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The Philosophy of Symmetry 1

1 Introduction
The notion of “symmetry” has beguiled physicists and natural philosophers
from Aristotle to Einstein, and within the contemporary practice of physics, its
hold on the physical imagination has only continued to grow in its depth and
potency. This means that “symmetry” is also a topic of primary concern for
the philosopher of physics, who wishes to elucidate the role that fundamental
physical concepts – such as symmetry – play within the empirical practice of
physics.
Despite the myriad ways in which various mathematical symmetries find

application in subfields as disparate as quantum field theory, classical mechan-
ics, General Relativity (GR), fluid mechanics, quantum gravity, and condensed
matter physics, there is nonetheless a conceptually central theme within the
history of physics that concerns the relevance of these symmetries to the empir-
ical modeling practice of physics – a theme that runs powerfully from Galileo
through Newton and Huygens, and then through Einstein, and then onward to
their intellectual descendants (and as we will see, the theme has an important
precursor in the verse of the Song dynasty poet Chen Yuyi and his boat). It is
fitting, then, that the philosophy of physics literature has tended to focus on
this conceptually central case, which is typically discussed under the head of
“Galileo’s ship” or the “Relativity Principle” (RP), and on the possibility of
extending it to novel scenarios, for example to the local gauge symmetries of
electromagnetism or the diffeomorphism symmetries of Einstein’s GR.
This Element is meant to be a concise introduction to the philosophy of this

conceptually central understanding of symmetry. Sections 2 and 3 lay out the
minimal background about “physical representation” (the kind of empirical
representation of nature that we effect in doing physics) that I will need, and
introduce the notion of “symmetry” – and our central theme of Yuyi’s boat (or
Galileo’s ship) – from this perspective.
Sections 4 through 6 introduce the reader to the question of whether the

local symmetries that are so prevalent in contemporary physical theories can
be thought of as continuous with the tradition of representation marked by the
theme of Yuyi’s boat – that is to say, can they too be empirically significant
in the paradigmatic way discussed in Section 3? Although this question has
been widely debated by philosophers (see e.g. Greaves andWallace (2014), Teh
(2016), and references therein), my discussion contains two novelties. First,
unlike most of the extant literature, I discuss this question from the perspective
of the formal conception of symmetry introduced by Emmy Noether, which
is very much the de facto conception of symmetry in contemporary physical
practice – as we will see, this move not only makes the conceptual issues more
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2 Philosophy of Physics

relevant to practitioners but also pays dividends to our conceptual analysis.
Second, I link the discussion of this question – its complications and well as its
resolution – to Einstein’s search for a substantive notion of general covariance,
and in particular, to his response to Felix Klein in the famous Klein–Einstein
dispute (philosophers have of course discussed the issue of “substantive general
covariance” a great deal, but to the best of my knowledge, no one seems to have
explicitly linked this discussion to the empirical significance of symmetry).
Finally, it would be a shame if a high-level introduction such as this one

did not give the reader a sense of the frontiers of present research: this is left
to the Epilogue, where I sketch how recent work on “edge modes” connects
our central theme with topics such as spontaneous symmetry breaking and the
equivalence principle.
The intended audience of the Element is philosophy and physics graduate

students (or advanced undergraduates) who already have a working knowledge
of physics/mathematics, and some exposure to philosophical argumentation.
So, for instance, in Sections 5 and 6 of the Element, I will assume that the reader
already has an understanding of tensors, the covariant derivative, differential
forms, the exterior derivative, and the Hodge star operator (all fairly elementary
topics that one might expect to encounter in a good undergraduate class on the
geometry of physics). On the other hand, Sections 2 through 4 really assume
very little of the reader by way of mathematical prerequisites. Sections 2 and
3 in particular should be accessible to anyone who has an interest in the topic
and a little physical maturity (e.g. a sense of the kind of implicit “effective” or
scale-dependent reasoning that comes into play whenever we do physics).

2 Physical Representation
Section 2.1 sets up the background view of “physical representation” – the
tradition of representing (or modelling) physical phenomena in which physi-
cists are engaged – that I will be assuming in my subsequent discussion of
symmetry in physics. This background view is important to my discussion
for at least two reasons. First, it motivates and frames the particular way in
which (in Sections 3 and 4) I present the shift from representation that uses
global symmetries (i.e. symmetries that do not depend on spacetime) to the
search for an analogous representation that uses local symmetries (i.e. symme-
tries that are nonconstant functions of spacetime). Second, it offers one way
of making intelligible the significance of a monumental development in physi-
cists’ understanding of symmetry: as I argue in Sections 4 and 5, it helps us
understand how and why the powerful mathematical rearticulation of symme-
try by Emmy Noether (1918) came to so profoundly shape the physical task
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The Philosophy of Symmetry 3

of pursuing physical representation in terms of local symmetries, and – as I
explain in Section 6 – to play a role in resolving the attendant hermeneutic
difficulties.
Much of this Element’s discussion of representational relevance of symme-

tries is inspired by the seminal work of Harvey Brown (H. Brown, 2005; H.
R. Brown and Sypel, 1995) on physical symmetry, and especially his discus-
sion of the RP. Those familiar with Brown’s workwill know that this is only one
of the two central pillars on which it rests – the second is a view often referred
to as “the dynamical approach to spacetime,” also developed in (Brown, 2005).
In Section 2.2, I provide a brief note explaining that – at least in my view – a
core insight (albeit one that is less emphasized by subsequent commentators)
of Brown’s dynamical approach is very much kindred with my discussion of
physical representation.

2.1 General Background
This Element is about physical symmetry: that is to say, the notion of symme-
try that is implicated in the empirical practice of physics. Within this practice,
we pursue an understanding of certain aspects of the world – an understand-
ing that is correlative to prediction and confirmation – by representing these
aspects in particular ways, and by employing and elaborating on (one might
even say: by performing) these representations. Thus, while the theme of “rep-
resentation” is not my main topic, it is an essential piece of background for
appreciating the notion of physical symmetry that I am after. Without some
grasp of what “physical representation” – namely, the kind of representation
practiced by physicists – amounts to, it would be impossible to latch onto the
distinctive subject of physical symmetry (as opposed to mathematical sym-
metry, or symmetry in some other representational practice such as painting or
sculpture), and it would be impossible to formulate the distinctive philosophical
questions that pertain to this subject.
I would thus like to begin by briefly sketching my views on physical rep-

resentation, in anticipation of Section 3’s discussion of how symmetry comes
to play a role in physical representation.1 Since my view is highly analogous
to the view that Podro (1998) advanced in the case of depiction (especially for

1 While somemay disagreewithme about the details of how physical representationworks, these
disagreements should not prevent them from appreciating much of what I have to say about
physical symmetry in the later sections of this Element (in particular, many of my morals will
have correlates that can be articulated within their own preferred account of representation). At
any rate, my aims aremodest: I wish to sketch just enough background about physical represen-
tation to make it clear to the reader how symmetry – in the context of physical representation –
is actually experienced, taken up, and deployed by practicing physicists.
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4 Philosophy of Physics

Figure 1 Portrait Study of Sir Thomas More. Black and colored chalks on
unprimed paper, 38 × 25.8 cm, Royal Collection, Windsor

drawings, paintings, and relief sculptures), it will help to introduce the view
by first considering representation rather more generally, and getting a feel for
how “idealization” – a theme of great interest in contemporary philosophy of
science – plays out in an especially accessible case such as a painting.
With that in mind, let us begin with the idea of “representation” or “imi-

tation” or “imaging” more generally. The locus classicus for a philosophical
discussion of representation is of course Book X of Plato’s Republic: why,
Socrates archly inquires of the slow-witted Thrasymachus, would anyone want
to view a representation of a subject if they were in a position to view the actual
subject? The implicit assumption here, which Thrasymachus does not think to
question, is that representations are mere (albeit unachievable) attempts to pro-
vide a literal or “isomorphic” copy of the subject, and are thus always inferior
to directly experiencing the subject.
The reason Socrates’ question is liable to strike us as absurd is that it flies in

the face of so much of what we know about how representations are designed to
work, and how they are appropriately received. Take the case of a representation
such as the following Holbein sketch of St Thomas More at Windsor Castle
(Figure 1).
Here the stroke is loose, open, and relaxed; the blending is soft, and the

tint is light; furthermore, these various elements come together so that – as
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The Philosophy of Symmetry 5

Martz (1990) notes – we see in the sketch “the face of a man unguarded, open,
vulnerable, seeking, devotional in its mood” (it is instructive to compare this
with Holbein’s more famous portrait of More at the Frick, which conveys
perfect composure and an iron-clad determination).
Pace Socrates, what I would like to draw your attention to is the implau-

sibility of construing Holbein’s sketch as aiming at literal verisimilitude – as
approximating the visual experience of gazing at the actual More. To under-
stand this point, consider first the sketch’s medium (chalk and brown wash on
paper) and its procedures (the loose stroke that deliberately omits detail), and
then consider how these are put to representational use. The sketch does not
try to disguise its medium and its procedures as it would if it were aimed at
simulating the experience of seeing More; on the contrary, when we contem-
plate the sketch, it is an intended part of our experience that we are aware of the
medium – and the quality of its strokes – as a medium; we are conscious that an
aspect of what confronts us is a surface marked with very particular qualities
of stroke.
An important moral here is that while the medium and its procedures (as

such) can be said to have their own “meanings” (the impulse of this stroke, the
torsion of that spiral, the impasto of the oil paint), the proper or “literal” domain
of these meanings is the marked surface. On the other hand, in a representation
these meanings are nonliterally or metaphorically transferred to a new domain,
namely the subject (St Thomas More, in this case). Thus, the sketch can be said
to “idealize” or “distort,” because the qualities of the medium are in the literal
sense inapplicable to the representation’s subject, and must thus suffer loss in
relation to more literally veridical modes of confronting its subject (actually
seeing More, for instance).
In the typical case of a sketch, we are meant to understand that the mean-

ings of the medium do not literally apply to the subject; furthermore, as Vasari
(1900) first observed in his discussion of artistic “design” or di segno, the rep-
resentational power of the sketch is rooted in this understanding, as well as our
grasp of the literal/proper meanings of the medium: for instance, it is through
our following the formulation of Holbein’s stroke as loose, open, and relaxed
that we come to experience the sketch’s distinctive power to disclose some-
thing about its subject, namely More’s openness and vulnerability. The point
is that through this particular metaphorical transference of meaning, we come
to perceive or think the unity that is the representation – we do not experi-
ence “the medium’s procedures” and “the face of St Thomas More” separately
(nor indeed this in addition to some long chain of conditions relating the two
in order to simulate a unity), but rather a fusion of the two, whose unity gov-
erns our responses. As Scruton writes (of portraits in general), “...I respond
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6 Philosophy of Physics

to the flowing lines and flesh-tints with emotions and expectations that derive
from my experience of faces, and to the face with emotions and expectations
that arise from my interest in colour, harmony, and expressive line.” (p. 87 of
Scruton (1997)).
It is this metaphorical transfer, I would suggest, that gives rise to much of the

distinctively powerful content of representations – a content that is not propo-
sitional, and cannot be had in this particular way apart from the embodiment
of thought in the representation, and a content that is (among other things)
received in the kind of thought that we call contemplation. In Podro’s (1987)
poetic rendering of this point, a representation “. . .directs itself to the mind
of the perceiver, who sees the subject remade within it, sees a new world
which exists only in the [representation] and can be seen only by the spec-
tator who attends to the procedures of [the medium]”.2 And this, ultimately, is
why we find it absurd of Socrates to suggest that a representation such as Hol-
bein’s sketch aims to copy the literal appearances: Socrates is denying the very
feature – the intended idealization and metaphorical transfer effected by the
distinctive procedures of the medium and our awareness of them – that gives
rise to the power of these representations.
Of course, the case can be considerably more complicated than that of Hol-

bein’s portrait of More, as Podro (1998) discusses at length in his monograph
Depiction. A particular choice of medium and its procedures (e.g. the technique
of linear perspective) conditions the representational possibilities that are open
to the artist, foreclosing some of these to a greater or lesser extent and at the
same time opening up or suggesting new possibilities; indeed a certain draw-
ing or painting procedure (think of linear perspective or pointillism) may take
on a life of its own, lending a seemingly inescapable momentum to the act
of representation and helping to extend our thought about the subject. And it
may be that this conditioning itself complicates the act of representation and
the search for a compelling representation of the subject (consider for instance
the struggle to maintain realism of animation in the transition from the Flor-
entine trecento to the more optically accurate paintings of the quattrocento).
Nonetheless, some of the most remarkable representational successes in paint-
ing have been borne out of cases where these complications have been bent
toward achieving a compelling representation of the subject – in Sections 4–6,
we will see how a central thread in the development of physical symmetry can
be understood in this way.

2 NB: Podro’s point is not that the subject is thereby fictionalized, but rather that the subject
comes to be understood in a way that is unique to that representation, as opposed to what we
can understand through confronting it “face to face,” or in some other kind of representation.
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The Philosophy of Symmetry 7

There is of course much more that could be said about how drawings and
paintings represent. But the example of Holbein’s sketch will suffice to illus-
trate the general features of representation that will inform my approach to
physical representation.

(i) A representation involves a medium and a subject.
(ii) A representation is an embodied, performative kind of thought – we use

the medium and its procedures to think the subject in the representation,
and in so doing, we reenact the pattern of attention of the representation’s
maker(s), itself embodied in that medium and its procedures.

(iii) The di segno thesis: in a representation, we come to understand the subject
by following the procedures of the medium.3 It is through this fruit-
ful interplay between the represented subject and our awareness of the
medium quamedium that a representation distinctively extends andmobi-
lizes our thought about its subject: it absorbs the particular momentum of
the medium and its procedures and uses these to reconstruct the subject
as can only be done in the world of that representation.

Let us see how this conception plays out in the case of physical represen-
tation. First, let us fill in (i) by specifying the “subject” and “medium” of
physical representation. I take it that the focal subject of a physical repre-
sentation is the dynamics of an empirical scenario, namely the description of
how certain empirical degrees of freedom evolve over time. These dynamical
degrees of freedom could be particle positions and velocities, or field configura-
tions, or even quantities in theories whose formal description does not involve
dynamical equations of motion (such as thermodynamics).4

The particular forms that such an empirical scenario could take are various,
but very roughly, all of them should have some conception of the target degrees
of freedom whose evolution we would like to keep track of – call these the
subsystem degrees of freedom – and some reference standard that makes the
description and identification of the subsystem degrees of freedom an empiri-
cal matter – call the system that defines this reference standard the environment
(note that on this conception, the specification of an environment is correla-
tive to the subsystem that one wants to model). The environment system might
consist of spatially localized and separated degrees of freedom from the target

3 Reciprocally, we come to experience the medium and its procedures under the aspect of the
subject.

4 For instance, in the case of thermodynamics, our static equations are still being used to tell us
something about empirical dynamics – what happens (at some scale) after we lift the wall that
separates two chambers, or push the piston, etc.
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8 Philosophy of Physics

subsystem (e.g. some material body far away from the subsystem) as is often
assumed in textbook mechanics, and – for historical reasons – this is indeed the
case that I will focus on in the rest of this Element. At the same time, it is impor-
tant to note that my use of the term is in principle much more general: it can
encompass nonspatially separated (from the subsystem) fields of various kinds
and local inertial frames – anything that provides a reasonable reference stand-
ard in the context of some measurement setup will do, and the particular details
of what an environment system looks like will be highly theory dependent.
Since these are empirical scenarios, the subsystem-environment configura-

tion needs to form what Cartwright (1999) calls a “nomological machine”: a
“. . .fixed (enough) arrangement of components, or factors, with stable (enough)
capacities that in the right sort of stable (enough) environment will, with
repeated operation, give rise to the kind of behavior that we represent. . .” Fur-
thermore, the subsystem degrees of freedom should be thought of as implicitly
indexed by a certain scale (e.g. length or energy scale) in relation to the envi-
ronment and our measurement scale – typically, the ratio of scales set by this
relationship that marks out the physical regime of interest and makes some
particular set of degrees of freedom an empirically sensible description (it also
gives us a qualitative grip on what “enough” means in the quote from Cart-
wright). This is not to say, of course, that in latching on to the subject one needs
to have highly theoretical thoughts about how to quantify different regimes and
describe precisely how they are related (as we do, for instance, when using the
set of techniques known as effective field theory), but anyone seriously involved
in emperically effective representation nonetheless has a loose – perhaps quite
informal – sense that there is a regime involved, and of some of the bounds
of this regime. In order for these representations to be taken up in use, we
assume that there is an observer with access to the kinds of scales that define the
measurement relationship between the subsystem and the environment; in the
context of our subsequent exploration of physical symmetry, we will see that it
also makes sense to introduce a subsystem observer, whose measurements are
confined to the characteristic scale of the subsystem.5

The subject of a physical representation tends to be something that is infor-
mally conveyed in physics classes – especially those that emphasize empirical

5 In general, the question of whether an observer should be modelled as part of the system or
environment – and the degree to which this should be left implicit – will vary from context to
context. In the context of our subsequent discussion of symmetry, the important point about
observers is that one observer – the subsystem observer – should only be able to probe scales
within the subsystem (which would not include the subsystem’s relationship to the environ-
ment), and another – external – observer should have access to the relationship between the
subsystem and the environment.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
00

86
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009008600


The Philosophy of Symmetry 9

know-how and the interface between theory and experiment – and the lab-
oratory, whereas textbook presentations tend to emphasize the medium of a
physical representation: the mathematical apparatus (differential equations,
geometry, coordinate frames, functions, sections of bundles, etc.) that is used
to model the subject. Nonetheless, it is important to recall the point that I
made earlier about a representation being a unity: we experience a physical
representation as a unity, that is not as the mathematics of the model and the
empirical subject merely conjoined, but rather as inextricably fused – in the
world of the model, we understand and manipulate various pure mathemati-
cal objects (geometries, symmetries, equations) in a way that is inflected by
our understanding of experimental protocols and know-how, and we respond
to and conceptualize empirical scenarios in a way that is driven by our interest
in mathematical objects.6 Of course, in the process of describing, analyzing,
or teaching some part of our representational experience, it is good and nat-
ural to home in on particular aspects of it (the mathematical framework, or
some aspect of the experimental configuration etc.) – similar to what one does
in a close reading of literature – but this does not change the fact that one’s
experience is of the whole.
With this in mind, let us proceed to the version of point (ii) that applies to

physical representation: a physical representation is a kind of performative,
embodied thought, in which we use the mathematical medium and its proce-
dures (geometry, partial differential equations, the symmetries of these objects,
etc.) to embody a certain pattern of attention toward an empirical scenario – the
kind of attention that is concerned with understanding how to model and pre-
dict and measure, and to extend that understanding to novel scenarios. This
is especially obvious when we consider how we are to receive a “dynamical
equation” in a physics textbook: the mathematics that we confront is really
a prompt to perform a characteristic action of a physicist, namely to use that
equation (and boundary conditions, analysis of the stability and regularity of
solutions etc.) and know-how about the link between theory, and experiment to
model the empirical subsystem degrees of freedom – this is what it is to think
in the representation.7

6 Readers who are familiar with the notion of “hylomorphism” in the writings of Aristotle will
immediately see that my discussion resembles his discussion of “substance” in the Categories
and the Metaphysics; however, the kind of unity that I am discussing – though real – is meant
to have a lower ontological status than that of substance.

