is related to how divisible the orbits are as elements of H1(X;Z). Note
that one should be a bit careful: the orbits do not all represent the same element
H1(X;Z) unless one views them as immersed circles (i.e. as being given via the
orbit map S1 → X) rather than just as subsets.

To get a feeling for the theorem, let’s just consider the case of free actions.
(The orbit condition implies that all isotropy is finite, so this is not far off.) In
that case X can be described as a principal S1 bundle over X/S1. However,
these bundles frequently have the homologically trivial fibers. The condition
for which this is not the case is that the Euler class in H2(X/S1;Z) must be of
finite order (i.e. vanish rationally). This leads to a finite cyclic cover of X/S1

on which the bundle is trivial. That finite cover is Y , and X/S1 is Y/Zn.
We note that this theorem is extremely general, and does not apply, for

example, to the setting of manifolds. After all, X/S1 can well be a non-manifold
(recall the examples of Bing (1959) mentioned in §6.1), so we will be forced
to allow Y to be an ANR homology manifold. (Note that Y ×R is a cover of X ,
so we do obtain that Y is an ANR homology manifold from the hypothesis that
X is a (ANR homology) manifold.

That is why we modified the Nielsen problem in our treatment above to
exclude the action of Z2 on any ANR homology manifold in the homotopy type.
The proof of the theorem comes about by eliminating any other possibilities

28 Frequently the proofs and disproofs of conjectures are based on the work of the ones who
formulate the problem. This might engender a feeling of irony in those of a competitive spirit,
yet for those of us who think of mathematics as a magnificent cooperative endeavor, nothing is
more natural. Surely, the milestones that are marked by being able to confirm or refute the
beliefs of those who have thought profoundly about a subject should be the result of walking
further down the road that their insights paved. In this case, Cappell, Yan, and I were surely
“walking in the footsteps of giants.”

29 We will suppress the point-set topological hypotheses in this theorem; suffice it to say, that the
theorem holds in great generality.
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of what the Zn-action in the Conner–Raymond theorem can look like for the
manifold X . These details are not particularly hard.

We note that the manifold X has the following interesting property:

Remark 7.21 As constructed, X has Riemannian metrics gn so that the indices
[Isom(X̃, g̃n), π1(X)] → ∞ but no metric for which this index is infinite.

This is simply because X has arbitrarily large self-covers (in the topological
category; i.e. not by Riemannian “self”-covers) associated to odd-order cyclic
quotients of the HNN map π1(X) → Z (because odd powers of H are pseudo-
isotopic to H).

We will later see that this is indeed unusual: for M homeomorphic to a
compact locally symmetric manifold (of non-positive curvature) there is a30

C(M) so that any Riemannian metric g on M with [Isom(M̃, g̃), π1(M)] > C(M)
is actually isometric to a locally symmetric metric (and therefore has G as its
isometry group, so the index is uncountable). Farb and I had conjectured31 that
for quite general aspherical manifolds there is a “magic number theorem” (see
§7.7 below), but this remark puts an upper bound on the extent to which one
can reasonably conjecture that phenomenon (e.g. it might be good to assume
that π1(M) is centerless).

Question 7.22 If a closed aspherical manifold X has fundamental group with
nontrivial center, can it have a sequence of (Lipschitz) Riemannian metrics gn,
so that [Isom(X̃, g̃n), π1(X)] → ∞?

In §7.6 we will continue this discussion.
One can also ask whether the Conner–Raymond conjecture is virtually true?

The examples that are constructed using failures of Nielsen realization and the
Conner–Raymond theorem are virtually products with circles, so for them this
is trivially true.

Is there any form of the Conner–Raymond conjecture that is closer to the
Borel conjecture? Here is one that I know.

Conjecture 7.23 An aspherical manifold M has nontrivial center in its funda-
mental group iff there is a connected topological group G that acts on M so that
the orbits are not null-homotopic (i.e. the map G → M is not null-homotopic).

That the center is nontrivial if there is such an action is obvious.
Regarding the converse, there is a universal case of this conjecture, namely

that G = Homeo0(M) (where the subscript 0 indicates the identity component).

30 Which only depends on the volume of M in its standard locally symmetric metric.
31 Farb and Weinberger (2008).
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By the Borel conjecture, the blocked version of this space would be homotopy-
equivalent to the space of self-homotopy equivalences of M , whose identity
component is a K(Z(π1M),1) (presumably a homotopy torus32).

So the question is whether Homeo(M) → Homeo(M̃), comparing essentially
fiber bundles and block bundles, is, for example, a Q homotopy equivalence,
or at least as far as π1. Farrell and Hsiang (1978a) explain why this should be
true33 (at least in a stable range, using work of Waldhausen) if one knows that
assembly maps in algebraic K-theory are isomorphisms.

Although the above heuristic does not make sense in low dimensions, e.g.
dimension less than 7 or 8, nevertheless, I have no reason to doubt (and no good
reason to believe) the conclusion.

7.4 Products: On the Difference that
a Group Action Makes

Once one gets used to the Borel conjecture for manifolds, and the even larger
Borel package extending its reach in various algebraic and geometric directions,
one gets used to things like the following:

• Two simply connected manifolds are homeomorphic iff the results of crossing
them with any compact aspherical manifold are.

• And that the simple connectivity we assumed is just to avoid algebraic K-
theory difficulties (such as Whitehead torsion issues).

We shall see that frequently such statements are indeed consequences of the
Borel conjecture, but that it is not quite true for all aspherical “objects.” In
particular, we will see that this is not true for aspherical homology manifolds
that are not resolvable, if there are any. (Or, to vary the point somewhat: it is
true for haspherical manifolds but not haspherical homology manifolds. We
can cross with the “fake homology tori” constructed in §7.2 and create some
interesting homeomorphisms.)