7 One may well wonder if this very practical and concrete view of physical representation can
accommodate putative physical models that are so abstract/schematic that they do not plausi-
bly seem to have any empirical scenarios as part of their representational content. For instance,
one might wonder if a mathematical geometry – take bare Minkowski spacetime, to fix ideas –
with a smattering of physical interpretation counts as a physical representation in this sense.
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10 Philosophy of Physics

The point is well-illustrated by considering even the simplest subject, such as
the motion of somemedium-sized dry good (the subsystem object) with respect
to some reference object in an environment, where (let us assume) speeds are
small relative to the speed of light, and the scale of the investigation is one for
which the subsystem object is going to count as “free” or “isolated,” and its
extension matters little. This is a paradigmatic scenario for physical represen-
tation, and one in which context we introduce the formal mathematical medium
of a function xi : R → R3 and an ordinary differential equation Üxi = 0 whose
solutions are straight lines in R3.8 What it means, however, for us to actually
be able to receive this physical representation is to take it up in use as physics:
to understand that xi(t) represents the position of the subsystem object at time t
and that a solution to Üxi = 0 represents an empirically possible trajectory given
a certain timescale; to understand that this position should not be taken literally
as a position of a point (it is not part of the content of the representation that
“there is an object that has no extension...”) but rather as modelling the insight
that the object’s extension does not matter in the regime of interest to us; to
understand that the environment has been left implicit in the formal medium,
and that modelling space as R3 is not to represent it as infinite (as a confused
literalistic reading might suppose) but is instead a way of dramatizing the “iso-
lated” property of the subsystem; and to understand much else in a similar vein,
including the relationship between themathematical medium and howwe are to
actually prepare and measure the position and velocity of the subsystem object,
that we are not actually positing that quantities have real-number values, and
so on.
Finally, point (iii) – the di segno thesis – takes us deeper into the relation-

ship between mathematical medium and subject in a physical representation,
and how this relationship works to extend our physical understanding of the
subject, and even to reimagine and transform the subject quite radically within
the world of physical representation. The idea here is that mathematics has
its own rhythms, textures, and procedures (e.g. its own impetus to general-
ize its objects, such as moving from flat space to curved space) and that we
come in part to perceive the subject – the empirical scenario – within the

To this, I would say that although the kinds of cases that I have been describing are focal for
physical representation, there is also such as thing as generic representation – for instance, Xu
Beihong’s galloping horses are not representations of any particular horses, but rather func-
tion as abstract icons of a sort. I think there is also room within physical representation for
such icons; nonetheless, our physical understanding of such representations ultimately turns
on our ability to discern some kind of relationship between these and the focal cases (cf. also
Cartwright’s discussion of fables and models in Cartwright (1999)).

8 Here Ûx denotes a derivative with respect to the domain of the function x, and so it is interpreted
as a time-derivative in the context of mechanics, where the domain is the “time line.”
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The Philosophy of Symmetry 11

representation through appreciating the medium and procedures of a physical
representation asmathematical, and through the metaphorical transfer of these
(mathematical) meanings to the subject, which yields the distinctive content of
the representation.9

To give an example of which H. Brown (2005) makes much, and which will
be a persistent theme in much of what follows, it is easy to consider the equa-
tion Üxi = 0 and notice – at a mathematical level – that its form does not change
under rotations, uniform boosts and translations in three-dimensional Euclid-
ean space; and that these transformations take solutions to solutions. This is
an example of mathematical symmetry (invariance of a mathematical object
under mathematical transformations), but when it is taken up into the kind of
understanding involved in physical representation, we come to perceive some-
thing physical in following the mathematical procedure of symmetry: the way
in which various empirically possible subsystem trajectories are related to each
other, and further – as we will discuss in Section 3 – the inability of a subsystem
observer to discriminate between these trajectories.10 In a manner analogous to
Holbein sketch –wherewe come to perceive the openness ofMore’s disposition
by following the openness of Holbein’s stroke – here we come to understand an
empirical invariance (of what one can observe at a certain scale) by following
the formulation of a mathematical invariance.
In the next section, I will say more along these lines about the historically

and conceptually central case of symmetry in physics, namely the RP and how
it exemplifies the notion of physical representation that we have just been dis-
cussing. On the other hand, recall the more subtle and interesting possibility
that I discussed earlier in the case of painting, namely that introducing a novel
procedure or modification of a representation’s medium might create a fruitful
complication for the work of resolving the representation’s subject; of seeking
and finding the subject again in the act of representing with novel technique.
One might thus wonder: Are there examples of this kind of scenario playing

9 At this juncture, it is worth pointing out a key way in which my account of physical repre-
sentation differs from what some might consider a more “mainstream” account of scientific
representation, such as the one offered by Callender and Cohen (2006), who hold that scien-
tific representation is a derivative kind of representation that can be reduced to representation
of a more primitive sort (e.g. mental representation) by an act of stipulation. On my account,
the kinds of (physical) representations I have been discussing cannot be so reduced, because
the particular choice of medium is constitutive – via metaphorical transfer – of the (in general
nonpropositional) content of the representation.

10 Actually, there is something even more subtle here: since we do not prepare and measure
real number-valued initial and final data, but rather a range, we do not actually use a single
mathematical solution to represent an empirical trajectory, but rather a neighborhood of such
a solution. Thus, the relationship between nearby solutions is already in play when we are
modelling a particular empirical trajectory.
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12 Philosophy of Physics

out in the case of physical representation? In Sections 4–6, I will make the case
that a pivotal episode in the development of physical symmetry (and its reso-
lution) is best understood as a scenario of just this kind. The episode that I am
thinking of is Einstein’s attempt to introduce a novel procedure of the mathe-
matical medium (local spacetime symmetry) and to seek and rework the subject
of the RP within this new representation, as well as Emmy Noether’s subse-
quent triumph: a supremely fluent rearticulation of the mathematical procedure
that Einstein initiated.
To conclude this sketch of physical representation, let me say a few words

about how the notions of “idealization” and “physical theories” fit into this pic-
ture. First, on idealization: the term “idealization” is used in many ways in the
philosophy of science literature, but here is what I take to be a fairly neutral and
uncontroversial description from Frigg and Hartmann (2020): “idealized mod-
els aremodels that involve a deliberate simplification or distortion of something
complicated with the objective of making it more tractable or understanda-
ble.” Notice that this broad description is not yet committed to any particular
theory of what the content of an idealized representation is, and whether we
should understand that content as making a false claim about the target of the
representation.
From what I have said thus far, it should be clear that idealization in

this broad sense is inherent to what I call a physical representation, because
any choice of medium will introduce a divergence between the subject-as-
represented and the subject itself. Nonetheless, on my account, this sense of
idealization is not aptly fleshed out as a “representation as if,” that is “repre-
senting the subject as if it were something it in fact is not” in virtue of idealizing.
To use an example that I already raised earlier, it is not part of the representa-
tional content of a formal point particle model of a ball that the ball is in fact a
point; on the other hand, it is part of the (perhaps formally implicit) representa-
tional content that the empirical regime we want to model – the subject of the
representation – is one such that it makes sense to invoke the formal device of
a point.
I should note that some writers, for example Potochnik (2020), do offer an

account of idealization as “representation as if ” and thus take the important
phenomenon of idealization to count against the verisimilitude of the theory.
While I agree with Potochnik about the importance and pervasiveness of ide-
alization, on my view of what physical representation is, the problem is not
verisimilitude but rather a literalistic conception of verisimilitude: one that
fixates on the mathematical syntax of (the medium of) a physical represen-
tation and then takes that to naively disclose the content or ontological claims
of a representation (“the represented object is a point...”). By contrast, in my
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The Philosophy of Symmetry 13

view the focal content of a physical representation is nonliteral and one should
adopt a conception of verisimilitude that aligns with that content.11

Second, on physical theories: I have said quite a bit about physical represen-
tation thus far, and not much about “physical theories” at all. Broadly speaking,
I agree with Wallace (2021a) that as used in physics, the notion of a “theory”
is “. . .ambiguous between various elements of a complex hierarchy”; further-
more, the notion tends to be used very formally (and without much concern for
representation) in some quarters of the literature. For instance, on one level, one
might define a theory as the collection of solutions to some equation of motion
having fixed the boundary conditions (a formalistic approach to this definition
is quite popular in some parts of the philosophical literature, where the “solu-
tions” are referred to as ‘models’). And at the next level up, one might take a
theory to allow for different choices of boundary conditions (thus modelling
different subsystem-environment relationships). These and more general uses
all have their role to play in the practice of physics, provided that one does not
proceed purely formally and always considers the empirical-representational
role that the relevant mathematical devices are playing. For our purposes, it
will suffice to think of “a theory” as a collection of physical representations in
the above sense, joined by a particular subject matter (e.g. gravity) and accom-
panied by a keen “know-how” about what we can do with such representations
and how they are related to each other.
In the subsequent sections, wewill be plunging deep into what I earlier called

“the margins of analysis” of a representation, where – in an analogous way to
any serious analysis of a painting – we will inevitably find ourselves immersed
in commentary on subtle and technical features of the mathematical medium,
while trying not to lose our sense of the representation as a whole. When we
are in the throes of such necessary – but potentially disruptive – analysis, I
ask the reader to bear in mind that what ultimately interests us is physical
representation in the sense that I have just laid out.

2.2 The Dynamical View
In the next section, we will be entering more deeply into a discussion of how
the concept of symmetry enters into physical representation, and in particular,
one that draws heavily on Harvey Brown’s work on the (representational) inter-
pretation of physical symmetry (H. R. Brown and Sypel, 1995). Although it is
well-known that this is only one of the two key strands of Brown’s work – the

11 This is of course not to underplay the importance of mathematics in the representational prac-
tice of physics; on the contrary, it is to give it the room to do the work it in fact has to do, as I
hope our case study in Sections 4–6 will make clear.
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14 Philosophy of Physics

other being “the dynamical approach to spacetime” – the relationship between
the two is rarely remarked on, even by Brown himself. In this brief interlude, I
would like to point out that the understanding of physical representation that I
have sketched above can be understood as capturing some of the core insights
in Brown’s “dynamical approach to spacetime,” as advanced in H. Brown
(2005) – indeed I take it to be a way of elaborating on Brown’s view that is
not only deeply faithful to the motivations behind the dynamical approach, but
explains its continuity with Brown’s views on physical symmetry and will thus
provide important background for our discussion of the RP in Section 3. None-
theless, I should acknowledge that my gloss on Brown runs contrary to the
mainstream interpretation of the dynamical view by subsequent commenta-
tors such as Read (2018) (on the other hand, it is somewhat closely related
to the interpretation of Brown given by Stevens (2020), albeit without the
Humeanism).
The dynamical approach is most simply stated for the theory of Special

Relativity (SR), so I will confine myself to this setting here. Read (2018), a
prominent expositor of the dynamical approach, introduces it by first defining
the view it is opposed to, namely what he calls the “geometrical approach”:
according to Read, the geometrical approach holds that “...the Minkowski
metric field ηab of SR is ontologically autonomous and primitive, and [...] con-
strains the possible form of dynamical equations for matter, such that metric
symmetries coincide with dynamical symmetries.” (Here, what Read means by
“metric symmetries” is those mathematical symmetries that leave ηab invari-
ant, collectively known as the Poincare group.) By contrast, Read writes of the
dynamical approach that on “. . .this view, the metric field ηab is not ontolog-
ically autonomous and primitive; rather, it is a codification of the symmetry
properties of the dynamical equations governing matter fields.” (Here, the rele-
vant frame-based special relativistic equations are left form-invariant under the
action of the Poincare group, which is of course of a piece with the fact that ηab
is used to write them in a frame-invariant form.) According to the dynamical
approach, “dynamics” (in a sense that we will soon explore) is prior to, and is
codified by, our interpretation of the mathematical entity ηab.
The point that I wish to highlight is that there are two ways to further elab-

orate on the dynamical view beyond the negative claim that the mathematical
entity ηab (the Minkowski metric) should not be taken to (quite literalistically,
I assume) represent some ontologically autonomous entity. The first way is
already suggested by Readwhen hewrites that “Onemay, therefore, understand
the dynamical approach to SR—and to theories with fixed metric structure
more generally—as an ontological thesis; as a form of relationalism.” Read is
suggesting that the dynamical approach is itself making a positive ontological
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The Philosophy of Symmetry 15

claim, where this might perhaps be further cashed out in terms of some ontolog-
ical entities that are represented (literalistically, let us assume) by the dynamical
equations and their symmetry properties, but not by the metric.
Nonetheless, there is a second way of understanding Brown’s claim that in

SR, the Minkowski metric ηab is merely a codification of the dynamics, and
that is to understand “dynamics” here in a representational mode: as the evo-
lution of the subsystem degrees of freedom of an empirical scenario (which
presumes the background context of an environment, a particular regime of
interest involving certain length scales, time scales, and measurement accu-
racy, etc.). From this point of view, the metric ηab, the equations of motion, the
relevant boundary conditions, and the Poincare symmetries – various aspects
of the mathematical medium of the representation – are all codifications of the
dynamics of an empirical scenario. Furthermore, while this representational
reading of Brown’s dynamical approach is compatible with various ontologies,
one thing that is clear on this reading is that the mathematical medium of a
physical representation should not be literalistically interpreted as suggesting
some particular ontology. Understood in this way, the dynamical approach is
not a statement about ontology at all.12

Our treatment of symmetry will be very much of a piece with this under-
standing of the dynamical view: the mathematics of symmetry plays a key role
in the (nonliteralistic) representation of an empirical scenario, and in this capac-
ity, it should not be taken to suggest any particular ontology (although it might
in fact be compatible with various ontologies).

2.3 Further Reading
The view of physical representation that I have sketched here has a close affinity
with those of several other authors writing about “modeling and representa-
tion” in the general philosophy of science. For instance, it is very much the
spirit of the chapter titled “Fables and models” in Cartwright (1999), and also
related to certain themes in Chang (2022), Van Fraassen (2010), and Anscombe
(1971). As a reference on the philosophy of scientific representation, I recom-
mend Frigg and Nguyen (2020), and for a detailed study of how representation

12 While one can of course find statements in Brown that support the former interpretation (i.e.
one that makes a positive ontological claim by virtue of some literalistic understanding of
representation), my preferred version is not without its interpretive merits: for instance, Brown
holds that the kinematics and the dynamics of a theory are intertwined, and it is much easier
to make sense of this position on my view than on the former view. Furthermore, while the
former view tends to treat SR and GR as theories of the universe tout court, this is difficult
to square with Brown’s emphasis on subsystems and his view of RP; on my interpretation,
Brown’s treatment of the RP ends up being fully compatible with the dynamical approach to
spacetime.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
00

86
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009008600


16 Philosophy of Physics

works in painting (by which my sketch has been greatly influenced), I refer
the reader to Podro (1998). Finally, for a discussion of the concept of “space-
time” that is very sensitive to its use in physical representation, I recommend
H. Brown (2005).

3 Physical Symmetry
In the last section, I sketched a view on which the distinctive power of physi-
cal representation lies in a judicious metaphorical transfer of the meanings and
rhythms of mathematics (the representation’s medium) to an empirical scenario
(the subject), which I further spell out in terms of a subsystem-environment
configuration. In this section, I wish to offer an efficient introduction to how
a central tradition of thinking about physical symmetries powerfully recruits
mathematical symmetries in this way, in order to dramatize the observational
scales in play in an empirical scenario, as well as their relationship to the
dynamics that is being modelled.
Section 3.1 introduces an early version of the RP that was noticed by the

Song dynasty poet Chen Yuyi, and proceeds to review H. R. Brown and Sypel’s
account of how standard physical representations of the RP work. I then turn to
a more recent discussion of the RP (Greaves and Wallace, 2014; Teh, 2016) in
terms of “empirical significance” – this discussion has not only been influential
in articulating the RP, but also in setting out a key hermeneutic task for the phi-
losophy of symmetry, namely extending the representational meaning of the RP
to a more sophisticated notion of mathematical symmetry, often called “local
symmetry.” In Section 3.2 – which is propaedeutic to Section 4 – I explain how
the rest of the Element will take up this hermeneutic task, and in particular why
we will pursue a somewhat different strategy than Greaves and Wallace (2014)
and my own previous work in Teh (2016). Finally, Section 3.3 briefly men-
tions some other work that has been done on the philosophy of symmetry, but
to a rather different – non-representational, in my sense – end. I explain why
much of this work is orthogonal to my inquiry, and highlight a marginal area
of conceptual overlap.

3.1 Yuyi’s Boat
I should like to initiate our discussion of physical symmetry proper by attending
to – what is to the best of my knowledge – the earliest clear articulation of how
the intuitive notion of physical symmetry figures in our grasp of the subject of
a physical representation. In 1118, the Song dynasty poet Chen Yuyi penned
the following stanza about sailing on the Grand Canal to Xiangyi, a suburb of
Bianjing (here I use the translation offered by McCraw (1986)):
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Flying flowers on both banks shine the boat red;
A hundred leagues along the elm dike; half a day of wind.
I lie and watch a sky full of motionless clouds;
Unaware that the clouds and I are both going east.

Putting aside the intricacies of poesy, the remarkable thing to notice is that
Yuyi has here articulated a core aspect of the “ship thought experiment” dis-
cussed by Galilei (1967), and that subsequent generations of commentators
would discuss under the rubric of the RP.13 Put in a more familiar idiom, Yuyi
has noticed that in this scenario, there is an observational scale (the “subsys-
tem scale”) according to which a traveler on the boat cannot tell the difference
between being in a particular constant velocity state and an alternate scenario
in which we “boost” or transform the boat into a distinct constant velocity state;
and on the other hand, the poet also implicitly recognizes that there is an envi-
ronment (the bank of the Grand Canal) equipped with an observational scale
that is sensitive to the velocity of the boat relative to the bank, and according to
which an external observer can discriminate between the boat being stationary,
and the boat moving East with some nonzero velocity. In other words, from
the perspective of the subsystem (and its observational scale), there is a sub-
system symmetry – namely an invariance of what the “internal” or subsystem
observer can detect under constant velocity boosts of his boat – but from the
perspective of the total subsystem-environment configuration, there is a sense
in which a symmetry fails to obtain; in a locution that I will only return to in
the Epilogue, one might even say that there is a sense in which (from the total
system perspective) a symmetry is “broken.”
Evidently, the symmetry (and the lack thereof) that Yuyi has in mind here is a

feature of the dynamics of the empirical scenario: of the composite subsystem–
environment degrees of freedom. And this is true regardless of whether – as in
Yuyi’s case – one has a relatively rough and untheorized sense of this empir-
ical dynamics, or whether, as in the cases that we are about to consider, one
is viewing the dynamics under the more theorized aspect of “the equations of
motion.” It is no exaggeration to say thatmuch of the history of physics has been
an attempt to articulate and rework this understanding of symmetry, which is
now referred to as the RP.

13 I note that I am not suggesting that everything in Galileo’s ship thought experiment is already
present in Yuyi’s observation; in particular, Yuyi’s observation does not spell out the full range
of conditions under which it is not possible for the subsystem observer (with his characteristic
observational scale) to tell the difference between different motions.
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How is the RP incarnated in what I earlier called a physical representation
(see the discussion of Section 2)? In particular, how can some particular
mathematical procedure be recruited so that in following its formulation as
mathematics – and in understanding that it does not literally apply to the empir-
ical subject – we come to reconstruct RP within the world of the representation,
as a physical thought about a subsystem-environment configuration? I submit
that we can find an answer to these questions in the work of H. R. Brown
and Sypel (1995) on the philosophy of symmetry (a line of inquiry that has
been carried out somewhat independently of Brown’s work on the dynamical
approach to spacetime, but is in fact closely related to it on my representational
understanding of the dynamical approach, cf. Section 2.2).
In their rich and learned investigation, H. R. Brown and Sypel (1995) trace

the history of attempts to articulate the RP fromGalileo onwards, throughNew-
ton, Huygens, and Einstein. For instance, they note that in Corollary V of the
Principia, Newton asserts a version of the RP: “The motions of bodies included
in a given space [i.e. a subsystem, in our interpretation] are the same among
themselves, whether that space is at rest, or moves uniformly forwards in a right
line without any circular motion.” The context here is that Newtonwas trying to
recover Yuyi’s observational subsystem symmetry from within the ambit of his
chosen mathematical medium for representing the dynamics of certain empir-
ical subsystem degrees of freedom, namely the equation of motion Üxi = 0.14

There is a remarkable continuity between Newton’s statement and what we
find Einstein writing almost two centuries later in the context of SR, viz. “The
[equations of motion] by which the states of physical systems undergo changes
are independent of whether these changes of states are referred to one or the
other of two coordinate systems moving relatively to each other in uniform
translational motion.” (Einstein, 1905).
Of course, there are differences of detail here. For Einstein, the mathemati-

cal symmetry that expresses the subsystem observer’s observational invariance
is the Poincare group (the group of symmetries that leaves the Minkowski
metric η invariant), whereas in Newtonian gravity the mathematical symme-
try that expresses the subsystem observer’s observational invariance is the
Galilean group (the group of symmetries that leaves invariant the degener-
ate Galilean metric and a compatible flat connection).15 But what Newton and
Einstein’s representational strategies have in common is much more important

14 For a discussion of this attempted derivation and Newton’s non-sequitur, see Section 3.2 of
H. Brown (2005).

15 Actually, it is somewhat anachronistic to lump together Newton or Einstein’s statement of the
RP with some particular choice of mathematical symmetry group. Their statements were more
general than this, and Einstein in fact uses his version of the RP (along with the constancy of
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than their differences – they both take a certain procedure of mathematical sym-
metry (their medium) and use it to dramatize a particular dynamical feature
of an empirical scenario, namely the observational invariance of the subsys-
tem observer and the corresponding observational variance of the external
observer.
To give an explicit and very elementary example of themathematics of sym-

metry that provides a medium for understanding RP (in the Einsteinian case,
let us say), consider a coordinate-free (abstract index) version of the equation
of motion for a free scalar field on a Minkowski background:

ηab∇a∇bϕ = 0. (1)

When we choose to write this equation in inertial coordinates (in which ∇
becomes an ordinary partial derivative), we see that although a general Poincare
transformation will take us to a different inertial coordinate frame, the form of
the equation is left invariant – a mathematical feature that is referred to as the
“invariance” of the equation under the symmetry.
At this point, it is instructive to note that one could give a literalistic read-

ing of the form-invariance of this equation under Poincare transformations:
what we perceive in this representation is a lonely scalar field in the universe
(represented by spatially infinite Minkowski space), and the different inertial
coordinate frames are just further choices of representational convention on
which no physical significance hangs; thus, no physical significance can be
attributed to the form-invariance of an equation under transformations from
one inertial frame to another. In consequence, either this form-invariance can-
not be the expression of a physically contentful idea like RP, or – if it is – then
RP cannot have any physical content. But this would be obtuse – as obtuse as
looking at Holbein’s sketch of More in the previous section and interpreting it
as aspiring to photorealism (and judging it as such).
By contrast, H. R. Brown and Sypel (1995) offer a more perceptive account

of how we come to recognize the RP by following the mathematical form-
invariance of the scalar field equation (in an inertial frame). They emphasize
two key points:

(1) By their lights, when Einstein writes that the special relativistic equations
of motion (as expressed in an inertial frame) are form-invariant under the
Poincare transformations (taking from one inertial frame to another), this

the speed of light) to derive the structure of his relativity group, as emphasized in (H. Brown,
2005; H. R. Brown and Sypel, 1995).
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mathematical statement is really meant to dramatize the observational-
invariance of the outcomes of subsystem experiments set up with the same
initial and boundary conditions.16

In the language of the previous section, we can say that Einstein has created
a physical representation in which we are intended to grasp the obser-
vational invariance of Yuyi’s empirical scenario (adapted to SR) through
following the mathematical formulation of “form-invariance of the SR
equations of motion under Poincare symmetries,” or alternatively, “the
Poincare-invariance of the Minkowski metric used to formulate the SR
equations of motion.” Implicit in this representational understanding is the
thought that “inertial frames” here are not mere coordinate systems, but
also a stand-in for the subsystem observer – these inertial frames represent
the subsystem observer’s state of motion relative to the environment frame.

(2) They also stress that the formulation of Einstein’s RP – and those of his
seventeenth-century progenitors – assumes that the physical symmetry
transformations (i.e. changes in the inertial state of motion) are performed
on an isolated subsystem and are thus testable.
In other words, Brown and Sypel are highlighting the fact that it is not
just any subsystem-environment that one is considering in a Yuyi’s boat
scenario, but rather one in which – due to the isolation of the subsys-
tem – it makes sense to perform a subsystem symmetry that does not
disturb the environment, and thus to compare the relational difference in
the total (composite subsystem and environment) state before and after the
subsystem symmetry is effected.

I will call the interpretation of RP given in (1) and (2) Representational RP
because of its emphasis on how the mathematical symmetries (of equations
of motion, in this case) need to be understood not literalistically, but as the
medium of what I have called a physical representation: when we receive this
representation appropriately, we use its mathematical procedure to reenact a
certain pattern of attention – the one spelled out in (1) and (2) – toward an
empirical subject. Such an understanding also makes it manifest why the RP is
a physical principle and not a metaphysical or an a priori one.17

16 Of course, there is no guarantee that any formal symmetry of a differential equation used to
model some bit of physics will admit of such an empirically relevant representational inter-
pretation. See Section 5 of Wallace (2019) for further discussion of this point, especially with
respect to the Lenz-Runge symmetry.

17 Of course, there is room for even more subtle interpretive questions here, such as whether a
gestalt between the “mere coordinate change” interpretation of (1) and its interpretation as
embodying RP might serve to further deepen and extend our imaginative thought about the
RP, in much the same way that Rembrandt’s etching of Jan Cornelis Sylvius – in which the
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I now turn to a more recent discussion of Representational RP by Greaves
andWallace (2014), in which H. R. Brown and Sypel’s analysis is re-articulated
in greater generality, so as to highlight the generic conditions under which the
mathematical symmetries of a physical theory can be used to represent “empir-
ical significance” in the manner of Yuyi’s boat. For instance, in the case of
RP that we have just been discussing above, we focused on rigid spacetime
symmetries, that is symmetries of a fixed background (non-dynamical) met-
ric which are rigid in the sense that they are not functions of space and time.
Greaves and Wallace’s analysis clarifies the conditions under which any rigid
symmetry (which need not be a spacetime symmetry) of a theory’s Lagrangian
or equations of motion can be used to exhibit empirical significance in the man-
ner of RP. For the moment, we will follow Greaves and Wallace in considering
symmetries of a theory’s equations of motion, but in the next three sections, we
will switch over completely to the more typical contemporary approach (within
physics) of considering symmetries of Lagrangians – either way, the important
point to take note of for now is that such symmetries send solutions (of the
equations of motion) to solutions.
Let us now see how Greaves and Wallace’s schema for Yuyi’s boat-type

empirical significance goes, to a first approximation. First, they introduce S,
the space of subsystem solutions to the theory’s subsystem equations of motion
(equipped with “isolated” boundary conditions), and E , the space of environ-
ment solutions to the theory’s equations of motion, as well as the space of
solutions T of the total (composite subsystem and environment) system; the
rigid symmetries of S, E , and T take solutions to solutions in each of these
spaces, respectively.18 Greaves and Wallace then tell us that a subsystem sym-
metry (that is, a symmetry of S) of an isolated subsystem has (Yuyi’s boat-type)
empirical significance just in case (i) it preserves the “isolated” boundary con-
ditions (since these are a defining condition of that subsystem); and (ii) the
solutions of T prior to, and after, performing the subsystem transformation are
not related by a symmetry of T .
Although this sounds like a mouthful, it is simply capturing Yuyi’s obser-

vation – and Representational RP – in more formal and schematic terms, in
which equations of motion and their solutions are used to represent the dynam-
ics of an empirical scenario from the get-go.19 To link Greaves and Wallace’s

preacher’s hand extrudes from the picture plane – uses the disruption of the boundary between
literal and imaginative perception to further its representational ends.

18 I refer the reader to Greaves andWallace (2014) for a discussion of the compatibility conditions
that have to be satisfied in setting up these spaces.

19 Actually, starting with the equation of motion or Lagrangian is optional, as I will explain
in the Epilogue: one could just as well describe a very coarse-grained description of the
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schema back to point (1) of what I call the Representational RP in Section 3.1,
we should note that implicit in their notion of a subsystem symmetry that pre-
serve the boundary conditions – their condition (i) – is a “subsystem observer
scale”with respect to which the subsystem observer cannot distinguish between
subsystem experiments (set up with the same initial and boundary conditions)
run in the pre- and post-transformed state. This can also be dramatized by say-
ing that with respect to the measurement scale of the subsystem observer, the
subsystem symmetry seems like a universe symmetry, which transforms eve-
rything in the same way and thus lead to any physical differences. And to
explicitly link Greaves and Wallace’s schema to point (2) of the Representa-
tional RP, their condition (ii) is simply a formal way of encoding the relational
difference in the total system state before and after subsystem symmetry is
performed.
It may help to give a concrete example at this point: consider a Newtonian

particle (represented by a uniform velocity solution) deep inside a subsystem
and far from the spatial boundary that divides the subsystem from the environ-
ment, in which there is, let us assume, some other reference particle. We can
imagine boosting the subsystem particle to a different uniform velocity solu-
tion (relative to the reference particle) without changing anything significant
(relative to the scales of interest) about the Newtonian gravitational potential
at the spatial boundary; since we would have changed the relative velocity
(between the subsystem and reference particles) by performing the subsystem
boost, there is no total system symmetry (i.e. boost of the composite subsystem-
environment system) that connects the relative velocity pre-subsystem-boost to
the relative velocity post-subsystem-boost.20 Thus, this lack of a total system
symmetry is a manifestation of the relational differences that can be detected
by an external observer.
Now, it is fairly uncontroversial that the rigid symmetry cases of Yuyi’s boat

have “empirical significance” along the lines of what Greaves and Wallace
(2014) say. However, they are further concerned with two kinds of (seemingly
unrelated) novel cases in which one intuitively wants to say that symmetries
have some kind of empirical significance, but where it is not clear that the
standard understanding of Representational RP, or Yuyi’s boat-type empirical
significance, straightforwardly applies.

empirical dynamics by means of symmetry – and without introducing equations of motion
or Lagrangian – and use one’s knowledge of a symmetry-breaking pattern to derive the effec-
tive Lagrangian (and thus equations of motion) for the subsystem. This technique – known
as the “coset construction” – has recently been used to great effect by the condensed matter
community (Delacrétaz et al., 2014).

20 Note that, based on the composite system dynamics, a total system boost must preserve the
relative velocities and so we can deduce that no such boost exists in this scenario.
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The first case – and the important one for this Element – is one in which the
symmetries (of the equations of motion or Lagrangian) are no longer rigid, but
are now allowed to be “local,” in the sense that they are nontrivial functions of
space and time. To say this case is an important one in contemporary physics
would be an understatement: it is this case that Einstein had to confront head-on
in developing the theory of GR, and it is this case that obtains in electromagnet-
ism, the Standard Model, and more generally, in various gauge theories that are
used in both high energy and condensed matter physics. Greaves and Wallace
(2014) claim that their Yuyi’s boat-type schema can indeed be extended to apply
to this case, provided that one appropriately specifies asymptotic boundary con-
ditions that are preserved by the local subsystem symmetries (see Teh (2016);
Wallace (2021b) for a further discussion of this extension, and the relevant
boundary conditions).
The second case has a much older pedigree; it is already mentioned by

Newton as Corollary VI of his Principia:

If bodies are moved in any way among themselves, and are urged by equal
accelerative forces along parallel lines, they will all continue to move among
themselves in the same way as if they were not acted on by those forces.
(1687b, p. 20.)

The idea is that here again there is observational invariance for the inter-
nal/subsystem observer, but not just with respect to uniform velocity boosts;
in this novel empirical scenario, the subsystem observer is unable to discrimi-
nate between different (spatially) uniform accelerations of the subsystem with
respect to an environment. Furthermore, such a transformation is not obvi-
ously a symmetry of Newtonian gravitation, at least when the theory is naively
written.21 Greaves and Wallace say that this case indeed has empirical signifi-
cance, but of a type that is distinct fromYuyi’s boat-type scenarios: they take its
empirical significance to consist in the fact that the subsystem symmetry trans-
formation (the uniform acceleration) does not preserve the subsystem boundary
condition and is accompanied by a corresponding environment transformation
such that the composite (subsystem-environment) state post-transformation
belongs in T and is physically distinct from the original composite
state.
I have discussed an interpretation of this claim in Ramírez and Teh (2020)

and a further refinement has also been given by Wallace (2021b), but space

21 In fact, these transformations are symmetries of both the Newtonian gravitational equations
of motion and Lagrangian if the gravitational potential is understood to transform in the
appropriate manner. I will comment more on this in the Epilogue.
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constraints force me to put the Corollary VI-type case aside in the rest of
this Element, at least until the Epilogue. In what follows, we will enter more
deeply into the central question underlying the first case, namely the question
of whether local symmetries can be used to extend our conception of Repre-
sentational RP – sufficient unto the day is this representational complication
introduced by the (mathematical) medium of local symmetry!