And, the point then becomes even more evident and significant in the equiv-
ariant setting. Odd-order locally linear group actions behave like manifolds, but
beyond the locally linear setting, or when there’s 2-torsion, in some ways these
orbifolds act like non-resolvable homology manifolds (or even more extremely).
32 I do not know whether the center can be a group like, for example, Q.
33 See the discussion referred to in §5.5.3 (and the notes in §6.11). Roughly, the reasoning goes

like this: The A-theory assembly map governs topological concordance space theory (which
forms the obstructions on a simplex-by-simplex basis to turning a block bundle into a fiber
bundle). Rationally, that assembly map is equivalent to the algebraic K-theory assembly map,
which is an isomorphism assuming the Borel conjecture in K-theory.
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Let’s put a little flesh on this skeleton.
Shaneson’s thesis from the modern perspective,34, a restatement of Farrell’s:

Ss(M × S1) � Ss(M × [0,1]) × Sh(M),
Ls
n+1(M × S1) � Ls

n+1(M) × Lh
n (M),

where the last statement, modulo decorations, is the isomorphism

Hn(S1; L(π1M)) � Ln(Z × π1M),
which looks just the Borel conjecture for Z (with coefficients in the group ring
Z[π1M]). The composition

Sh(M) → SS(M × S1) → Sh(M)
(the left arrow is induced by taking the product withS1, and the right is applying
Farrell’s fibering theorem) is the identity, which establishes the injectivity (aside
from K-theory) of×S1. We can apply this n times to get an injectivity statement
for taking the product with Tn.

These results are steps in (and analogues of) the relations35 of SBdd(M×Rn ↓
Rn) to one another via taking the product with R. Essentially all that is affected
is the decoration. Aside from the K-theory issues (that effect only the prime 2)
these maps are all isomorphisms.36

Corollary 7.24 If Z is a non-positively curved manifold,37 then taking a
product with Z is injective on structure sets (aside from change of decoration38)

We use the diagram

S(M) → S(M × Z)
↓

SBdd(M × Z̃ ↓ Z̃) → SBdd(M × Rn ↓ Rn)
where the bottom arrow uses the inverse of the exponential map to see that the
top arrow is an injection (modulo decoration).
34 What a wonderful example of terrible history! Shaneson’s thesis essentially helped create the

modern perspective wherein statements about structure sets and L-groups are viewed as
essentially equivalent. Perhaps the best thinking covers itself up (in this way) and (is so
successful it) becomes invisible.

35 Chapman proved that a bounded structure over Rn can always be “wrapped over a torus” and
then is transfer invariant, i.e. isomorphic to any of its finite covers.

36 Note also that bounded structures are the same as controlled structures, and then by the yoga of
controlled topology one should get Hlf∗

(
Rn ; S(M)) – except that this only works with −∞

decoration.
37 The proof uses nonpositive curvature very weakly: it just requires a Lipschitz homeomorphism

h of the universal cover with Rn that has the property that d(x, y) can be bounded in terms of
| |h(x) − h(y) | | (i.e. h must be “effectively proper” or equivalently a “uniform embedding”).

38 And for Z an n-manifold, one loses no more than one does for the n-torus.
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The attentive reader might have noticed that this “logarithm” was the key
to the proof of the Novikov conjecture for such Z , and therefore come to the
conclusion that this injectivity is part and parcel of this package.

And, indeed for manifolds, it is.
Let’s think about the bottom line in the diagram where Z is now just the

universal cover of an aspherical homology manifold. One might not be able to
find the relevant kind of logarithm map, but it still is reasonable to believe that
SBdd(M × Z ↓ Z) � Hlf

z (Z; S(M) � S(M) (with a shift of decoration).
However, what is unreasonable is to expect that this isomorphism is im-

plemented by taking a product with Z . In the manifold case we saw this by
unpeeling one R at a time.

In the homology manifold this can’t go on all the way down to a point(!), for
then it would be a manifold. And, indeed what happens is this. The effect of
crossing with a (homology) manifold X in surgery is governed by the symmetric
signature σ∗(X). It is the image under assembly of a controlled symmetric
signature that lives in a group isomorphic to Hlf

z (X; L∗(Z)).
The usual way to see that multiplying with something is injective is to show

that that thing is a unit, or maps to a unit under some map. For a manifold, at
least, the image of controlled symmetric signature in Hlf

z (X,X − x; L∗(e)) �
L◦(Z) � Z is 1, and therefore if the map from controlled to uncontrolled has
good enough properties; that is, assuming the Novikov conjecture, one can
expect this product phenomenon.

However, when X is a homology manifold, then this image of the controlled
symmetric signature is some number that is 1mod 8, and it determines whether
or not X is resolvable. So, if X has local index equal to 9, crossing with X can
kill 3-torsion in a structure set. And, if the local index is 17, then 17-torsion
can die, but the 3-torsion is safe, and so on.

In the setting of Z-homology manifolds then, crossing with something as-
pherical doesn’t have to be integrally injective (modulo decorations), but it does
have to be (assuming the Novikov conjecture39) rationally.

It’s interesting to ponder a Poincaré complex P whose total surgery obstruc-
tion is of order 17 and that we cross with an aspherical homology manifold
X with local index 17 whose canonical Ferry–Pedersen reduction is a stably
trivial bundle. Then p × X will exist, and, if one believes the Borel package,

39 Suspect the sanity of someone who wants to start by considering Z2 as the first nontrivial
example in studying group actions: it is frequently much more difficult than any odd-order
group, as we had noted in Fowler’s theorem (§7.2), for example, or the nonlinear similarity
problem (§6.7). And, indeed, the issue here is quite similar! Needless to say, I can imagine
some situations where Z2 is “the first case” (because one wants only one singular stratum, and
vanishing K-groups, etc.; or among people for whom nontrivial means “the first case not yet
handled through the efforts of all mathematicians over the course of the previous millennia”).
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it will approximately fiber over X; however, the local structure will not be a
product. (The same thing, of course, happens in the manifold setting when one
has a non-simply connected Poincaré complex, which is only finitely domi-
nated, and its total surgery obstruction vanishes in BS−∞ and crosses with a
high-dimensional torus.)