3.2 Our Task
I agree with Greaves andWallace that understanding the empirical significance
of local symmetry (e.g. internal gauge symmetry or diffeomorphism symme-
try) is central to any philosophical attempt to understand physical symmetry
as it is used in the representational practices of contemporary physics. How-
ever, instead of focusing on their abstract schema, I wish to adopt a somewhat
different tack.22

There are three related reasons for this. First, focusing on this sort of abstract
schema tends to obscure several important elements of how the mathematics of
symmetry is bent to representational ends in the practice of contemporary phys-
ics: it abstracts away from the important notion of Lagrangian symmetries and
its associated Noetherian machinery of currents and charges, which is common
coin amongst most contemporary physicists.
Second, it elides an important way in which contemporary practice concep-

tualizes an isolated subsystem, namely as a subsystem that has certain kinds of
conserved charges (by virtue of being isolated from external disturbances that
would result in a “leakage” of such quantities into the environment). I should
note that the term “charge” is being used here in a highly general way, that is
not just to include electric charge, but also quantities such as linear and angular
momentum, certain notions of mass, and so on. As a matter of fact, contempo-
rary practice not only puts much theoretical weight on this concept of charge,
but also put a huge operational emphasis – these subsystem charges play the
role of observables that we can probe in various experiments.
Third, I want to focus on the practicing physicist’s phenomenology of repre-

sentation, and so instead of adopting an overly schematized – and thus poten-
tially deracinated – way of articulating how local symmetries might produce
complications for Representational RP, I would like to center our inquiry on an
actual historical episode in which these complications became salient. Until the
very early twentieth century, the tradition of physics had a relatively straight-
forward understanding of how the mathematics of rigid symmetry (symmetries

22 See Teh (2016) and Ramírez and Teh (2020) for my discussion of their schema.
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with constant parameters such as uniform boosts) serves to embody our under-
standing of Yuyi’s boat-type scenarios, or the Representational RP. But shortly
thereafter, this Arcadian state of affairs was disrupted by the very internal
momentum driving the use of this subtle medium – symmetry – in physical
representation, and which led to the introduction of the local symmetries that
we have just been discussing. In the episode that I wish to direct our atten-
tion to, no less a figure than Einstein struggled with the task of understanding
how – not just despite, but because of – the complications of local symmetries,
he could re-construct within this novel medium the subject of Yuyi’s ship in a
manner at once familiar and strange.
It is perhaps a good time to flag for the reader that in most of the representa-

tional traditionwithinwhich Einstein is working (and indeed in large swathes of
present-day physics) there is no explicit modelling of the empirical scenario’s
environment in the mathematics of the representation, although the environ-
ment is of course still represented, albeit by means of the boundary conditions
of a subsystem (and the operational understanding of how those boundary con-
ditions incorporate a standard of reference that comes from the environment).
In fact, we already saw an example of this in H. R. Brown and Sypel’s dis-
cussion of how we should interpret Representational RP as embodied in the
mathematical form-invariance of the scalar field equation on a Minkowski
background – even though they have inmind an environment for the subsystem,
this environment is only implicitly represented in the mathematical formal-
ism; by contrast, Greaves and Wallace’s discussion of Yuyi’s boat makes this
environment explicit, albeit in a highly schematized way.
In the next three sections, we will follow in the footsteps of Einstein, and

thus we too will adopt the practice of incorporating our assumptions about
the environment (and the subsystem-environment relationship) into the bound-
ary conditions of the subsystem. In this sense, our representations will be less
explicit than Greaves and Wallace’s schema. Nonetheless, in a different sense,
they will include much physically relevant detail that is absent from Greaves
and Wallace’s schema, namely detail about the structure of the space of solu-
tions and the conserved quantities of a subsystem. These details are not only
routinely appealed to by physicists (both formally and informally) but – as
we will soon see – they are also essential for entering more deeply into the
hermeneutics of local symmetry.

3.3 Some Orthogonal Themes
In the final part of this section, I should like to briefly explain why a certain
subset of work within the philosophy of symmetry literature (which is typically
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presented as having “metaphysical” purport) is largely orthogonal to my topic
of interest – and my line of inquiry – in this Element. On the one hand, it would
be helpful to clarify for the student the reasons for this divergence; on the other
hand, there is a sense in which – when suitably interpreted – some of these
themes have analogs within our inquiry, and I will point to these connections.
In this Element, a physical “theory” tends to be associated (or even identified)

with a class of mathematical models. These models are initially conceived of
as “kinematically possible models,” which are “tuples of specified geometri-
cal objects” (cf. Martens and Read (2020)) that are unconstrained by equations
of motion or a Lagrangian (meaning that we do not yet constrain them to be
solutions to equations of motion, or critical points of the action defined by that
Lagrangian). Given such a class of kinematically possible models, one can then
further restrict to a set of mathematical objects called “dynamical models,”
which is the subspace of the kinematically possible models carved out by con-
straining the models to be solutions of the equations of motion, or to lie in the
critical locus of an action.
I now turn to Martens and Read (2020) for a lucid presentation of a particu-

lar view about “symmetry” in terms of the above definitions, as well as several
distinctions concerning symmetry that this literature finds to be important. First
of all, Read and Martens are clear in their exposition that they initially treat the
above definitions of models purely formally, namely as mathematics without
any representational purport. And it is worth pointing out that this is already a
different kind of treatment from what one is intuitively doing when one intro-
duces a “kinematical space of fields” in a full-blooded physics setting: here,
even though there is not yet any formal dynamics in the sense of equations
of motion or an action, one is motivated to introduce such kinematical struc-
tures in order to represent the dynamics of an empirical scenario (even if, for
now, that empirical scenario is a rather hypothetical or schematic one). In other
words, the choice of kinematic structures is already one that is adapted to the
project of representing a certain kind of dynamics.
Next, in order to avoid controversy surrounding what a symmetry is, Read

and Martens introduce the minimal notion of a symmetry as transformations
“...which (whether by definition or otherwise) are regarded as relating empir-
ically equivalent models” (p. 7 of Martens and Read (2020)). At this point,
representation is clearly on the scene, but if it is to be physical representation in
the sense that I have established, then one needs to hear a lot more about the sub-
ject of the representation (in particular its subsystem-environment structure and
the relevant scales in play) before one can arrive at a sensible judgment about
whether two solutions are in fact “empirically equivalent.” Since much of the
literature in this vein seems content to ignore these details in its investigation
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of symmetry, its ends seem largely orthogonal to my own, a point that will
further emerge as we now turn to the consideration of two pairs of approaches
to symmetry that are discussed in this Element.
Again following the summary in Martens and Read (2020), I now go over

the two pairs of approaches, followed by a brief discussion of their relationship
to the topic of this Element, namely the philosophy of symmetry as it relates to
physical representation.
First, the “interpretational” versus the “motivational” approach to symmetry.

According to the interpretational approach, “two symmetry-related models of
a theory typically may be regarded ab initio as representing the same possible
world, even in the absence of a coherent explication of their common ontology”
(p. 7 of Martens and Read (2020)). By contrast, according to the motivational
approach, “the existence of symmetry-related models at most motivates us to
provide an explication of the shared ontology of these symmetry-related mod-
els, but only once such an explication is provided is it legitimate to regard those
models as representing the same possible world.” (p. 8 of Martens and Read
(2020)). If we take this description at face value – in which case empirical
equivalence is a given prior to introducing the distinction and the notions of
“possible world” and “sameness” are metaphysically loaded, then this dispute
is one that is orthogonal to my representational ends.
Second, the so-called “sophistication” versus “reduction” approach to sym-

metry. This distinction is supposed to come into play when a physical theory
has some mathematical structure – and typically symmetry structure – that
one regards as “surplus”; an example that is often given (but which I disagree
with, cf. Nguyen, Teh, and Wells (2020)) is the local U(1) symmetry of elec-
tromagnetism. “Sophistication” is the position that, when confronted with this
scenario, one should reformulate the theory’s mathematics so that the models
related by a symmetry are isomorphic; by contrast, “reduction” is the position
that one should modify the theory’s mathematics forming a naive quotient of
the space of models by that symmetry.
Since this second pair of positions does bear some relationship to the proj-

ect of physical representation as I understand it (and also some relationship to
a long tradition of mathematical and physical theorizing prior to the introduc-
tion of these position), there is somewhat more to comment on concerning this
distinction. First, there is the issue of how one should interpret the question of
whether a certain structure is “surplus” or not. If the question is one of whether,
for instance, the localU(1) symmetry of electromagnetism plays a role in phys-
ical representation (as opposed to a role ascribed to it by a priorimetaphysical
or semantic considerations), then not only is the question relevant to the pres-
ent inquiry, but it has also been a central topic of discussion and interpretation
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within physics in the last century. On this conception, whether a structure is
to be classified as “surplus” is something that needs to be adjudicated with
respect to the structure’s representational use in the context of various empiri-
cal subsystem-environment configurations. And asWallace (2019) has recently
argued, from this practice-oriented perspective, reduction is only justified when
one is trying to represent the internal degrees of freedom of a subsystem
independently of any consideration of representing the coupling between this
subsystem and other subsystems – in other words, it is justified (and useful)
in a fairly limited range of contexts relative to our representational practice
as a whole.23 Furthermore, since Grothendieck’s “Pursuing Stacks” and the
introduction of the Batalin–Vilkovisky formalism roughly 40 years ago, math-
ematicians and mathematical physicists have on the whole shied away from
taking the naive quotient of a space with symmetries acting on it, preferring
instead to work with what is known as a “quotient stack” (or at the infinitesi-
mal level, with an L∞-algebra), which retains information about the different
ways in which isomorphic objects are related (see e.g. Nguyen et al. (2020) for
an elementary introduction to the philosophy of this topic).24

3.4 Further Reading
For a further discussion of symmetry in this vein, I refer the reader to H.
R. Brown and Sypel (1995), Greaves and Wallace (2014), Teh (2016), Wal-
lace (2019), Wallace (2021a), Wallace (2021b), and Ramírez and Teh (2020).
The “subsystem-environment” view of symmetry has been challenged in Belot
(2018) on the basis of a particular interpretation of the moduli space of t’Hooft-
Polyakov monopoles; this interpretation has in turn been criticized in Wallace
(2021b), but more work clearly remains to be done on both sides.

4 The Hermeneutics of Symmetry
In the last section, I reviewed how the mathematical device of rigid symmetries
(symmetries that are not functions of spacetime) embodies the Representational
RP, either by means of the form-invariance of the equations of motion, as in
H. R. Brown and Sypel’s discussion, or through rigid subsystem symmetries
that send solutions to solutions, as in the Yuyi’s boat-type schema discussed
by Greaves and Wallace (2014). I also stressed how a central hermeneutic

23 For further discussion of this point, see Gomes (2019, 2021), Nguyen et al. (2020), Rovelli
(2014), and Teh (2015).

24 At a more mundane level, one reason physicists have shied away from reduction is in order to
be able to write local, Lorentz invariant action functionals. I thank an anonymous referee for
this reminder.
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problem for the philosophy of symmetry is to explain whether and how a con-
vincing sense of the Representational RP can be conveyed by means of local
symmetries, namely symmetries that are nontrivial functions of spacetime.
In the philosophy of physics literature, the discussion of whether local sym-

metries can embody the Representational RP has largely been conducted in
terms of Greaves and Wallace’s Yuyi’s boat-type schema (on which, see Brad-
ing and Brown (2004), Greaves and Wallace (2014), Teh (2016), and the
references therein). This is fine insofar as it goes, but, on the other hand, it
is noteworthy that the philosophical discussion has largely been conducted
in isolation from two themes that – both historically and conceptually – are
completely central to the physical tradition’s understanding of local symmetry.
Thereby hangs a tale, and as we shall see, a further opportunity to shed light on
Representational RP in the case of local symmetries.
The first theme is Einstein’s struggle to interpret and understand “general

covariance,” which I will define in Section 4.2 (for a magisterial overview of
“general covariance” andwhat it might mean, seeNorton (1993)). This theme is
straightforwardly related to RP: after all, general covariance is a local symmetry
in the sense that I clarified earlier, and one of Einstein’s chief goals in intro-
ducing general covariance is to extend the RP. In the rest of this section, I will
leave aside Greaves and Wallace’s Yuyi’s boat-type schema for RP and focus
on the complications arising from Einstein’s own quest to extend RP; I will
then reconnect this thread with Greaves and Wallace’s schema in Section 5.2.
The second theme, which was historically bound up with the interpretation

of general covariance – but less obviously related to the RP – is the signifi-
cance of the Klein-Einstein dispute for the foundations of GR (see e.g. the
historical work by Rowe (2019) and philosophical discussions in H. Brown
and Brading (2002), De Haro (2021), and Freidel and Teh (2022)). This was
in essence a dispute about whether theories with local symmetry could have
physically meaningful conserved charges in a manner analogous to the isolated
subsystems of theories with rigid symmetry.
The goal of this section is to use these two themes to provide a working defi-

nition of “substantive” – that is physically contentful, in a sense I am about
to explain – general covariance, which will then be used to reconstruct the
Representational RP within the setting of local symmetry in Sections 5 and 6.
“General covariance” is a huge and messy topic within the philosophy foun-

dations of GR – I will not pretend to have scratched the surface of it (and I will
not discuss topics such as “The Hole Argument” which, though interesting in
their own right, are less central to my narrative path). Section 4.1 aims merely
to get into our sights a minimal and uncontroversial understanding of “general
covariance” for a Lagrangian formulation of GR – this is nothing other than
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what physicists colloquially speak of the diffeomorphism invariance of (the
Lagrangian formulation of) GR, or – more generally – the gauge invariance
of (the Lagrangian formulation of) a gauge theory. Section 4.2 then highlights
how local symmetry (such as diffeomorphism or gauge symmetry) leads to two
complications for the representation of focal empirical scenarios, correspond-
ing to the following two themes: first, a complication concerning the extension
of the RP; and second, a complication concerning the representation of sub-
systems with conserved charges which lay at the heart of the Klein-Einstein
dispute. Finally, Section 4.3 uses these two complications to suggest a partic-
ular understanding of “substantive” general covariance, viz. a notion that is
physically contentful enough to overcome the representational complications
of Section 4.2.

4.1 A Novel Mathematical Procedure
Let us put ourselves in Einstein’s shoes post SR as he contemplates the math-
ematical medium of symmetry en route to his formulation of GR. It is already
clear to him howRepresentational RP (the representational interpretation of the
Principle of Relativity that we discussed in Section 3.1) works in the context of
SR and he has a rich physics of inertial frames in terms of which he understands
RP; in other words, he knows how important the subsystem-environment con-
ception is for understanding symmetry in physics.25 Also clear to him is the
associated mathematics of symmetry – the rigid Poincare symmetries that pre-
serve the Minkowski metric and the form of the SR equations of motion, and
which relate (mathematical) inertial coordinate-frames.
Einstein’s goal is to develop a novel mathematical procedure for the physical

representation of gravity, and we join him at a stage of his journey when he
is fully prepared to deform the rigid Poincare symmetries of SR to what we
now call diffeomorphism symmetry, that is smooth transformations between
the (mathematical) object called a spacetime manifold and itself, and which
are thus now local functions of the spacetime parameters. (I thus blithely skip
over the prior episode of the Entwurf theory, when he was briefly prepared to
give up on diffeomorphism symmetry!) Einstein’s term for the resulting formal
property was “general covariance” and he initially intended it to be an adequacy
condition that would single out the theory of GR.
Einstein’s physical motivations for pursuing general covariance were vari-

ous and somewhat in flux. On the one hand, a key motivation came from the

25 Arguably, he also understood how important the subsystem-environment conception was for
correctly interpreting the Equivalence Principle, as Lehmkuhl (2023) argues.
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physics of inertial frames: certain states of motion – but not others – are priv-
ileged by the inertial frame structure of SR (which, recall, are those frames
related by the Poincare group) and Einstein wanted to construct a theory in
which all states of motion were on a par – thus his attempt to “enlarge” the
Poincare group to the diffeomorphism group. On the other hand, the physics of
inertial frames (as Einstein clearly recognized in his treatment of the RP in SR)
requires an understanding of subsystem-environment relationships along the
lines of Yuyi’s boat and Representational RP, and this is a point that Einstein
seems to have neglected in pursuing a different conception of general covar-
iance, wherein a generally covariant theory is one that can be formulated in
such a way that the theory is expressible in any coordinate system (where the
different coordinate systems are related by diffeomorphisms).26

The problem with this latter notion of general covariance, as Kretschmann
(1918) pointedly remarked, is that it does not achieve Einstein’s goal of singling
out a particular theory – just about any theory is generally covariant accord-
ing to this definition, including Newtonian mechanics, as Cartan showed in his
invariant, curved geometric formulation of Newtonian gravitation (often called
Newton-Cartan theory). In light of Kretschmann’s response to Einstein, it is
now commonly accepted (see Norton (2003) and references therein for discus-
sion) that this latter notion of general covariance was a misstep. Instead, one
should try to provide a “physically contentful” or substantive notion of general
covariance that really does pick out some proper subset of physical theories,
and perhaps GR in particular. This has led to a small cottage industry of try-
ing to articulate a notion of substantive general covariance that distinguishes it
from the mere freedom to express a theory’s fields, equations of motion, and
solutions in arbitrary frames (see Pooley (2010) for a review and Freidel and
Teh (2022) for my own views on the matter).
I will return to the issue of how to distinguish substantive general covari-

ance (or more generally: gauge symmetry) from mere expressive freedom in
Section 4.3. At present, however, I would simply like to get a minimal and
uncontroversial conception of general covariance on the table in order to fix
ideas. Before stating this version, let me provide one more stipulation about
when we are joining Einstein in his intellectual journey, namely a point at
which he is using the mathematical materials of the Lagrangian formalism in
order to formulate the theory of GR. Many readers will be familiar with this

26 Actually, Blau (2011) has an interesting interpretation of general covariance on which the
notion was never meant to have any physical content in isolation, but only when conjoined with
the Einstein Equivalence principle. Interesting as the suggestion is, it – and the equivalence
principle – lie beyond the scope of our discussion.
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formalism from a course on classical mechanics: the idea there is that instead
of formulating a particle theory using the equations of motion, one introduces
the integral of a functional called a Lagrangian that one tries to optimize over
the space of possible particle trajectories while holding the initial and final data
fixed; the optimal trajectory describes the motion of said particle (and is thus a
solution to the corresponding equations of motion). In the next section, we will
employ this apparatus in the case of field theory but without fixing the initial
and final data, so that it describes the space of solutions and not just a particular
solution of the theory.
With that out of the way, let us turn to stating the “minimal” version of

general covariance for a Lagrangian theory:

(BGC) First, distinguish between the background (non-dynamical) and the
dynamical fields of the theory. We then say that a Lagrangian27 of a theory
is basically generally covariant (BGC) just in case diffeomorphisms of its
dynamical fields are variational symmetries28 of the Lagrangian.29

BGC is a notion of general covariance that is adapted to variational formu-
lations of physical theories, and it is one that Einstein would have found
uncontroversially necessary by the time he had started working on variational
formulations of GR (NB: by which I do not mean that he would have found it
contentful enough to count as substantive). It is also what physicists invariably
mean when they speak of a “diffeomorphism invariant” Lagrangian theory.
By extension, I will also use BGC to refer to the analogous case in which dif-

feomorphisms are replaced by internal gauge symmetries; which case I mean
will be obvious from the context. Although there are of course important dif-
ferences between diffeomorphism symmetry and internal gauge symmetry, the
important contrast for our purposes is between theories whose actions have
only rigid symmetries (and thus do not satisfy BGC) and theories with BGC,
that is whose actions have symmetries that are functions of spacetime (such as
diffeomorphism symmetry and internal gauge symmetry).