Now, let’s turn to the equivariant situation. We have so far seen that this
venue is richer in phenomena because of Nil and UNil, and, if we choose to be
equivariant rather than isovariant, also because of embedding theory. But now
we will see that the situation is richer for yet another reason: the local structures
that are present are richer (and more geometrically apprehensible) than what
occurs in (homology) manifold theory and we can lose the rational injectivity
of crossing.40

So, let’s think about the smallest group, Z2, and the smallest nontrivial
aspherical universal cover R with the involution X → −X . We will denote this
by (R,−). What happens here?

The issue occurs almost immediately.
Let’s consider Sn with a free involution. Then taking the product with (R,−)

can be thought of as (at least, it seems closely related to) the “suspension map”

SZ2 (Sn) → SZ2 (Sn × (R,−)) � SBdd(RPn+1− a point)
↓ ↓

S(RPn) −→ S(RPn+1).

The boundedness in the top line is over R and [0,∞). Boundedness over these
turns out to be equivalent to propriety. The vertical lines are isomorphisms
(any proper homotopy RPn+1 − a point can be compactified, and the boundary
is necessarily a homotopy sphere, and therefore a sphere).

This “suspension map” was analyzed directly by Browder and Livesay (1973)
in the early days of surgery. They were interested in the kernel and cokernel
in the bottom line to get an approach to the structures of RPn. In any case we
know that S(RPn) is finite41 iff n � 3mod 4, and is the sum of Z and finite
group for n = 3mod 4. In any case, it surely is not rationally injective.

Bolstered by this we can decide to directly compute

SZ2 (Sn) → SZ2 (Sn × (S1,−)).

Note that SZ2 (Sn × (S1,−)) � S(RPn+1#RPn+1), so there is a very significant

40 Despite expecting rational injectivity of appropriate assembly maps!
41 For simplicity and connections to the classical literature in this paragraph and the next, S

denotes a topological manifold structure, rather than homology manifold structures. (Thus
S(Sn) is trivial, not Z.)
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lack of surjectivity because of UNil, but also the Z coming from L0(Z2) for
n = 3mod 4 also dies.42

This “anomalous” product is the key to at least two interesting geometric
phenomena.

The first is nonlinear similarity (Cappell and Shaneson, 1981), discussed
earlier in this book – the fact that for some even-order groups, like Z4k , when
k > 1, there are distinct linear representations that are conjugate via homeo-
morphisms. They begin with representations that are not conjugate because of
ρ-invariants, and then after crossing with (R,−) they become conjugate.

The second is a very nice result of Hambleton and Pedersen (1991) related
to the classical spherical spaceform problem: namely, which groups act freely
on some sphere. The answer, due to Madsen et al. (1976), is that a finite group
so acts iff all subgroups of order p2 and 2p are cyclic. The first condition is
homotopy-theoretic, and follows from Poincaré duality of the putative quotient,
but the second condition, due to Milnor, is essentially surgery-theoretic.43

The question then arises for groups that act freely, properly discontinuously,
and cocompactly on Rn × Sk , must every finite subgroup satisfy the 2p condi-
tion? (The p2 condition is indeed automatic since it comes out of cohomological
considerations: see Cartan and Eilenberg, 1956.) Here the answer is affirmative,
and basically the reason also involves crossing with (R,−) a few times.

Formally, the point for group actions is this. When one does a similar analysis
for a controlled symmetric signature, now what arises is a more complicated
local group rather than L∗(Z); the isotropy enters, and one has – at least! –
things like ρ-invariants entering. Away from 2 the information is essentially the
same as the equivariant signature operator, and that has the property that for
odd-order groups (acting smoothly – so we are dealing with a representation
theory problem!) one obtains a unit, but for even-order groups, it frequently is
a 0-divisor, with the kinds of implications just mentioned.

In summary: usually homology manifolds and manifolds behave very simi-
larly, but they don’t with respect to transversality problems. Bundle structures
are much rarer.

Similar issues arise in the orbifold setting. For odd-order groups the equiv-
ariant signature (for locally linear actions) is locally a unit, i.e. is an orientation
– but for even-order groups it’s frequently a 0-divisor. For ANR homology
manifolds that are not resolvable, the symmetric signature is neither a unit nor
a 0-divisor, so one tends to see phenomena that are intermediate between the
differences between odd-order and even-order group actions.

42 Taking the cover associated to Z2 ⊂ Z2 ∗ Z2 gives a computational proof of the bounded
vanishing mentioned in the previous paragraph.

43 In its modern formulation: see J. Davis (1983).
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7.5 Fibering44

We recall a theorem of Browder and Levine (1966) that was the predecessor of
Farrell’s thesis:

Theorem 7.25 A closed manifold M with π1(M) = Z is a fiber bundle over
S1 iff its universal cover has finitely generated homology.45

Farrell’s theorem gives one generalization of this – what happens for fibration
over S1 if π1 is not Z.

But an alternative generalization asks what we can say more generally about
the structure of manifolds whose universal covers have finitely generated ho-
mology?

Note that for many fundamental groups there are no such manifolds.46

Example 7.26 If M is a closed manifold and π1Mn has infinitely many ends
(e.g. is a nontrivial free product other than Z2 ∗ Z2), then Hn−1 of the universal
cover of M is infinitely generated.

Indeed the universal cover has infinitely many compact separating codimen-
sion-1 submanifolds that are not homologous (as in Figure 7.1).

More generally, the following is a consequence of Quinn (1972, 1982b,c,
1986) – and see Block and Weinberger (1997).47

Proposition 7.27 If Bπ is a finitely dominated complex and M is any closed
manifold with fundamental group π and whose universal cover has finitely
generated homology, then (i) Bπ is a Poincaré complex and (ii) the universal
cover of M is a Poincaré complex.

It is obviously not necessary for Bπ to be finitely dominated for such an M to
exist. Any finite group is a counterexample! Nevertheless, let us provisionally
make this assumption.
44 See also our discussion above in §5.1
45 They proved this theorem in the smooth and PL categories in dimension greater than 5, but it is

now known to be true in the topological category in all dimensions (for the “usual reasons”).
46 For some groups there are no such finite complexes or even having finitely generated

homology through some fixed dimension. This is a variation of the usual FPk hierarchy (see
e.g. Brown, 1982) for groups, which seems worth further study.

47 The argument is basically this. A finite complex X is a Poincaré complex iff the map from the
boundary of the regular neighborhood of X in a high-dimensional Euclidean space is a
homotopy sphere. This implies that, for a fibration of finite complexes, F → E → B, as these
fibers for E are the join of the fibers for E and B, and it therefore follows that E is Poincaré iff
both F and B are. In our situation, E = M , and the fibration is associated to the classifying
map of the fundamental group, and we have assumed that all three are finite complexes. Thus,
all three must be Poincaré complexes. Since M is a manifold, its universal cover automatically
has a normal invariant, and consequently the fiber is homotopy-equivalent to a topological
manifold (in all dimensions).
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Figure 7.1 Part of the universal cover of a manifold with free fundamental
group; a set of separating hypersurfaces as in the picture are linearly indepen-
dent whenever no subset bounds a compact region.

Conjecture 7.28 If M is a closed manifold with π1M of finite type and whose
universal cover has finitely generated homology, then there is an aspherical
ANR homology manifold X and a UV1 approximate fibration M → X .

Let’s review some of the definitions and motivate the conjecture. We shall see
that it is a natural analogue and consequence of the Borel conjecture. (Indeed,
it also implies the Borel conjecture, so I guess that means it’s equivalent to it.)

The first statement that there should be an aspherical ANR homology man-
ifold with the same fundamental group as M follows from the existence ver-
sion of the Borel conjecture (with Wall conjecturing that this should even be
homotopy-equivalent to a manifold). The manifold is then homotopy-equivalent
to a fibration over X with a Poincaré space as fiber.

If X is not resolvable, then obviously M cannot fiber over it. (The local index
of M would have to be divisible by the local index of X .)

However, approximate fibration is somewhat less. A map is an approximate
fibration if the usual condition for a fibration, namely that for any square

A → M
∩ ↓

A × [0,1] → X

there is a diagonal lift, A × [0,1] → M , but now only demanding that the
diagram commute up to ε. (In other words, for each ε we want a lift.) This
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condition is quite close, when X is a manifold, to being a block bundle (see
Quinn, 1982a, 1987b).

Let E(M̃ ↓ X) be the total space of the universal cover fibration over X , i.e.
the product (M̃ × X̃)/π which has a natural fibration structure over X .

The obstruction to homotoping the map M → E(M̃ ↓ X) to a controlled ho-
motopy equivalence over X (which, parenthetically, is equivalent to homotoping
it to an approximate fibration) is precisely an element of a certain (looping48 of
a) structure set of X (because the homotopy fiber involved is simply connected)
by making use of the theorem of Bryant et al. (1993). (See §4.9 for a blocked
discussion and also §5.1.) Consequently, by the Borel conjecture again, we get
the conclusion of the conjecture.

Conversely, if for example X is an aspherical manifold for which the Borel
conjecture fails, then gluing together a counterexample in S(X ×D4) to X ×D4

builds a manifold that is homotopy equivalent to X × S4 and therefore has
finitely generated homology in its universal cover. However, the obstruction
to making it approximately fiber over X is exactly the nontrivial element in
S(X × D4) that starts the construction, completing the proof. (This requires
some thought, perhaps, but it follows from the proof of Siebenmann periodicity
given in Cappell and Weinberger, 1987.)

Question 7.29 Is there any natural construction of manifolds whose universal
covers have finite type that might be a useful source of groups that satisfy
Poincaré duality that are not immediately forced to be fundamental groups
of manifolds? Note that any Poincaré BΓ is the fundamental group of such a
manifold – but this doesn’t count, since we don’t have a construction of these,
as I’ve already lamented – the boundary of a regular neighborhood of BΓ
embedded in any Euclidean space would be such a manifold.

One source might be even a construction of manifolds M where Out(π1 M)
might or might not be trivial, and where there is a finite subgroup G for which
no element of order p lifts to Aut(π1 M). In that case the nontrivial extension
1 → π1 M → Γ → G → 1 produces a Poincaré duality group which is not
obviously a manifold. On the other hand, if we knew the Novikov conjecture
for π (even rationally), this would not be a candidate for a counterexample to
the Wall conjecture based on the local index. And, in any case, I don’t know
any interesting examples of this sort.

Remark 7.30 Note that by striving for a general discussion, we were inex-
orably led to approximate fibrations. However, when X is a manifold, nothing
we have said precludes M from actually fibering over X . Nevertheless, since
48 By dim M − dim X.
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there are sphere block bundles that do not correspond to sphere bundles, the
total space of one of these over a closed aspherical manifold would provide
such an example.

Remark 7.31 There is a slightly different line of reasoning that could lead
to the above conjecture. (And naturally leads to a version for arbitrary regular
covers in place of the universal cover: but this version is obstructed by (a
sequence of) Nil groups in general. What follows is a somewhat different
recombination of the ingredients in §5.1.)

Let us consider what a stratified version of the Borel conjecture could be – in
the first interesting case, where our space has two strata. The question is which
of these can be rigid?