27 For reasons that will become clear in Sections 5 and 6 (and which are amply discussed in
Freidel et al. (2020), Freidel et al. (2021)). I note that I do not assume that a theory has a
unique Lagrangian: thus, the Einstein-Hilbert Lagrangian should be understood as just one out
of a possible class of standardly stipulated Lagrangians for GR.

28 In other words, diffeomorphisms leave the Lagrangian invariant up to exact terms; we remind
the reader that, as a consequence, such diffeomorphisms also take solutions of the theory’s
equations of motion (EOM) to solutions.

29 For ease of comparison, I note that BGC is the variational version ofwhat Pooley calls “GC5” in
Pooley (2010) andwhat he calls “Diffeomorphism Invariance (final version)” in Pooley (2017).
Pooley also identifies the variational form with what he calls “Background Independence
(version 2)” in Pooley (2017).
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As we are about to see, the novel mathematical procedure of Einstein’s
general covariance, that is the local variational symmetries of BGC, led to
both a complication of Einstein’s search for physical representation and – ulti-
mately – to a profound reconceptualization of his desired subject: a novel kind
of empirical scenario instantiating Representational RP. In the next subsec-
tion, we turn to the complications caused by this alteration in the mathematical
medium.

4.2 Complications of the Medium
There are two closely related features that Einstein took to be crucial in impart-
ing a sense of the subject in the physical representations of SR (where recall,
the “subject” is an empirical scenario), and which he correspondingly sought
through the novel mathematical procedure of BGC. First, a conception of
an isolated subsystem along the lines of Yuyi’s boat or the Representational
RP (which is an empirical description for the reasons that I mention in Sec-
tion 1.2.1). And second, a conception of an isolated subsystem as having
conserved charges, whose mathematical aspect lies in the fact that the rigid
Poincare symmetries can be used to construct such mathematical quantities.
Thus, we can conceptualize part of Einstein’s quest to achieve physical rep-

resentation in GR as the struggle to understand how, through the materials of
BGC, one might in some sense recover these features. The reason I speak of a
“struggle” is that – as we are about to see – the materials of BGC themselves
produce complications for trying to represent the empirical scenario associated
with RP and the subsystem charges. At this point, I should again emphasize
that in much of this tradition of representation, the environment is not repre-
sented explicitly; thus, although both the physical understanding of the RP and
the notion of charge require an environment reference standard, we will not be
explicitly modelling the environmental degrees of freedom in what follows. I
turn now to the complications.

4.2.1 Extending the Relativity Principle

The first complication arises from the relationship between general covari-
ance and the RP. At one point in the development of GR, Einstein thought
that general covariance was simply an extension of the RP in SR. Later, as
part of his response to Kretschmann’s critique, he retreated to the view that
general covariance is necessary but insufficient for extending RP (see Poo-
ley (2017) for a discussion of Einstein’s retreat). For our purposes, it will be
more fruitful to frame Einstein’s question thus: does one’s preferred notion of
general covariance play a distinctive role in extending the Special Relativistic
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RP?30 If “yes,” then this shows us how general covariance can be used to
recover the empirical subject associated with Yuyi’s boat; indeed we can con-
sider general covariance to be physically substantive by virtue of playing this
role (clearly, it cannot just be the freedom to reexpress the representation in
arbitrary coordinates if it plays this role).
Here we find Einstein in the familiar situation of making a physically sugges-

tive conjecture that is nonetheless amenable to being problematized by others.
Correspondingly, there has been much controversy about whether any notion
of general covariance (including BGC) can play a role in extending RP. At least
within the philosophical literature, one finds various authors (e.g. Belot (2000)
and Norton (1993)) who answer “no” because they claim that the desired exten-
sion of the RP to GR must be trivial, in the sense that the resulting “relativity”
group is just the identity. In brief, these authors argue for their claim by appeal-
ing to the following (controversial) way of thinking about RP, which I will call
Geometric RP: in such an extension, the empirically significant group of sym-
metries invoked in the RP should be identified with the stabilizer group of the
spacetimemetric in GR (just as it is typically identified with the stabilizer group
of the Minkowski metric in SR).
If one accepts Geometric RP, then since a generic metric – which is now a

dynamical field – in GR has no nontrivial automorphisms, it immediately fol-
lows that the RP is trivial in GR. Thus, no form of general covariance (including
BGC) can play a role in enabling such an extension. I stress that this conclusion
is wholly driven by the assumption of Geometric RP: if the argument works, it
works regardless of what one takes substantive general covariance to be.
On the other hand, as I discussed in Section 3.1, it is not Geometric RP

but the Representational RP that captures the empirical meaning of Yuyi’s
boat-type scenarios. As a reminder, recall that according to H. R. Brown and
Sypel (1995), the symmetry group of RP is to be understood as the symme-
try group relating inertial frames, which are in turn to be fleshed out as – in
idealization – ways of encoding the equivalence of outcomes of experiments
set up with the same initial conditions in an isolated subsystem. Thus, when in
SR one goes on to define a geometric object (the Minkowski spacetime met-
ric) whose stabilizer group is precisely the symmetry group of the RP, one is
merely codifying “...aspects of the comparative behaviour of different systems
of physical rods and clocks in relative motion,” where the behavior of the target

30 The parallel of this question for internal symmetry is: does one’s preferred conception of local
internal symmetry (for a Lagrangian) play a distinctive role in extending the RP for global
internal symmetry? For an illustration of the latter as “relative phase difference” in the U(1)
case, see Teh (2016) and Greaves and Wallace (2014).
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subsystem (whose inertial frames are related by these symmetries) is being
measured with respect to an environment frame, from which the subsystem
is dynamically isolated. This is the essence of what I called Representational
RP. (Of course, once one understands this point, one can abstract away from a
concrete material system and even its idealization in terms of inertial frames,
and arrive at a kind of “iconic” or “generic” image that we call “Minkowski
spacetime,” which provides an efficacious vehicle for abstract reasoning. This
generic “type” can then be made to descend once again into a representation of
a concrete empirical scenario when it is filled in with the description of the rel-
evant subsystem-environment decomposition, initial and boundary conditions
including the relevant conditions for “isolation,” and the practical knowledge
of the experimentalist.)
Notice that, according to Representational RP, one needs to be able to

understand how a theory models an “isolated subsystem” before one can even
articulate RP within that theory. Thus, advocates of Representational RP will
not accept this argument for Geometric RP, because it is based on a definition
of RP that ignores the question of how “dynamical isolation” is to be modelled
in the extended scenario.31 Furthermore, a moment’s thought will show that
“dynamical isolation” is a much more sophisticated notion in GR than it is in
SR: we typically model it as the asymptotic flatness of a subsystem spacetime.
To recapitulate, we have arrived at the following way of sharpening Ein-

stein’s question: given an appropriate choice of boundary conditions repre-
senting an “isolated system,” is there a notion of general covariance that has a
distinctive role to play in extending RP – in the sense of Representational RP –
from SR to GR? While Einstein was presumably here concerned with asymp-
totic boundary conditions for subsystems, I will note that his question can be
generalized so that we consider isolated finite subsystems as well, and not just
asymptotic infinity.32

In Section 5, we will see that Noether’s theorems – when taken up into the
context of physical representation – strongly suggest that the answer to the

31 Ironically, Brading and Brown (2004) have expressed sympathy for Geometric RP on the
grounds that the diffeomorphism symmetry of GR “...does not have an active interpretation
in terms of isolated subsystems of the universe.” The debate about whether and in what sense
local symmetry (of which the diffeomorphism symmetry of GR is an instance) can have such
an interpretation has by now played out quite fully (see Teh (2016) and references therein), but
my interest here is in highlighting that, on a representational view of RP (and again: in contrast
to Geometric RP), one’s conception of substantive general covariance should do real work in
adjudicating the matter.

32 Furthermore (although it lies beyond the scope of this Element), it is also physically relevant
to consider non-isolated or open subsystems in which charges are not conserved, as has been
done in Freidel et al. (2021).
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above question is “yes.” But before that we will need to reckon with a second –
closely related – facet of Einstein’s struggle with general covariance, and the
one that led Noether to write her 1918 paper reconceptualizing our understand-
ing of the mathematical property of general covariance (and in particular of
BGC).

4.2.2 The Klein-Einstein Dispute

The second complication arises when, like Einstein, we ask the question of
whether the mathematical materials of general covariance can be used to repre-
sent the kind of empirical scenario – paradigmatically, an isolated subsystem! –
that has physically meaningful conserved charges, such as energy. For instance,
GR is a theory whose Lagrangian has the diffeomorphism symmetries of BGC:
does it by virtue of this have physically meaningful charges? (We will see in
Section 6 that this question is in fact of a piece with our previous question in
Section 4.2.1 concerning the RP.)
Historically speaking, this question found its genesis in Hilbert’s variational

treatment of GR (see Rowe (2019, 2021) for a masterful treatment of the his-
tory, which I follow here). In addition to deriving the field equations in his
treatment, Hilbert’s main contribution (which he called “the most important
goal of his theory”) was the formulation of an invariant “energy vector” and a
proof of its conservation. In response, Einstein provided his own slightly dif-
ferent variational approach to GR; in this note he derived an energy current that
can be written in modern notation as JX = CX+dUX, where X is a local symme-
try, CX is a quantity33 that vanishes on-shell (meaning that it vanishes when the
equations of motion are satisfied, that is when we are considering solutions to
these equations), andUX is called the “charge aspect” or “superpotential” (these
formulae are generic for any theory with local symmetry – including GR – but
we will provide explicit details for electromagnetism in the next section).
It was this series of developments that set the stage for Emmy Noether’s

contribution to the mathematical foundations of GR, in terms of which the
complications of BGC for Einstein’s representational project are best under-
stood. While working as Felix Klein’s research assistant, Noether worked out
the exact relationship between Hilbert’s energy vector and Einstein’s energy
current. This analysis, in conjunction with Klein’s own work on the topic, led
to an open letter from Klein to Hilbert in which Klein explained that the energy
current JX could always be decomposed as the sum of two parts, the first of
which vanishes on-shell (meaning that it vanishes when the equations ofmotion

33 More precisely, CX is a constraint associated with the gauge transformation X.
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are satisfied) and the second of whose divergence is identically zero, regardless
of whether the equations of motion are satisfied (physicists usually refer to such
a property as an “off-shell” property).
On the basis of this analysis, Klein asserted that the statement that dJX = 0 is

merely a mathematical identity and thus does not have any physical content –
hence the complication for Einstein’s attempt to represent energy conservation
for isolated systems using the subtle medium of BGC. Klein’s point here, I
take it, is that (as we will see more clearly in the next section), in the normal
case of theories with a rigid symmetry, conservation laws hold on-shell only,
that is dJ ≈ 0 (where “≈” denotes equality when the equations of motion are
satisfied, also called “on-shell equality”) and are in this sense consequences
of the particular dynamics of the relevant physical theory; by contrast, in the
generally covariant (or the gauge theory) case, the conservation law seems to
hold independently of the dynamics one is trying to model and thus appears
physically vacuous.
Upon reading this letter, Einstein wrote Klein to express admiration for

his insights, but also to protest that “I regard what you remark about my
formulation of the conservation laws as incorrect.” According to Einstein,
the conservation of the current was not itself a mathematical identity, but
was instead the consequence of a mathematical identity and the equations of
motion. Einstein further argued that the physical interpretation of such a conser-
vation statement was analogous to the integral form of Gauss’s law. To see what
Einstein meant, it will help to have before us the cartoon of a spacetime subsys-
tem displayed in Figure 2. Recalling that the codimension of a d-dimensional
submanifold in an ambient four-dimensional spacetime is given by (4 − d), we
see here that the initial Cauchy surface Σ is of codimension 1, Γ is a time-like
boundary of codimension 1, and ∂Σ is a codimension 2 submanifold that is
typically called a “corner”.

Figure 2 A subsystem with corner ∂Σ
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Here is how Einstein reasoned: since the current JX can be shown to be
on-shell exact, that is JX ≈ dUX (where I remind the reader that “≈” denotes
equality when the equations of motion are satisfied), one can use Stokes’ the-
orem to write the on-shell charge (the current integrated over Σ) as a corner
quantity, namely a quantity that is only integrated over ∂Σ. In symbols, we
have

∫
Σ
dUX =

∫
∂Σ

UX, where Σ is a Cauchy surface and its boundary ∂Σ is the
so-called “corner” of the manifold. Einstein then proceeded to sketch a particu-
lar subsystem for whose boundary conditions (essentially a primitive version of
asymptotic flatness) such a computation of charge made sense. It may help the
reader here to point out the analogy between such charges and more mundane
systems in which the charge of a subsystem is computed by means of quantities
on its spatial boundary (where we represent the subsystem as isolated from any
relevant interference), as in the use of Gauss’ Law in electrostatics.
As regards Einstein and Klein, their further exchange only led to a stalemate,

with Einstein insisting that his conception of energy conservation in GR was
physically contentful, and Klein denying this claim on the grounds that “mathe-
matical identities” cannot be physically contentful statements. Who was right?
While Klein’s general line of argumentation is tendentious at best (we fre-
quently use mathematical identities to model various physical happenings), he
has nonetheless identified a genuine disanalogy between how dynamics enters
our understanding of conserved quantities in theories with rigid symmetries, as
opposed to the role it plays in theories with gauge symmetries – a point that
complicates matters for Einstein, who very much wished to maintain that anal-
ogy. We will revisit their exchange in Section 6 after we have developed the
tools in Section 5 to make more sense of it (in particular, we will derive all the
formulae mentioned in this subsection).
For now, what matters is that against the background of this impasse con-

cerning physical interpretation, further progress was made with regard to the
mathematical medium of GR: in 1918, Noether published her seminal paper
“Invariante Variationsprobleme” Noether (1918). Herein, she proved two the-
orems – referred to in the physics community as Noether’s first theorem and
Noether’s second theorem respectively – that would eventually shape how just
about every physicist thinks about symmetry, and she derived a corollary (the
so-called “Hilbertian assertion”) that bore directly on the Einstein-Klein debate.
More specifically, the second theorem powerfully reframes the notion of BGC
in terms of what we would today call “Noether identities,” and the corollary
states that (in our terminology) Lagrangian field theories with BGC only have
(in virtue of that BGC) trivial currents, where we remind the reader that a “triv-
ial current” is one that can be written as the sum of an exact form and a term that
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vanishes on-shell (i.e. ourCX and dUX, respectively). Thus, the on-shell current
is identically conserved and is said to have an “improper conservation law.”
It would be a mistake to understand Noether here as weighing in on the ques-

tion of physical representation or interpretation; rather, one should understand
her as offering a mathematician’s conceptual analysis through her corollary:
given that you think the concepts of BGC and trivial currents are physi-
cally relevant, you should be aware of the following mathematical relationship
between them. Read this way, Noether’s corollary does not answer our question
about charges, but it does prompt the following specific version of it: “Does
a theory with BGC have – on that basis – physically meaningful conserved
charges?”wherewe should now understand the latter as “physicallymeaningful
charges that stem from trivial currents,” since (as Noether showed) nontriv-
ial currents cannot be derived from the diffeomorphism (or gauge) symmetry
of BGC.

4.3 The Einstein Test for “Substantive”
Let me sum up the foregoing. Introducing the mathematical medium of general
covariance led to two profound representational complications for Einstein –
two obstacles to what Aristotle would have called theorein. As a result, Einstein
was embroiled in a struggle to refashion within this new image – this theoria –
the kind of subject that he took to be a focal case of physical representation:
an empirical scenario exemplifying the RP (or Yuyi’s boat) and whose isolated
subsystems have measurable conserved charges such as energy.
I would now like to suggest that it is fruitful to use Einstein’s representational

desiderata to furnish us with a test for whether a particular conception of gen-
eral covariance counts as substantive. The loose notion of “substantive-ness”
that I would like to begin with is just some notion of general covariance that is
physically significant in a sense that goes beyond the mere freedom to formu-
late a theory in any coordinate system. Of course, there may be many ways of
specifying such a notion, and I certainly do not make any pretense at an exhaus-
tive classification. However, I take Einstein’s desiderata to gesture at two ways
in which a notion of general covariance can reasonably be said to go beyond the
mere freedom to use arbitrary coordinates. First, if the general covariance (or
gauge/diffeomorphism symmetry) in question plays an essential role in defin-
ing measurable charges for a subsystem; and second, if – given a specification
of isolated boundary conditions for subsystem – the general covariance extends
the RP relative to those boundary conditions.
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Although I have not yet given you any reason to think that these twoways are
related, they are in fact deeply interwoven, as we shall see in the next section. In
anticipation of their relationship, let me introduces what I will call the “Einstein
test” for a substantive notion of general covariance:34

1. The “corner charge” part of the Einstein test: does the candidate for substan-
tive general covariance yield nontrivial corner charges?35 Here, I include the
qualifier “corner” in order to anticipate a result of the next section, namely
that the charges associated to a gauge theory are necessarily corner charges.

2. The “Extending RP” part of the Einstein test: does the candidate for sub-
stantive general covariance allow us to extend the principle of relativity (in
the sense of Representational RP that we discussed)?

If the answer to both questions is “yes,” then the candidate notion counts as
substantively generally covariant for the purposes of our investigation.
Given the status of BGC as the “received” version of general covariance

(when formulated variationally), and Einstein, Klein, and Noether’s own rec-
ognition of the relevance of BGC to the question of conserved charges, it is
natural for us to try to run the Einstein test on BGC. To that end, the next sec-
tion will explain how the raw mathematical materials of Noether’s theorems
can be taken up – in the art of the physicist – to develop a particularly trench-
ant formulation of this test. To presage our results: we will find in Section 6 that
BGC does not pass the test, but also that the framework of Noether’s second
theorem suggests a version of substantive general covariance that does.