This is actually kind of complicated. Here is an example that has nothing to
do with the Borel conjecture:

Example 7.32 Suppose that f : M → N is an approximate fibration whose
homotopy fiber is CP2k , then (Cyl( f ), rel ∂) is a rigid stratified space.

Interestingly Cappell, Yan, and I observed that this is not true in the slightly
more general situation where the homotopy fiber is a general simply connected
manifold F with signature equal to 1! There is an interesting contribution of
the monodromy map π1N → Aut(F).

So let’s consider just the situation relative to a singularity49 (see §§6.5
and 6.6). There is a fibration:

S(X rel Σ) → S(X − Σ) → Fiber (H (
Σ; L(local holink)) → L

(
global holink)) .

(The loop of this fibration is

Fiber
(
H+1

(
Σ; L(local holink)) → L(global holink))

→ S(X rel Σ) → S(X − Σ),

which just means that the extensions of a structure of X − Σ over Σ correspond
to the ways of making the end of X − Σ into an approximate fibration over Σ.)

It’s easy enough to compute S(X − Σ): it is essentially a manifold with
boundary where one is not working relative to the boundary. In the mapping
cylinder case, it vanishes. (It boils down to S(M × [0,1) rel M × {0}) = 0.) This
calls attention to the issue of whether

H
(
Σ; L(local holink)) → L(global holink)

49 Actually, there is a stabilization necessary here when the homotopy link (holink) is not simply
connected, because of decoration issues. We shall ignore this.
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is an isomorphism. If π2Σ = 0, then the L-sheaf is “flat,” i.e. is a formal
consequence of the short exact sequence50

1→ π1(local holink) → π1(global holink) → π1(Σ) → 1

and then we would expect this fiber to be trivial at least when Σ is haspherical
(by comparison to the aspherical case – as there is a map to the corresponding
twisted assembly map over Bπ1(Σ)).

All of this suggests that for Cyl( f ), if the map is an approximate fibration,51

and the base is aspherical, one might conjecture rigidity. A little thought shows
that the reasoning discussed in Chapter 4 would prove the split injectivity.
Which makes the conjecture of rigidity (despite its clear falsity due to Nil and
UNil issues!) plausible. This is a special case of the twisted Borel conjecture
in §5.1.

The connection between the neighborhoods and approximate fibrations is
very close in the topological category. As we discussed earlier, there is no direct
regular neighborhood theory. What there is, is the “teardrop neighborhood
theorem” of Hughes et al. (2000). It says that there is a deleted neighborhood
of X − Σ that has a canonical approximate fibration structure over Σ × (0,1).
(Then Σ is glued in in the obvious way, and, when drawn appropriately, the
open sets in the relevant topology look like teardrops.)

Crossing with (0,1) has the effect of taking a loop space, and one is thus
led geometrically to the conjecture of existence and uniqueness of approximate
fibration structures when the target is aspherical.

Remark 7.33 Note that, once we have decided that Σ is aspherical, then the
Borel conjecture would give its rigidity, so S(X rel Σ) → S(X) would be an
isomorphism. Thus, we have two circumstances where we have vanishing of
S
(
Cyl( f ), rel ∂) – namely when the fiber isCP2k or when the base is aspherical.

When the fiber is CP2k then any manifold M ′ homotopy-equivalent to M gives
rise to a structure N ′ on N , so that M ′ approximately fibers over N ′. In the
situation of aspherical base, the base is itself rigid, so the result is that M ′ fibers
over N itself.

Remark 7.34 Approximate fibrations arose naturally when we considered
rigidity in the topological category. As we have emphasized many times in
these notes, the topological setting is the natural one for rigidity.

Had one worked in the PL category one would have been led to consider block
50 See Chapter 13 in Weinberger (1994).
51 Actually, all one needs is that all “fibers” have the same π1 (i.e. an approximate fibration with

respect to 2-complexes). In that case, stratified surgery does not directly apply, but nevertheless
controlled surgery would still give a suitable rigidity.

https://doi.org/10.1017/9781316529645.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.008


282 Existential Problems

bundles instead. In that case, we would have trouble with decorations, which
also reflects the way there are K-theory obstructions in Farrell’s theorem.52

While the whole Whitehead group enters in Farrell’s theorem, in the problem
of approximate fibering over the circle (and this is part of the Borel package)
it is only the Nil part: writing, in the product situation, Wh(Z × π) = Wh(π) ×
K̃0(π) × Nil±(π). The K̃0(π) part arises from trying to put a boundary on the
infinite cyclic cover. However, any such cover, with boundary or not, is the
infinite cyclic cover of an approximate fibration over the circle (see Hughes and
Ranicki, 1996, for a discussion of wrapping). The Whitehead part is entirely
irrelevant to the problem. The h-cobordisms between different “almost fibers”
can all be mapped to points in an approximate fibration.

Now let us turn to the possible structure of manifolds whose universal covers
have finitely generated homology but have torsion in their fundamental group.

Conjecture 7.35 For such a manifold to exist it is necessary and sufficient that
HRi(π) is zero for all but one dimension, and in that dimension it is isomorphic
to Z.

Here HR is the “Rips homology” of the discrete metric space π (made into
a metric using the word metric). It is defined as the limit of the locally finite
homology of the nerve of the covering of π by balls of radius k, as k →∞ (see
§4.8 or Block and Weinberger, 1997, or Roe, 2003). For groups of finite type,
this is equivalent to Poincaré duality (see, for example, Brown, 1982).

The work we’ve already done on the Nielsen theorem indicates that there
are groups satisfying the conditions of the conjecture where there is no Eπ-
manifold. If one takes the counterexample to Nielsen and crosses it with S3,
one easily obtains a manifold whose universal cover is homotopy equivalent to
the sphere but we cannot attribute this to, for example, an approximate fibering,
as (we try to) in the finite type situation.

Of course, there are situations where Eπ geometrically exists. For example,
this is the case when π is a uniform lattice in a connected Lie group G. In that
case, the Borel package gives one a nice characterization:

Theorem 7.36 If M is a manifold whose fundamental group is that of a uni-
form lattice in G and whose universal cover has finitely generated homology,
then there is a π-equivariant UV1 approximate fibration M̃ → G/K iff appro-
priate Nil and UNil obstructions vanish. Of course, if the fundamental group
is, in addition, torsion free, then conclusion holds unconditionally.

The need to handle such obstructions is easy to see. Suppose we take one of
52 That the version of Farrell’s theorem for approximate fibrations only involves Nil was observed

by Ferry in the late 1970s.
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Cappell’s manifolds M = RP4k+1#RP4k+1 terms that is not in itself a connected
sum. Suppose that there were a D∞ equivariant approximate fibration f of the
universal cover to R (with the usual action where one involution is x → −x
and the other is x → 1 − x). Then f −1(1/3,2/3) would descend into M , and
would be a copy of S4k × (0,1) – as there is a unique manifold element in
Sp

(S4k × (0,1)) . Taking a slice, M is thus decomposed into a connected sum.
Similarly, it is not hard to realize Nil obstructions on some manifolds with
fundamental group Z × F, where F is a finite group, and then there would be
no Z×F equivariant map of the universal cover to R (with trivial F-action, and
Z acting by translation).

The proof of the above theorem is now identical to the discussion of the
torsion free case above.

7.6 Manifolds with Excessive Symmetry53

In this section we will describe some theorems in Riemannian geometry that
have a philosophical relation to the topological issues explored in the previous
few chapters. We will not do more than give the slightest hints of the arguments.

Recall again Borel’s theorem:

Theorem 7.37 If M is aspherical and π1M is centerless, then any group G
that acts on M injects into Out(π1M).

If M is compact locally symmetric (with no virtual hyperbolic surface factors)
then Mostow rigidity implies that Isom(M) = Out(π1M). Then we can assert
that, for action on M , there is a semiconjugacy (i.e., an equivariant map that’s
not necessarily a homeomorphism) homotopic to the identity

H : M → M

to an action by isometries. In this sense, the locally symmetric metric is maxi-
mally symmetric among all metrics.

Of course, there are other metrics that are equally symmetric. Isom(M) is
a finite group, and any metric equivariant with respect to this group has the
same symmetry. Is there any way we can be more demanding and perhaps
characterize the locally symmetric metric?

Another point to note is this. Instead of just considering metrics on M , we
can also consider manifolds N with π1N � π1M . If the G-action on N is trivial
53 Benson Farb has criticized the title of this section and suggested “Manifolds that only have the

slightest bit more symmetry than they need to have” as an alternative.
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in Out(π), then one can factor the natural map N → M through N/G.54 In
particular, if the homology class of N is nontrivial in Hn(Bπ � M;Q), i.e. if N
is essential, then G is finite.55 If the map were degree 1, we would have Borel’s
injectivity for this larger class of manifolds.

This connects to our higher-signature localization discussion, since the fixed
sets would have no choice but to be lower dimension for a nontrivial action,
but such wouldn’t be able to have this relevant higher signature. It’s not shabby
getting this far just from homology considerations without using any high
technology.

In short, we see that there is a rather larger class of manifolds for which
Isom(M) provides a bound on their symmetry.

We will warm up with the following result:

Theorem 7.38 (Farb and Weinberger, 2005) If N → M is a map of nonzero
degree, M an irreducible locally symmetric manifold, and Iso(N ′) � Iso(M ′)
for every finite sheeted cover, then:

(1) if M is arithmetic, then N is isometric to M;56

(2) if M is not arithmetic, then there are such N not homotopy-equivalent to
M (above dimension 3, for trivial reasons) and there are N diffeomorphic
to M that are not locally symmetric.

The key to the theorem comes from the existence and uniqueness theorems
for harmonic maps in a given homotopy class when the target is compact
and non-positively curved. The difference between the arithmetic and non-
arithmetic cases is because of a theorem of Margulis: Every non-arithmetic
lattice is included in a maximal lattice that includes all of the lattices that are
commensurable to it. This makes part of (2) very simple. We can take N to be
M# several (S2 × Sn−2).

For the arithmetic case, one makes use of many conjugates of π in the group
G(Q) which produce many extra isometries that finite covers have. Ultimately
this transfers the whole action of G from the universal cover of M to that of N
(by taking limits).

Indeed, a little work makes the same conclusion follow from the hypothesis
that M and N have the same dimension and fundamental group. The map of
universal covers is smooth, and, given the action of G, every point of M is

54 This uses the finiteness of Out(π), the existence of a lattice Γ in G such that π � Γ→ Out(π),
all of which follows from Mostow rigidity, and the fact that G/K is an EΓ.

55 And we can be more quantitative: depending on how divisible [N ] is in Hn(Bπ), we can
bound #G.

56 Actually homothetic to M ; one can rescale the metric!
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a regular value, so the map is a finite sheeted cover, and the conclusion then
follows.

One can push these ideas further in a number of ways:

(1) One doesn’t need that all of the isometries of all of the finite covers extend.
One just needs that there are many that do.

(2) One can, in the spirit of the previous paragraph, remove essentiality57 types
of conditions (like asphericity) and end up with statements about fibering,
i.e. that the harmonic map that one produces has no singularities, and that
the domain manifold Riemannianly fibers over the target.

It turns out that the correct setting for these results is the following (that
follows from the same ingredients together with some Lie theory):

Theorem 7.39 (Farb and Weinberger, 2008) Suppose M is a compact aspher-
ical Riemannian manifold whose fundamental group has no normal abelian
subgroup and is not virtually a product of manifolds. Then if [Isom(M̃) : π] is
infinite, then π is a uniform lattice in a semisimple group G, and M is isometric
to K\G/π.