5 Symmetry à la Noether
In the last section, I used two of Einstein’s representational desiderata (for local
symmetry) to formulate a criterion – which I called the “Einstein test” – for
whether general covariance (or local symmetry more generally) is substantive.
Before saying more about whether and how this criterion is met, however, we
will need to get quite a bit clearer about the representational possibilities offered
by the mathematical medium of local symmetry.
Recall that when I introduced the notion of physical representation in Sec-

tion 2, I stressed that we (perhaps implicitly) arrive at an understanding of the

34 Of course, my point is not that the historical Einstein ever formulated such a test; it is rather
that we can extrapolate such a test from some of his representational desiderata (which may
even be in conflict with other aspects of his views concerning general covariance).

35 Based on the history, one might reasonably take the corner charge part of the test to include
the conservation of nontrivial corner charges. However, for the purposes of analytical clarity,
it will be convenient for us to make the minimum criterion the existence of nontrivial corner
charges, with conservation left as a further criterion.
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Figure 3 Wedding feast of Herod

subject (the empirical scenario) in the representation both by following the pro-
cedures of the medium (the mathematics of local symmetry and Lagrangians)
as the medium, and simultaneously grasping that the meanings and qualities
of the medium apply to the subject in a nonliteral way. Thus, when we are
in the act of receiving a representation, having our attention directed toward
the medium’s procedures and techniques – and thus to the gulf between the
meanings of the representation’s medium (quamedium) and the qualities of its
physical subject – does not detract from our intellectual grip on the subject, but
instead heightens our ability to do physics, that is to think in the representation.
On this view, our appreciation of the (representational) possibilities inher-

ent in a representation turns in part on our appreciation of the techniques and
procedures of its medium. As an illustration, consider the linear perspective
technique, of which there was a growing awareness amongst Florentines in the
lead-up to the quattrocento, but which did not reach its maturity till it was geo-
metrically articulated by Brunelleschi and in this form taken up by artists such
as Donatello and Masaccio. Donatello’s “Wedding Feast of Herod” (see Fig-
ure 3) – a bronze relief on the baptistry of Siena’s Duomo – is exemplary of
this “taking up” of the medium’s technique: here the linear perspective con-
struction – a surface feature of the medium that properly belongs to the science
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of optics – is evident, but equally evident is how it is bent to a representational
use; witness the energy that is delivered to the representation when – in fol-
lowing the “geometric pavement” construction up to its vanishing point – we
are made to pass through three different scenes, which are thus united in the
representation.
The situation with general covariance (or local symmetry) is somewhat sim-

ilar. Einstein no doubt had a growing awareness of the properties of general
covariance – conceived of as a mathematical medium – but the proper tech-
nique for handling this idea was not articulated until the contribution of Emmy
Noether, the pure mathematician who first deeply understood the rhythms
and textures of general covariance, and who by all accounts knew and cared
rather little about the physics. Noether’s mathematical understanding of gen-
eral covariance was encapsulated in two theorems – often simply referred to as
“Noether’s theorems” by physicists – that will be bent to the ends of physical
representation in this section and the next.
What were the rhythms and textures of general covariance that Noether so

clearly discerned between 1916 and 1918? A full sense can only be obtained
from a close reading of Noether (1918), but the gist might be conveyed as fol-
lows: although the fundamental formula of the variational calculus (equation
(2)) was already well-known prior to Noether’s contribution, what Noether
effected with enormous fluency was a framework for using this formula to
understand the implications of the invariance (or “symmetry”) of a Lagran-
gian, and in particular the invariance of a Lagrangian under local symmetry
(of which, recall, the diffeomorphisms of general covariance are in instance).
Conceptually, what drove this development was Noether’s novel insight into
how geometrical structures (such as vector fields) on the space of fields – as
opposed to more familiar mathematical manifolds such as “spacetime” – could
be used to articulate the symmetries of a Lagrangian and well as the implica-
tions of this invariance for conserved quantities; at the computational level, the
fluency of her methods was manifested in a procedure that is as powerful as it
is effortless: integration by parts.
In fact, the version of Noether’s theorems that is best suited to my purposes is

not quite the exact thing that she proved in 1918, but rather her two theorems as
they have been absorbed into a framework that makes the geometry of the space
of fields very explicit – this is called the “covariant phase space” framework by
physicists.36 Although this framework is relatively cutting edge with respect to

36 Mathematicians know it in a slightly different guise as the variational bicomplex, and – at a
much higher level of sophistication – it is also implicit in the BV-BFV approach to field theories
(see e.g. Cattaneo et al. (2014)).
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the discussion of “symmetry” within the philosophy of physics, I should note
that it is common coin in some parts of the GR and high energy theory literature.
I will lay out the covariant phase space framework in Section 5.1, with a

special focus on the phenomenon of “corner charges” that arises for theo-
ries with local symmetry, and in Section 5.2, I will spell out the relationship
between such corner charges and Representational RP (especially Greaves and
Wallace’s schema for Yuyi’s boat-type scenarios that I discussed in Section 2).

5.1 The Covariant Phase Space
First, let me sketch the (mathematical) spacetime geometry of the subsystems
that we will consider. It will suffice to consider the elementary case of a con-
tractible four-dimensional spacetime M equipped with Minkowski metric η,
and whose boundary has two kinds of pieces – a timelike boundary Γ, on the
one hand, and (spacelike) initial and final data surfaces Σ and Σ′, respectively,
on the other (see Figure 2 for an illustration of this geometry).37 Introducing
such a timelike boundary Γ is crucial for modelling the boundary conditions
of a subsystem; furthermore, one can think of such a finite boundary model as
a regularized version of a subsystem with asymptotic boundary conditions.38 I
note that Σmeets Γ at a two-dimensional manifold ∂Σ, which is typically called
a “corner”; mathematical objects supported on ∂Σ are correspondingly called
“corner quantities.”
In this section, we will take a Lagrangian to be a spacetime four-form L;

its integral on M is called the action S =
∫
M L. Consider then the equivalence

class [L] of Lagrangians on M, where the equivalence relation is given by L ∼
L+ dℓ, that is two representatives of the class differ by a boundary Lagrangian
ℓ (on Γ). Given one of these representatives (say L for concreteness) and fixing
boundary conditions for the subsystem on Γ, we characterize the solutions (or
dynamical states) of the subsystem as those field configurations such that an
arbitrary variation of the action is stationary up to terms that are supported at
Σ and Σ′, that is

δS = δ
∫
M
L =

∫
Σ

Ψ −
∫
Σ′
Ψ, (2)

wherewe assume that the variation satisfies the boundary conditions on Γ andΨ
is a local function of dynamical and background fields on Σ and Σ′. The reason
that stationarity has this form – as opposed to the more familiar δS = 0 – is

37 In other cases, for example when modelling a black hole, it will also be important to consider
null boundaries.

38 On the other hand, we can start with a finite boundary model and obtain an asymptotic model
through holographic renormalization, see e.g. (Chandrasekaran et al., 2021).
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that we would like to use it to construct an entire space of possible solutions
(corresponding to different initial data) and thus we do not place any boundary
conditions on Σ and Σ′.
To see why stationary field configurations are solutions to equations of

motion in the usual sense, let us first take note of the fundamental variational
formula (a version of which appeared in Noether’s 1918 paper)

δL = −E + dθ, (3)

where δ should here be thought of as an exterior derivative on the space of
fields, d is the usual spacetime exterior derivative, E := Eϕ δϕ is a field space
1-form (and spacetime 4-form) whose coefficient Eϕ is the Euler-Lagrange
quantities, and θ is a field space 1-form (and spacetime 3-form) called the pre-
symplectic potential current.39 Upon integrating (3) overM, we see that in order
for (2) to be satisfied for arbitrary variations that satisfy the boundary conditions
on Γ, the configuration about which we are varying needs to satisfy the equa-
tion of motion Eϕ = 0 (furthermore, changing L by a Γ boundary term to obtain
a different representative of [L] yields the same bulk equation of motion).
Matters are slightly more subtle for the dθ term in (3), which descends to Γ,
Σ, and Σ′ when integrated, by means of Stokes’ theorem. In order to choose
boundary conditions for θ |Γ such that (2) is satisfied, it will help to note that
θ has the generic form AδB, and thus there are two kinds of boundary condi-
tions that we can impose in order to guarantee that θ |Γ vanishes) – for instance,
we can set B|Γ to any of some set of fixed values which kills the variation
(thus yielding a family of boundary conditions) or we can simply set A to zero;
in what follows we will think of boundary conditions in the former “family”
sense.40 For instance, if θ = Aδϕ, then introducing a particular Dirichlet bound-
ary condition ϕ = ϕ0 on Γwould amount to singling out a “leaf ” in the family of
Dirichlet boundary conditions on Γ. In this sense, θ is associated with a family
of boundary conditions (often called a “polarization”), and since in our scheme
each Lagrangian L ∈ [L] picks out a unique θ, L is also associated with that
family of boundary conditions.

39 In our approach, each representative L (including a possible boundary Lagrangian piece on
Γ) picks out a unique θ by means of the homotopy operators introduced in Anderson (1989);
this unique θ is then the one that appears in the fundamental variational formula. I refer the
reader to see De Haro (2021), Freidel et al. (2021), and references therein for the details of this
construction.

40 More generally, for a representative Lagrangian L + dl, we can avoid terms on Γ by setting
the boundary condition to be θ + δl Γ= dC. Here this added generality will only be useful in
Section 6.3.
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The covariant (pre-)phase space P is the space of subsystem solutions that
we have just constructed by means of a variational principle (i.e. field configu-
rations that satisfy Eϕ = 0). However, it is important to notice that we will not
be thinking of P as a mere set – that does not carry further structure – of sub-
system solutions satisfying certain boundary conditions on Γ (as I discussed in
Section 2, this is how Greaves and Wallace (2014) think of the data of a sub-
system). This is because the mathematical procedure that we have just used to
construct P also endows it with the rich structure of a pre-symplectic manifold,
in the sense that δθ can be integrated over an initial data surface Σ to construct
the presymplectic field space 2-form Ω :=

∫
Σ
δθ on the space of solutions.

At an intuitive physical level, Ω is a mathematical structure that keeps track
of the distinct physical degrees of freedom of the subsystem. For instance, when
a vector field (on field space) is in the kernel of Ω it can be quotiented out to
eliminate the degeneracy and to arrive at a correct count of the physical degrees
of freedom of the system.41 In the absence of boundary conditions on Γ, there-
fore, there is no reason to expect that Ω will be independent of which data
surface Σ it is defined on; it could well change from surface to surface, depend-
ing on the subsystem’s interactions with the environment – such changes are
usually referred to in the literature as the “leakage of symplectic flux through
the boundary Γ.” Nonetheless, in our setting, we have imposed “closed” bound-
ary conditions on Γ that ensure that there is no leakage of symplectic flux,
and thus that Ω is independent of which Σ we are integrating over. In other
words, in our setting, the pre-symplectic form Ω is a property of the entire
closed subsystem.
I now proceed to introduce Noether’s theorems. In order to do so, let us

consider the case where a vector field on field space ξ is a variational symmetry
of a Lagrangian L, meaning thatLξL = dℓξ , where Lξ denotes the Lie derivative
(with respect to ξ) on the space of fields.42 The Noether current is defined as
(the spacetime 3-form) Jξ := Iξθ − ℓξ , where Iξ is the field space interior
product which is here being used to contract the field space 1-form θ with the
field space vector field ξ so as to yield the field space 0-form Jξ . The Noether
charge can then be constructed by integrating Jξ over a Cauchy surface Σ, that
is as Qξ :=

∫
Σ
Jξ .

41 This is a somewhat naive statement: one does not have to literally quotient out in order to have
a correct count of the degrees of freedom; for instance, in the BV-BFV framework of Cattaneo
et al. (2014), the physical degrees of freedom are identified homologically.

42 I will adopt a standard abuse of notation in which the notation for a gauge parameter is also
used to represent the corresponding vector field on field space ξ (in which that gauge parameter
appears as a co-efficient).
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Suppose that our Lagrangian L has a variational symmetry ξ. We can then
use Cartan’s magic formula (Lξ = δIξ + Iξδ) and (3) to derive the formula
dJξ = IξE . The part of Noether’s first theorem that I would like to consider
here now follows immediately from noticing that if ξ is a rigid symmetry, then
Jξ is a nontrivial Noether current in the sense discussed at the beginning of
this section, that is it cannot be written as the sum of an exact form and a term
that vanishes on-shell. Thus, we have a part of Noether’s first theorem, namely
that given a rigid symmetry and its associated current J, when we go on-shell
(i.e. set Eϕ = 0), we obtain the corresponding conservation law dJ = 0. This
is what Klein meant when he said that (in our paraphrase), in the case of rigid
symmetries, the conservation laws are a consequence of the dynamics of the
physical theory.
On the other hand, when the symmetry ξ is a local symmetry, that is a

nonconstant function of spacetime, and thus has an infinite number of parame-
ters, we find that we can write IξE = dCξ +Nξ where Cξ is a constraint term
that vanishes on-shell, and Nξ is the sum of terms linear in ξ, each of which
contains a differential operator acting on the Euler-Lagrange quantities (in the
next section, I will carry this out explicitly for the case of electromagnetism).43

We can then use the locality of ξ to argue thatN must vanish as an identity – this
yields the nontrivial Noether identity corresponding to the local symmetry ξ.44

By combining this observation with LξL = dlξ and (3), we can conclude that
d(Jξ −Cξ ) = 0 and so the Noether current takes the form Jξ = Cξ +dUξ , where
the “superpotential” or “charge aspect” Uξ depends on the gauge parameter ξ
in a linear but nontrivial manner. In other words, we have just demonstrated a
part of Noether’s second theorem, viz. that a gauge symmetry gives rise to a
“trivial” Noether current, that is a current that can be written as the sum of an
exact form and a term that vanishes on-shell.
There are two extremely important points to emphasize about the superpo-

tential Uξ at this stage:

• The superpotential Uξ is uniquely determined by our choice of Lagrangian
in the equivalence class [L] and the symmetry generator ξ.45

• For gauge theories, that theories with BGC, the Noether charge QΣξ :=∫
Σ
Jξ =

∫
∂Σ

Uξ is always a corner quantity (in the sense that it is being
integrated over the corner ∂Σ) because the Noether current is on-shell

43 For a proof of this statement, see Chapters 1 and 3 of Kosmann-Schwarzbach, Schwarzbach,
and Kosmann-Schwarzbach (2011).

44 A nontrivial Noether identity is one whose coefficients N i do not vanish on-shell.
45 See Freidel et al. (2021) for discussion and see De Haro (2021) for an explicit formula for Uξ .
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exact, and thus by Stokes’ theorem, the charge is determined entirely by
the superpotential Uξ and the geometry of the corner.

To round off our discussion of Noether’s theorems, let me note that at a
highly schematic level, the chief moral of Noether’s two theorems for Lagran-
gian field theory is that the space of such theories can be partitioned according
to whether or not the theories possess two features, which in turn correspond to
the symmetry-structure of the theories’ Lagrangians. These two features are:

• Noether currents, denoted by Jξ . A nontrivial Noether current is one that
cannot be written as the sum of an exact form and a term that vanishes
on-shell. A trivial Noether current is one that can be so written.

• Noether identities – denoted Nξ – which are relations between the Euler-
Lagrange quantities that take the formN i[ δL

δϕi ] = 0, where the coefficientN i

is a differential operator (note that since these are mathematical identities,
they hold off-shell). A nontrivial Noether identity is one whose coeffi-
cients N i do not vanish on-shell. A trivial Noether identity is one whose
coefficients vanish on-shell.

Furthermore, the correspondence between Noether currents/identities and a
theory’s symmetry-structure is given by Noether’s two theorems (and their
modern interpretations), as follows:46

• (Noether’s first theorem) Rigid symmetries (symmetries with a finite set
of parameters) are in 1-1 correspondence with nontrivial Noether currents.
Furthermore, these currents are conserved when we assume the on-shell
property in computing the divergence of the current.

• (Noether’s second theorem) Local symmetries (symmetries with an infinite
set of parameters, that is symmetries in the sense of BGC) are in 1-1 cor-
respondence with nontrivial Noether identities. Furthermore, they yield
trivial currents whose on-shell expression is conserved as a mathemati-
cal identity, that is without using the on-shell property in computing the
divergence.

Thus, instead of speaking of the local symmetries – or BGC – of a physical
theory, we could just as well speak of its nontrivial Noether identities; instead
of speaking of the rigid symmetries of a physical theory, we could just as well

46 Heremy presentation of the “iff ” statement is heuristic.Making this an honest theorem requires
considerable care about how to define equivalence classes of symmetries and currents, as
demonstrated by Olver (2000).
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speak of its nontrivial Noether currents (in fact, this substitution has become
standard in physics subfields such as Quantum Field Theory).
With these observations in hand, we can see that it is the “charge” – indeed

“corner charge,” since we are discussing gauge theories! – part of the Einstein
test which is more fundamental than the “Extending RP” part of the test: if
the corner charges for a gauge theory are trivial (i.e. vanishing), then there is
no sense in which the RP can be extended (from a rigid precursor theory) to
that gauge theory. If, on the other hand, the corner charges are nontrivial, then
subject to understanding what kinds of boundary conditions model an “isolated
system,” it may be possible to obtain a generalized version of RP in that gauge
theory.