If M is not assumed aspherical, then one must assume that Isom(M̃) is not a
compact extension of π, and one obtains that a finite cover of M is a Riemannian
fiber bundle over K\G/π.

The condition about compact extension is to avoid situations like the follow-
ing. Suppose π has, for example, a dense representation in a compact group
H, then the quotient manifold under the diagonal action (K\G ×H) has a large
isometry group for its universal cover (i.e. containing πwith infinite index), even
if one gives K\G a highly non-symmetric metric, that is merely π-invariant.

Normal abelian subgroups truly are the enemy. A three-dimensional solv-
manifold is abstractly a torus bundle over a circle. One can consider families of
flat structures on the torus, parameterized over the circle, with a small compat-
ibility condition (and don’t even all have the same volume) and obtain metrics
that have excessive symmetry and do not come from locally symmetric metrics
or fiber over anything.

It seems very reasonable to try to improve the condition “[Isom(M̃) : π]
is infinite” to something more quantitative. This is most salient in the “no
normal abelian subgroup” situation. The example on the Conner–Raymond
conjecture gives an example of an obstacle involved in removing this condition
and replacing the condition in the conclusion by something that takes the abelian
subgroup explicitly into account.
57 A manifold is called essential when it represents a nontrivial cycle in the group homology of

its fundamental group.
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Conjecture 7.40 (“Magic number” conjecture) For each group π that has no
normal abelian subgroups, there is a number C(π) such that any Riemannian
aspherical manifold with fundamental group π such that [Isom(M̃) : π] > C(π)
is isometric to a locally symmetric Riemannian manifold.

This conjecture is true when π is a lattice, or a word hyperbolic group. It
seems that a counterexample would have to be rather exotic.

Our discussion also makes the following seem possible (although, I confess,
unlikely58).

Conjecture 7.41 An aspherical manifold M has Lipschitz Riemannian metrics
for which [Isom(M̃) : π1M] is arbitrarily large iff π1M has a normal abelian
subgroup.

7.7 Notes

The paper of Borel on symmetry of aspherical manifolds (that we began our
discussion with in §7.1) was unpublished for many years, but appeared in his
collected works. The theorem itself was published by Conner and Raymond
much earlier. I recommend the book by Lee and Raymond (2010) for many
results about Lie group actions on aspherical manifolds, which builds on and
reviews the excellent work of Conner and Raymond.

The Nielsen problem can be viewed as a variant of the Borel conjecture: if one
believes that a homotopy equivalence gives rise to a canonical homeomorphism
in the homotopy class, then one would have been led to the Nielsen problem.
In the classical setting of surfaces, Nielsen proved it for cyclic groups. As
mentioned in the text, the general case was first proved by Kerckhoff (1983).

Borel’s theorem, of course, only applies to closed aspherical manifolds: after
all, there are many finite group actions on Euclidean space and Out(π) = e!
However, it is natural to ask about locally symmetric manifolds of finite volume,
i.e. quotients by non-uniform lattices. I had been interested in this question for
many years, and the result that Borel’s theorem holds for these was proved by
G. Avramidi (2013). However, as he points out, the proof leaves open many
questions: for example, given an arbitrary action of a finite group A on K\G/Γ,
is the dimension of the fixed set the same as in the classical action? Even for A
a p-group this is open.

The results of Borel underscore a problem for understanding G-manifolds.
For ordinary closed manifolds, we make a lot of use of the comparison of M

58 And therefore this problem’s demise will be a measure of how much we have to learn.
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to Bπ1(M) (at least in the torsion-free case and to related things when π has
torsion). The fact that for nonabelian compact Lie groups, and more generally,
there is no very nice model for K(πG1 (M),1) where πG1 (M) is the map from the
orbit category of G, Orb(G) → Gpd, the category of groupoids (since fixed sets
can be disconnected or empty) makes it much harder to understand equivariant
structure sets even when we have a theoretical analysis via a surgery sequence.

In §7.2 the connection of the Wall conjecture to the Borel conjecture requires
Ranicki’s total surgery obstruction (Ranicki, 1979b). This in turn is related to
the idea that “coherent Poincaré transversality” gives a reduction of the Spivak
fibration (Levitt and Ranicki, 1987). Actually, the (integral form of the) Novikov
conjecture therefore gives the reduction of the Spivak fibration, but there is a
surgery obstruction in principle – but surjectivity of the assembly map would
give this, which is clearly part of the Borel conjecture. When Bryant et al.
(1993) came out, it became clear (it seems to me) that it was more reasonable
to ask for homology manifolds instead of manifolds. Davis (2000) suggested
that one ask the question about aspherical R-homology manifolds.

This was disproved by Fowler (2009) in his thesis, which we have followed
in spirit in the text.

Thanks to intersection homology there are other settings where one can ask
for Poincaré duality. It would be interesting to find groups that naturally act on
IH-acyclic “Witt spaces” or something similar. Then the Wall conjecture would
somehow resolve the space (although perhaps in a non-local way).

Moving to §7.3, hyperbolic groups were first studied by I. Rips, who showed
that they act properly discontinuously and cocompactly on a finite-dimensional
contractible complex (the Rips construction). This result was published and
then much elaborated by Gromov (1987), who explained their stability proper-
ties, their boundaries, isoperimetric inequalities, rationality of their word zeta
functions, etc. They have become a much studied class of groups and are central
to geometric group theory. I recommend Coornaert et al. (1990), Ghys and de
la Harpe (1990), and Alonso et al. (1991) as good references (although there
are a number of others).