5.2 Charges and their Relationship to the GW Schema
With the insights fromNoether’s theorems (as absorbed into the covariant phase
space formalism) in hand, we are in a position to seewhy I used the term “corner
charge” in formulating the first part of the Einstein test for substantive gen-
eral covariance in Section 4.3: this is because the Noether charges stemming
from local symmetry are always corner quantities, that is quantities defined on
the co-dimension 2 manifold ∂Σ. This is one of the distinctive features of the
mathematical medium of local symmetry that makes it so different from rigid
symmetry.
We are also now in a position to understand why the “corner charge” part of

the Einstein test (for substantive general covariance) and the “Extending RP”
part of the test are deeply interwoven, as I claimed in Section 4.3. In order to
appreciate this point in summary, let us recall a basic idea from Hamiltonian
classical mechanics, where a symplectic manifold (a 2n-dimensional smooth
manifoldP endowed with a symplectic formω) and a HamiltonianH : P → R
are used to describe the time evolution of a particle. In this case, we say that H
is a “Hamiltonian charge” because it satisfies the following equation:

−IXHω = δH, (4)

where XH is the vector field associated toH by ω, δ is the exterior derivative on
P , and I is a contraction onP . Furthermore, we say that the Hamiltonian charge
H generates time evolution because the integral curves of XH describe the time
evolution of the particle. Analogously, in the covariant phase space description
of classical field theory, we can define the Hamiltonian generator of a subsys-
tem symmetry as a charge that satisfies the analog of (4), and in virtue of which
it is called a “Hamiltonian charge.” The link, then, between the first and second
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parts of the Einstein test is that a nontrivial corner charge (available via gen-
eral covariance if it passes the first part of the test) is a candidate for playing
the role of a Hamiltonian charge that generates a subsystem symmetry that
“extends RP,” thus passing the second part of the Einstein test, and recovering
Representational RP in theories with local symmetry.
Let us briefly see how the connection between charges and Greaves andWal-

lace’s schema for Yuyi’s boat (their version of Representational RP) plays out
in a case in which the relevant charge is not a corner quantity, namely the case
of rigid symmetry.
First, recall how the GW schema for Yuyi’s boat goes: the empirically sig-

nificant subsystem symmetry has to preserve the isolated boundary conditions
of the subsystem, and it has to be such that the composite (subsystem and envi-
ronment) state prior to and after the subsystem symmetry are not related by
a symmetry of the composite system. And recall too an important point that
I have already commented on, but wish to emphasize yet again: there is of
course a mathematical gap between the GW schema and the covariant phase
space framework as we have just been developing it, because the latter is not in
the business of explicitly modelling the environment. Nonetheless, one is still
representing an environment (albeit implicitly) in our use of this framework.47

With that inmind, let us now explain howNoether’s charges for rigid symme-
tries play into this schema. For concreteness, it will help to consider an example
such as the free complex scalar field Lagrangian L = −1/2 dϕ∗ ∧ ⋆dϕ and its
rigid U(1) internal symmetry ϕ 7→ exp(−iα)ϕ, where α is a constant parame-
ter. Let ξ = −iα δ/δϕ be such an infinitesimal rigid symmetry represented as a
tangent vector on field space. From Noether’s first theorem, the fact that ξ is a
variational symmetry of L implies that we have an on-shell conserved Noether
current Jξ which can be used to define a charge Qξ =

∫
Σ
Jξ (albeit one that

does not descend to a corner like gauge charges).
Having put in place the above as well as our understanding of an implicitly

represented environment (which carries a reference standard for the phase of ϕ),
it is now easy to spell out the connection to Greaves and Wallace’s schema: the
Noether chargeQξ is theHamiltonian generator of the (phase space) subsystem
symmetries of Greaves and Wallace’s schema, in the sense that it satisfies the
following analog of (4) on-shell:

δQξ = −IξΩ, (5)

47 For a discussion of how to explicitly represent the environment in the case of gauge theories
on manifolds with a finite boundary, see Gomes (2021).
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and the flow of its associated vector field implements the symmetry as a canon-
ical transformation on phase space. In other words the Hamiltonian charge Qξ

generates the relative phase difference between subsystem and environment
that is discussed in Greaves andWallace (2014). A similar point could be made
for other Lagrangian theories with rigid symmetries, and to which Greaves and
Wallace’s schema for Yuyi’s boat applies.
What then of the (variational) local or gauge symmetries of Lagrangian the-

ories? Do these also invariably yield nontrivial corner charges that act as the
Hamiltonian generator of the relevant subsystem symmetries? Supposing that
local symmetry here yields a nontrivial corner charge (a point that we shall
investigate on further in the next section) this matter is somewhat subtle: as
Chandrasekaran et al. (2021) and Freidel et al. (2021) argue, in the absence of
any boundary conditions, one does not obtain (5) but instead the charge-flux
relation:

δQξ − Fξ = −IξΩ, (6)

where the symplectic flux term Fξ measures the degree to which the corner
charge Qξ fails to be Hamiltonian. In our setting, we have imposed boundary
conditions that kill off this symplectic flux term, thus making the charge Hamil-
tonian relative to that boundary condition. Thus, assuming that we have chosen
the right “isolated” boundary conditions for Representational RP, our discus-
sion provides a general strategy for reconstructing RP in the case of generally
covariant theories.
It is worth pausing to reflect on our earlier characterization of physical sym-

metry as a coarse-grained description of the empirical dynamics of a subsystem
vis-a-vis a possibly implicit environment. Greaves and Wallace’s schema –
which represents dynamics under the aspect of the equations of motion – is one
expression of this characterization, andwe have just seen that the notion of vari-
ational symmetries – in which context dynamics is represented under the aspect
of a Lagrangian – offers yet another expression; the two are linked by a suffi-
ciently rich representational understanding of what it means for a subsystem
charge to generate a subsystem symmetry.

5.3 Further Reading
For an introduction to the covariant phase space from a physicist’s perspective,
I recommend Donnelly and Freidel (2016), Freidel et al. (2020, 2021), and
Harlow andWu (2020). A somewhat more careful treatment of analytical issues
is given in Khavkine (2014).
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In Section 5.2, we have been assuming the imposition of non-gauge-invariant
boundary conditions; for a discussion of gauge-invariant boundary conditions,
see Carrozza and Hoehn (2021); Mathieu, Murray, Schenkel, and Teh (2019);
Mathieu and Teh (2021); Gomes and Riello (2017) were the first to give a
general discussion of abstract gauge-invariant boundary conditions within the
physics context. The most general treatment of “virtual” or Segal boundaries
for gluing has been given in Cattaneo et al. (2014), and a particular case
(in homological degree zero) is discussed in Gomes, Hopfmüller, and Riello
(2019).

6 The Subject Resolved
In the previous section, we worked through the covariant phase space (and
Noether’s) technique for handling the subtle mathematical medium of local
symmetries (i.e. the formalism of the theory has BGC, in either the internal
gauge symmetry sense, or the diffeomorphism sense). And by developing a feel
for this technique, we came to grasp the momentum that it imparts to the rep-
resentation – Einstein’s variational formulation of GR. In particular, Noether’s
theorems impressed upon us the distinct and novel possibility of taking “corner
charges” up into our representational purposes. Of depiction, Podro writes that
the “...recognition of the subject is extended and elaborated by the way its con-
ditions of representation, the medium and the psychological adjustments the
painting invites become absorbed into its content” (Podro (1998): 2). I would
like to suggest that we should understand the work of the previous section
and this one in a similar vein: the conditions of representation made salient by
Noether’s theorems (and Noether corner charges, the possibility of their being
Hamiltonian generators, etc.) and the corresponding adjustments they invite of
us – qua physicists – to use them in pursuing the empirical subject of RP are
themselves absorbed into the content of the representation.
In this section, we will continue to bring into view what Einstein so earnestly

desired to bring into view but only managed to glimpse through a mirror dimly:
the reconstruction of a certain physical subject – a Yuyi’s boat-type empirical
scenario – through the medium of local symmetry.
As background to summarizing my argument, let us recall the working defi-

nition of substantive general covariance that I gave by means of the “Einstein
test” in Section 4.3, and fill it in a bit more in terms of the Noetherianmachinery
introduced in the last section. This definition of substantive general covariance
had two parts. A local symmetry (of a Lagrangian) is substantively generally
covariant just in case (i) (the Corner Charge part) it yields a nontrivial Noether
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(corner) charge by means of Noether’s second theorem; and (ii) (the Extend-
ing RP part) given an appropriate choice of “isolated” boundary conditions for
the subsystem, this nontrival Noether charge is also a Hamiltonian charge that
generates a subsystem symmetry for Representational RP, or – in a different
idiom – a subsystem symmetry that is empirically significant in the sense of
Yuyi’s boat. Since I will use this notion of substantive general covariance in
my arguments, it will help to explicitly state why we are justified in working
with this notion: this is because one of Einstein’s desiderata for general covar-
iance was that it would extend the RP to the case of local symmetry, and we
have now seen in Section 5.2 why the notion of nontrivial corner charges is
essential – from the Noetherian perspective – to constructing the subsystem
symmetries of any potential RP for theories with local symmetry. If the corner
charge were trivial, then it would not generate any subsystem symmetries at all,
and the corresponding local symmetry could not be said to – even potentially –
extend RP.
I now proceed to the arguments of this section. I will first argue that BGC is

not sufficient to achieve substantive general covariance. This follows from two
premises:

P1 The “corner charge” part of the definition of substantive general covariance,
which requires nontrivial corner Noether charges.

P2 There are two examples of theories that have been engineered to satisfy
BGC but which only have trivial corner Noether charges.

In fact, the two examples in P2 are focal cases of the result of “Kretschm-
annizing” theories with rigid symmetries, that is modifying them so that they
now have local symmetry – in the sense of BGC – but intuitively still have
the same physical content as the theories premodification. Thus, a corollary of
this argument is that the focal cases of Kretschmannized theories do not satisfy
substantive general covariance in our sense.
Next, I will show that focal examples of “standard” theories with local sym-

metry do satisfy substantive general covariance in our sense. This follows from
two premises:

K1 The (“corner charge” and “Extending RP” parts of the) definition of
substantive general covariance.

K2 The focal examples of “standard theories with local symmetry” have
nontrivial corner Noether charges, and we can impose appropriate “iso-
lated” subsystem boundary conditions such that these Noether charges are
also Hamiltonian generators for the subsystem symmetry that is relevant
to RP.
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I will regiment our discussion as follows. Since the case of (the diffeomor-
phism invariance of) GR is more technically involved, I will start by giving an
explicit discussion of some elementary models in Section 6.1.
First, in Section 6.1.1, I discuss the case of a Kretschmannized scalar field

theory on Minkowski space that satisfies the formal definition of BGC (for
diffeomorphism symmetry), but which turns out to yield a trivial superpoten-
tial and thus fails the “corner charge” part of the Einstein test. I also sketch
how essentially the same phenomenon occurs in a case where our Kretschman-
nization procedure is used to engineer not local diffeomorphism symmetry of
the theory, but local internal U(1) symmetry. Thus, this discussion establishes
premise P2.
Second, in Section 6.1.2, I discuss the paradigmatic case of an elemen-

tary theory with BGC (in contrast to the physically marginal Kretschmannized
cases of Section 6.1.1), namely electromagnetism. As we will see, this case
yields a nontrivial superpotential and thus passes the “corner charge” part
of the Einstein test for substantive general covariance. Section 6.2 then dis-
cusses the obvious suggestion for supplementing BGC in order to rule out the
Kretschmann-style cases, and further discusses how the corner charge of elec-
tromagnetism can be used to pass the “extending RP” part of the Einstein test
for substantive general covariance. Section 6.3 then draws on the morals of pre-
vious sections to provide a qualitative discussion of the case of GR, which is
not only more technically challenging, but also contains significant conceptual
subtleties as regards extending the RP. Taken together, these results establish
the premise K2.
Finally, in Section 6.4 I sketch how one might draw on more sophisticated

developments of Noether’s technique, that is on innovations in handling the rep-
resentation’s mathematical medium, to provide a more thoroughgoing response
to Kretschmann.

6.1 Test Cases
Let us now run the “corner charge” part of the Einstein test on BGC, that is pose
the question: does a theory with BGC thereby have nontrivial corner charges?
To that end, it will be helpful to use as our test cases some of the toy models that
Pooley (2010, 2017) and others use to test the validity of different definitions
of general covariance, although I warn the reader that for reasons of simplicity,
I have opted for a slightly different labeling convention from that of Pooley
(2017).
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Consider first the following theory of a free scalar field on Minkowski space
that we will call48 SR149:

L(ϕ,η) = −1
2
ηab∂aϕ∂bϕ, (7)

where the scalar field ϕ is the dynamical variable and the Minkowski metric η
is a nondynamical (or background) structure. Our variational formula (3) for
this theory is δL = Eϕδϕ+∇aθ

a, where the Euler-Lagrange expression is Eϕ =

□ϕ and the pre-symplectic potential current is θa = −∇aϕδϕ. Notice that the
conservation of the stress-energy tensor T ab follows from applying Noether’s
first theorem to the rigid spacetime symmetries of this theory.
Clearly, this theory does not satisfy BGC, because diffeomorphisms are not

a variational symmetry of ϕ. In our next example, I will modify SR1 slightly
to show that one can produce an example of a theory that satisfies BGC, but
which fails the “corner charge” part of the Einstein test, because it only has a
trivial superpotential, and thus the corner charge vanishes.

6.1.1 BGC with Trivial Superpotential

Consider now a theory that we will call SR2 which is given by,

LSR2(ϕ,Y; η) = L(ϕ,Y∗η), (8)

where Y : Rd → M is a parametrization field that captures our freedom
to choose coordinates on the spacetime M.50 In particular, we can use Y to
express this special relativistic theory in non-inertial frames if we wish. Due to
this interpretation of Y, it is appropriate to call SR2 a “Kretschmannized” ver-
sion of SR1. Our dynamical variables in this theory will be ϕ and Y, whereas
the Minkowski metric η still retains its status as a non-dynamical background
structure.
We can again compute the variational formula (3) for this theory, thus obtain-

ing δLSR2 = Eϕδϕ + Ea χ
a + ∇aθ

a, where χ := δY ◦ Y−1, Ea = −2∇bT ba, and
θa = 2T ab χb−∂aϕδϕ. Notice that in addition to the previous equation ofmotion
Eϕ = 0, we now have a new equation of motion Ea = 0, that is the conservation
equation for the stress-energy tensor. Furthermore, by inspecting θ, we can see
that in addition to the original symplectic pair ϕ and its momentum ∇aϕ, we
now have a new symplectic pair Y a and its momentum T ab.

48 Here I have switched to tensorial (instead of differential forms) notation in order to more
conveniently express the stress-energy tensor.

49 Pooley (2017) calls the non-variational formulation SR1.
50 Pooley (2017) calls this SR5, and his example of SR4 is similar.
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We now draw the reader’s attention to an interesting point: clearly, LSR2 is
generally covariant in the sense of BGC (this is true even though η remains
a non-dynamical field and is not varied) and thus this theory must have a
nontrivial Noether identity. By turning the crank of the Noether machine, we
find that this identity is Eϕ∂aϕ − 2∇bT ba = 0 (that this is an identity can
be straightforwardly checked from the definition of Tab). In other words, the
content of the Noether identity SR2 is actually the content of Noether’s first the-
orem for SR1 – one might call this the transmutation of Noether’s first theorem
into Noether’s second theorem via Kretschmannization!
It is also interesting to compute the (trivial) Noether current, i.e. Jaξ = Iξθ −
ιξLSR2 = 0. In other words, the current vanishes identically off-shell, and we
can deduce that the superpotential Uξ – and thus the corner charge algebra – is
trivial. Hence, the theory SR2 demonstrates why BGC fails the “corner charge”
part of the Einstein test for substantive general covariance (and in consequence
fails the “extending RP” part of the test): even though this theory clearly has
BGC, it nonetheless fails to deliver nontrivial corner charges.
The example is exemplary, and it is easy to construct analogous examples

of Kretschmannized theories with a similar structure. For instance, consider
the case of a scalar field theory coupled to a flat background U(1) gauge field,
but now equipped with a parametrization field that captures our freedom to
change our typical representation of this background gauge field from A = 0
by switching to a “non-inertial” choice of section (which one can think of as
an “internal frame” if one wishes). The Lagrangian corresponding to this case
is L(ϕ, θ) = −1/2 ddθϕ ∧ ⋆ddθϕ, where θ is a “parameterization field” that
acts on a gauge field A as θ∗A = A − dθ (thus shifting our representation from
the usual choice A = 0 to A = −dθ, for instance) and which transforms under
the U(1) gauge transformation A 7→ A + dχ as θ 7→ θ + χ; and where ddθ
denotes the gauge covariant derivative. (Note that in this case, the “inertial
frames” are precisely the ones where θ is constant – thus stabilizing A = 0 –
and one simply has the ordinary exterior derivative, whereas the non-inertial
frames are the ones where θ is nonconstant and so one is forced to introduce the
covariant derivative.) Upon performing the covariant phase space analysis of
this example, one finds that it replicates the structure of the previous example,
in the sense that it clearly satisfies BGC (for U(1) gauge symmetry) but only
yields a trivial superpotential and thus also a trivial corner charge.
To sum up, this section has established P2, namely that there are two exam-

ples of theories which satisfy BGC (because they areKretschmannized versions
of theories that do not satisfy BGC), but which nonetheless only have trivial
corner charges.
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6.1.2 BGC with Nontrivial Superpotential

Next, we turn to a familiar example in which BGC does yield a nontrivial corner
charge (and thus passes the “corner charge” part of the Einstein test). Consider
the Maxwell gauge theory Lagrangian

L = −1
4
F ∧⋆F, (9)

where we have chosen a representative L ∈ [L] with vanishing boundary
Lagrangian, that is ℓ = 0. The variational formula (3) is

δL = −E δA + dθ, (10)

where δ is the exterior derivative on the space of fields, E = d⋆F is the Euler-
Lagrange expression, and θ = ⋆F δA is the presymplectic potential current.
In this case, the gauge symmetry vector field on field space has the form

X̂ = dX(x, t)δ/δA, and LX̂ is the field space Lie derivative with respect to this
vector field, although we will now abuse notation by using X to denote both the
field space vector field and the local gauge parameter. Since LXL = 0, we can
repeat the general analysis summarized in Section 3.1 to obtain

0 = LXL = d(IXθ) − IX(EδA) (11)

and then by using integration by parts and the definition of the current JX = IXθ,
we have

d(JX − EX) = −XdE. (12)

Since X is an arbitrary gauge symmetry (i.e. a local function of spacetime), we
can integrate both sides over a domain with boundary, apply Stokes’ theorem to
the LHS, and – by assuming that X and its derivatives vanish on the boundary –
deduce that dE = 0 as an identity. This is a simple example of a nontrivial
Noether identity (here the Noether operator N is just the exterior derivative d,
which does not vanish on-shell). We note that dE = dd ∗ F = 0 is clearly a
mathematical identity since it follows from d2 = 0.
By applying the Noether identity dE = 0 and the Poincare lemma, we see

from (12) that

JX = EX + dUX ≈ dUX, (13)

where “≈” denotes “on-shell equality.”51 In other words, we see that the cur-
rent JX that is associated with the gauge symmetry is trivial, although – as we

51 This is nothing other than the U(1) gauge theory version of Einstein’s formula J = T + t, of
which the reader can find an analysis in De Haro (2021). It explains why energy pseudotensors
in GR are often said to be defined only up to a superpotential.
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are about to see – this of course does not imply that the Noether charge is
trivial!
Given that we have a current J, we can define a charge by integrating J over

a spacelike Cauchy surface Σ to obtain:

QΣ =
∫
Σ

J. (14)

We now remind the reader that a unique possibility arises for trivial currents
(but not nontrivial currents), which is a direct consequence of the nontrivial
Noether identity: by Stokes’ theorem, a trivial on-shell current JX ≈ dU can be
converted into a purely boundary Noether charge

QΣX ≈
∫
Σ

dUX =

∫
∂Σ

UX =

∫
∂Σ

X(⋆F), (15)

where in the last equality we used the explicit form of the superpotential UX

(fixed by X and our choice of L), which – unlike the case of SR2 – is nontrivial
and leads to a nontrivial corner charge algebra.
To go further and say more about the conservation of this corner charge and

its role as Hamiltonian generator, one needs to explicitly spell out the subsys-
tem (canonical) boundary condition that we have been assuming in our analysis,
namely that the pullback of θ to Γ vanishes. Recall that such a boundary con-
dition corresponds to our particular choice of L, and also rules out the leakage
of “symplectic flux” from the subsystem (see Freidel et al. (2021); Harlow and
Wu (2020) for a more comprehensive discussion of flux leakage).52 In the con-
text of the present example, the pre-symplectic potential current is θ = ⋆FδA,
and so the corresponding boundary condition is δA|Γ = 0.53 This is a Dirich-
let boundary condition for the gauge field A, whose standard interpretation is
precisely as representing an isolated subsystem, for which the electric charge
should be conserved.54

The symmetries of the subsystem need to preserve this boundary condition,
and so we should set dX|∂M = 0. Evidently, when X|∂M = 0, the symmetry
is in the kernel of Ω and so does not represent a physical symmetry gener-
ated by a charge, leaving non-zero constant transformations at the boundary

52 In general, one also needs to make sure that the chosen boundary configuration has stabilizers,
although this condition is guaranteed in our example, since all U(1) gauge field configurations
have stabilizers (the constant gauge transformations).