As hyperbolic groups are generalizations of the idea of the fundamental group
of a closed hyperbolic (or negatively curved) manifold, relatively hyperbolic
groups are a generalization of hyperbolic manifolds with cusps. (These are
never hyperbolic in dimension greater than 2, because they contain nontrivial
abelian subgroups.) The basic paper is Farb (1998) which establishes many of
their properties. We use the fact that relative hyperbolization (see Davis et al.,
2001) can be made hyperbolic relative to the boundary (Belegradek, 2007). That
the pieces glue together to form a hyperbolic group is based on “combination
theorems.” The original combination theorem was Thurston’s uniformization of
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Haken 3-manifolds. For hyperbolic and relatively hyperbolic groups, Bestvina
and Feighn (1992) and Dahamani (2003) provide analogues. (Drutu and Sapir,
2005 provide the quasi-convexity necessary for applying these theorems.)

The Conner–Raymond conjecture grew out of their work on injective torus
actions (all actions on aspherical manifolds are injective). Their understanding
of group actions on aspherical manifolds led to many examples, including, for
example, the first examples of closed manifolds that have no symmetry (Conner
et al., 1972).

As discussed earlier, pseudo-isotopy theory is a deep subject connecting
higher algebraic K-theory to groups of homeomorphisms and diffeomorphisms
of manifolds. Besides the paper by Farrell and Hsiang (1978a) already referred
to in the text, I recommend Cohen (1987) and Weiss and Williams (2001) as
useful surveys, although Cohen’s (1987) description of the then “recent” results
was a bit optimistic.

The material on products in §7.4 should be well known, but doesn’t seem to
be. That products are likely not isomorphisms when the controlled symmetric
signature is not a unit (in a relevant) ring is obvious in retrospect and also
gives rise to failure of equivariant transversality – as discussed at the beginning
of Chapter 6, first appearing in the form of lack of stability of equivariant
classifying spaces – and some forms of transversality for homology manifolds
(if one asks for bundle neighborhoods).

That bounded overR boils down to the proper theory is because tame ends of
manifolds can be “wrapped up” and have an automatic periodicity. The relevant
geometry is part of Siebenmann (1970a), which gave an alternative approach
to Farrell’s thesis for the problem of fibering over the circle.59

The Browder–Livesay theory is an elegant one wherein this particular non-
simply connected problem is boiled down to a simply connected problem.
The quadratic form 〈u,Tv〉, where 〈 , 〉 denotes cup product and T denotes
the involution on the 2-fold cover, plays a major role. The orientation reversing
nature of T interchanges the usual± symmetry. In more modern L-theory this is
called a change of “antistructure” and there is now a much more general theory
of Browder–Livesay groups, associated to quadratic extensions of rings. Given
our discussion, it should not surprise the reader that Cappell and Shaneson
relied on such a Browder–Livesay theory in their calculations leading to the
existence of nonlinear similarity.

The discussion on fibering in §7.5 is surely folklore and I am not sure who
noticed what, and when. Ferry had told me decades ago that approximately

59 Farrell’s original approach did not place the algebraic obstruction all at once in Wh: it lived in
several pieces. The connection between the two approaches is given by the formula for the
Whitehead group of a twisted extension Z[π � Z].
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fibering over the circle is much less obstructed than fibering, i.e. that it’s
controlled by the Nil part of the fibering obstruction, and that the homotopy
fiber does not need to be a finite complex. When considering the twisted
analogue of the Borel conjecture, one quickly realizes its connection to block
bundles, except that it doesn’t get the decorations right. So, for “K-flat” groups,
one gets general block fibering theorems (like those relevant to our question
about spaces with finitely generated homology in their universal covers). Farrell
and Jones (1989) point this out, and I had pointed out such things based on
thinking about approximately fibered neighborhoods and possible stratified
rigidity in Weinberger (1994). See Farrell et al. (2018) for recent results about
approximately fibering compact manifolds over aspherical ones.

That one can prove results about approximate fibrations over ANR homology
manifolds was the struggle in Bryant et al. (2007).

The teardrop neighborhood theorem of Hughes et al. (2000) is a variation on
the periodic structure that can be given to a tame end, referred to in the notes
in S6.11.

In §7.6, the proof of the main theorem characterizing Riemannian manifolds
with excessive symmetry is a combination of the Myers–Steenrod theorem,
which tells us that the isometry group of any Riemannian manifold is naturally
a Lie group, the theory of harmonic maps (in order to build canonical maps
to model spaces), and the Conner conjecture (a theorem of Oliver, 1976a),
which asserts that the quotient of a finite-dimensional contractible space under
a compact group action is contractible. This enables one to get information
about isotropy groups and use homological algebra.

The use of harmonic maps to rigidify homotopy theory and make maps
automatically equivariant arose earlier in work of Schoen and Yau (1979b).
They also play a role in Frankel’s proof of a conjecture of Kazhdan, of which
Farb and Weinberger (2008) give an alternative proof.

These techniques are somewhat extended to noncompact manifolds in Farb
and Weinberger (2010), except that the issues in general are much more com-
plicated. As a result, attention is concentrated on moduli space (of curves). We
give a new proof of some theorems of Ahlfors by showing that no complete
Finsler metric on moduli space with finite co-volume has even a single point in
its universal cover at which it is symmetric, i.e. possesses an involution with an
isolated fixed point. We also obtained that, for any such metric, the symmetry
of moduli space is never excessive. Avramidi (2014) strongly improved on this
by showing that there are no unexpected isometries at all in any finite volume
metric on any finite cover of moduli space.

On the other hand, he also gave a very simple construction of complete
infinite volume metrics on moduli space (and non-uniform locally symmetric
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spaces) that do have excessive symmetry, so the finite co-volume conditions in
Farb and Weinberger (2010) were necessary.

The fibration in the non-aspherical situation was significantly extended by
van Limbeek (2014). Melnick (2009) has extended some of these results to
Lorentzian manifolds.
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