53 This is of course a gauge non-invariant boundary condition; the story of how to lift it to a gauge-
invariant boundary condition is somewhat more involved, so I will only touch on it briefly in
the Epilogue.

54 Of course, there are other boundary conditions one could consider, for example Dirichlet or
mixed boundary conditions, that would be appropriate for modelling other kinds of subsystems.
For a discussion of the suitability of fixing the electric and magnetic flux on the boundary
(instead of the gauge field value), see Freidel et al. (2021).
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X as the symmetries generated by the corner charge QΣX (notice that these are
precisely the nontrivial stabilizers of the boundary condition).55 Thus, we find
that in the present example, the Noether corner charge is also the Hamilto-
nian charge associated with our boundary condition of interest – the Dirichlet
boundary condition – and it generates “rigid on the boundary” U(1) symmetry
transformations in phase space. We have thus produced an example in which
we are able to connect the nontrivial corner charges of a gauge subsystem to the
subsystem symmetry transformations of Greaves and Wallace’s schema in the
manner discussed in Section 5.2 – indeed, such boundary rigid subsystem sym-
metries are precisely what they appeal to when they argue that gauge theories
can instantiate Yuyi’s boat-type scenarios. However, as we will soon see, there
can be more complex scenarios in which a Hamiltonian charge associated with
a particular boundary condition is the Noether charge of a shifted Lagrangian
L+ dℓ, but not of the original Lagrangian L that we considered. In Section 6.3,
I will briefly discuss how one can resolve this tension between Noether and
Hamiltonian charges – which is relevant to the “extending RP” part of the Ein-
stein test for substantive general covariance – but let us first collect results from
the present discussion.

6.2 The RP and Charges
We have just seen that, due to examples such as SR2, theories with BGC might
still fail the “corner charge” part of the Einstein test for substantive general
covariance. On the other hand, we have also seen that central examples of the-
ories with BGC (electromagnetism, and by a simple extension: Yang–Mills
theory and GR) do yield nontrivial corner charges. The general moral is that
while BGC is insufficient for the existence of nontrivial corner charges, it is
nonetheless necessary, because one needs a trivial Noether current in order
to obtain a corner charge. What then needs to be added to BGC to obtain a
nontrivial corner charge?
As it turns out, this is one of the cases where the analysis of the difficulty (by

means of the Noether machine) also makes the remedy obvious: what needs to
be added is precisely the requirement that the theory’s Lagrangian L and the
variational symmetry ξ be such that the resulting superpotential is nontrivial (I
again remind the reader that a choice of L and its variational symmetry ξ also
fixes the superpotential Uξ ). In Freidel and Teh (2022), Laurent Freidel and
I thus proposed the following definition of substantive general covariance in
response to the “corner charge” part of the Einstein test:

55 For a much more comprehensive discussion of stabilizers at a boundary, see Gomes et al.
(2019).
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(Corner-SGC) A theory has Corner-SGC when, in addition to BGC, its
Lagrangian L and variational symmetry ξ yield a nontrivial superpotential
Uξ .56

It is worth pausing to reflect on how Noether’s second theorem has brought
us to this insight. On the one hand, the potency of Noether’s second theorem
here is not that of a purely mathematical result. However, just as the charac-
ter of a line or a stroke can begin to suggest the animation or dynamism of
a figure in painting, so too can mathematics be taken up into the mobiliza-
tion of physical thought. What Noether’s second theorem does here is to offer
physicists a heightened awareness of what the mathematical medium of field
theory (understood through the lens of the variational calculus and Noether’s
theorems) is capable of when it is pressed into the service of physical repre-
sentation: our discussion thus far is precisely an illustration of how the second
theorem can be so recruited! Through that discussion, we come to see that the
substantiveness of general covariance is not just about the local symmetry of
a Lagrangian, but also about how – through that symmetry – some kinds of
Lagrangians determine a nontrivial corner charge algebra.
I now turn to the “Extending RP” part of the Einstein test, for which (Corner-

SGC) is a necessary but insufficient condition, because of the aforementioned
potential tension between the Noether charge and the Hamiltonian charge rela-
tive to some boundary condition. Note that for a gauge theory (where I mean to
include both GR and Yang–Mills theory), whatever the symmetries of general-
ized Representational RP are, they will need to be generated by the nontrivial
corner charges from (Corner-SGC). However, there is an added complication
present in generalizing RP: we are now considering the symmetries of dynam-
ically isolated subsystems, which are generated by the Hamiltonian charges
for the boundary conditions that model dynamical isolation – thus, we will
only succeed in extending RP if the corner charges coming from the trivial
Noether current of some Lagrangian are also Hamiltonian charges relative to
these isolated boundary conditions. In Section 6.1.2, we saw an example (Max-
well gauge theory with Dirichlet boundary conditions) where this coincidence
clearly obtains: we can think of it as a regularized (finite) version of a case
in which the asymptotically rigid U(1) symmetries of some subsystem pro-
vide a generalized version of RP relative to an environment subsystem (where
the environment has been idealized away into the boundary conditions). How-
ever, as we are about to see in the next section, the corner charges from some

56 Furthermore, the corresponding Noether charge will be conserved if we impose boundary
conditions – consistent with the Lagrangian – that rule out flux leakage.
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particular Lagrangian can also fail to be Hamiltonian charges relative to our
desired choice of dynamically isolated boundary conditions. I thus propose the
following more demanding notion of substantive general covariance in order
to satisfy the “extending RP” part of the Einstein test:

(RP-SGC) Select boundary conditions that are supposed to represent
“dynamical isolation” in the context of some theory. The theory’s Lagran-
gian L has RP-SGC just in case, in addition to satisfying Corner-SGC, the
Noether charge coming from L is also a Hamiltonian charge relative to the
“dynamically isolated” boundary conditions.

In the next subsection, we will consider the case of GR, which illustrates the
subtleties of RP-SGC.

6.3 Revisiting the Case of General Relativity
In Freidel et al. (2021), the general way in which Noether charges can fail to be
Hamiltonian charges is considered, and this framework is then applied to the
case of GR (Section 3.4 of Freidel et al. (2021)). Here I only summarize the
relevant features for us to revisit the Einstein-Klein dispute, namely the second
of the “complications of the medium” that I mentioned in Section 3.
First, consider the Einstein-Hilbert Lagrangian LEH. We can turn the crank of

the covariant phase space recipe sketched in Section 5 and compute the (non-
trivial) superpotential corresponding to LEH, which yields the Noether (corner)
charge that is known as the Komar charge (see (2.38) of Freidel et al. (2020)
for a definition). This shows that we have satisfied (Corner-SGC).
Next, let us consider whether this Lagrangian satisfies (RP-SGC). To do so,

suppose that we wish to use Dirichlet boundary conditions to model an iso-
lated system (or a finite boundary regularization thereof): that is to say, we
wish to set the induced metric ḡab on the timelike boundary Γ to a fixed value,
thereby also setting δḡab

Γ
= 0. More specifically, and as per standard practice,

we will take ḡab to be the Minkowski metric, thus leading to an “asymptot-
ically flat” solution in the limit where we take the boundary to infinity.57 It
is well-known that given this Dirichlet boundary condition, one can construct
a Hamiltonian charge; however, this is not the Komar charge, but a different
quasi-local charge known as the Brown-York charge (see (2.31) of Freidel et al.
(2020) for a definition).

57 I stress that one reason to choose the Minkowski metric as the boundary condition is that it has
nontrivial stabilizers, and so one can construct subsystem symmetries that are not in the kernel
ofΩ and still preserve the boundary condition; a similar point could be made for (non-Abelian)
Yang–Mills theory. Both cases are unlike (Abelian) Maxwell theory in the sense that a generic
field configuration will not have stabilizers.
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Thus, we have just encountered the complication that we discussed earlier:
if one chooses LEH as one’s Lagrangian and takes the Dirichlet boundary con-
dition as the “isolated boundary condition” in the “Extending RP” part of the
Einstein test, then one ends up with a mismatch between the Noether charge
(the Komar charge) corresponding to LEH and the Hamiltonian charge (the
Brown-York charge) corresponding to the Dirichlet boundary condition. The
resolution of this complication, which is discussed in Freidel et al. (2021);
Harlow and Wu (2020), is to choose a different Lagrangian – which is asso-
ciated with a different boundary condition – in order to satisfy (RP-SGC).
In particular, if we choose the Lagrangian L = LEH + dℓGHY, where ℓGHY is
the celebrated Gibbons-Hawking-York boundary term, then the corresponding
Noether charge is precisely the Brown-York charge, so we have now brought
our Lagrangian into alignment with the boundary condition – and the Hamilto-
nian charge – that we are after. Furthermore, as Harlow andWu (2020) shows, if
we assume that the metric tends toward theMinkowski metric in the asymptotic
limit, then we recover precisely the ADM charges for an asymptotically flat
spacetime, which is precisely what one expects of an isolated subsystem in GR.
In particular, these charges generate the “asymptotic Poincare symmetries” at
spatial infinity, which are the generalized analogs of the rigid Poincare symme-
tries (from the standard RP) in this context.58 We thus see that L = LEH+dℓGHY
satisfies (RP-SGC), but LEH does not. In other words, despite the subtlety asso-
ciated with making a careful choice of Lagrangian here – and which (RP-SGC)
is designed to take into account – we can conclude that the subject of Yuyi’s
boat can indeed be reconstructed within the setting of GR, and that it once again
connects up with the Greaves and Wallace schema in the manner discussed in
Section 5.2 (namely, the Brown-York charge is the Hamiltonian generator of
subsystem symmetries of the isolated subsystem).
With these clarifications in hand, let me close this subsection by returning

to an assessment of the aforementioned dispute between Einstein and Klein
(I refer the reader to De Haro (2021) for a complementary analysis of this dis-
pute, with an emphasis on holographic renormalization). To what extent was
Einstein confused about the status of conserved charges in GR, and to what
extent did he have the representational insights into whose service we have
just pressed Noether’s second theorem? To answer this question, let us con-
sider several key points from Einstein’s March 1918 response to Klein (letter
480 in Einstein (1998)):

58 Here we are only discussing spatial infinity; once one takes into account null infinity, one is
forced to consider the infinite-dimensional BMS group if one wants a rich set of solutions.
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• Einstein says the importance of the quantity Jξ = T + t (the on-shell exact
Noether current) is its physical interpretation as the energy of a point mass
when we go very far away from the subsystem; in other words, when we
treat the subsystem as dynamically isolated from an environment.

• He also says that the possibility of this physical interpretation is underwrit-
ten by the fact that Jξ (on-shell) is an exact term, presumably because he
knows that via Stokes’ theorem, a bulk integral of an exact term can be
transformed into a boundary integral (which is why we call such charges
“quasi-local”).

• Einstein emphasizes that the equations of motion are necessary in order
to show that Jξ is exact, and thus Jξ should be regarded as physically
meaningful.

And then – a little over a week later – in letter 492 to Klein, Einstein (1998)
goes on to place a heuristic “isolated” boundary condition on the subsystem
that allows for the construction of a conserved charge!
We can now ask ourselves how Einstein’s more physically oriented (and

more mathematically imprecise) strategy looks with the clarity of hindsight.
It would seem that Einstein already understood much of the intuitive physical
content that can be expressed by means of Noether’s second theorem: certainly,
he understood that the distinctive qualitative feature of a gauge theory (implied
by Noether’s second theorem) is the on-shell exactness of the Noether current,
and that this feature leads to a boundary charge; and he was undoubtedly sen-
sitive to the need to choose boundary conditions in order to construct such a
charge. In all this, I believe that Einstein was vindicated in resisting Klein’s
criticisms.
On the other hand, the place where Einstein’s understanding was most lack-

ing was in his grasp of (i) the relationship between a choice of a Lagrangian
L and a choice of boundary conditions, (ii) the potential mismatch between
the Noether charge corresponding to some L and the Hamiltonian charge cor-
responding to some choice of boundary conditions, and (iii) the potential
appearance of infinite-dimensional symmetries (such as the BMS group59 at
null infinity) in the asymptotic limit. Indeed it is perhaps this last feature and –
more generally – the physics of null infinity for an asymptotically flat subsys-
tem that inclines me to say that the search for Yuyi’s boat in GR does not so
much result in a replication of the subject, but a novel and radical reworking
of it. Yes, we discern very clearly the contours of Yuyi’s boat at the spatial

59 The BMS group is an enhanced group of asymptotic symmetries (over and above the familiar
asymptotic Lorentz symmetries) at null infinity. Mathematically speaking, it is the semidirect
product of the Lorentz group with an infinite-dimensional Abelian group.
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boundary of the subsystem (as we have just seen above), but at the same
time, asymptotically flat subsystems bring with them the physics of gravita-
tional radiation, and as Wieland (2021) has recently shown, the corresponding
interpretation of null infinity as an open Hamiltonian system.60 And yet, such
novelty is precisely what one should expect from the impulse that the proce-
dures of mathematics can give to the task of physical representation: for the
reworking of a subject like Yuyi’s boat is not something essentially static – a
replication as it were – but a dynamic mobilization of the physical imagination
in search of new understanding, and of new phenomena to understand.

6.4 A Response to Kretschmann
In this last subsection, I should like to return to Kretschmann’s critique of a
conception of “general covariance” as the ability to express a physical theory in
an arbitrary frame, whether we are talking about a spacetime coordinate frame
(as in the case of a special relativistic scalar field theory) or an internal gauge
frame (as in the case of a scalar field coupled to a flat gauge potential). Recall
that Kretschmann’s objection is that, on this conception, there is nothing about
general covariance that would distinguish the ones we would like to call gauge
theories (or diffeomorphism-invariant theories), because all physical theories
(in which a notion of frame applies) can be expressed in an arbitrary frame.
For instance, in the case of a scalar field theory formulated on a background

Minkowski space, we can certainly choose to formulate its equations of motion
in a non-inertial frame obtained via pulling back the metric and fields by a gen-
eral diffeomorphism – the resulting equations would not have the simple form
that we are used to fromworking in inertial frames (for they would pick up con-
nection coefficients), but nothing would have changed concerning the physics
that such a formalism is trying to represent. And as I mentioned at the end of
Section 6.1.1, we can make a similar point in the case of a scalar field theory
formulated relative to a background flat U(1) gauge field A: there is an ana-
log of “inertial” internal frames, viz. those gauge frames in which the exact
(here I assume a contractible spacetime) U(1) gauge field vanishes, and these
are of course all connected by global U(1) transformations which are the sta-
bilizers of the flat background gauge field, just as the Poincare transformations
are the stabilizers of the Minkowski metric.61 But here again, and similarly to

60 In other words, the condition of asymptotic flatness does not after all guarantee a truly “iso-
lated” system as one might naively guess – there can still be energy exchange with the
environment at null infinity.

61 Recall that a “stabilizer” of a mathematical object is a transformation that leaves the object
unchanged.
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the spacetime case, one has the freedom to re-formulate the equation of motion
d⋆ dϕ = 0 in a non-inertial frame obtained via transforming A = 0 by an arbi-
trary U(1) gauge transformation. The new equations would not take the simple
form that we are used to (they would now in general involve a gauge covariant
derivative and a non-vanishing exact background gauge field) but the physics
would not have changed for all that.
Kretschmann is right so far as this goes. But equipped with the materials of

the previous subsections, we can now make a deeper response.
The response begins by emphasizing that a substantive form of general

covariance is not after all the ability to express a physical theory in an arbi-
trary frame – this is not how Einstein used the diffeomorphism symmetry of
GR in practice, and it is not how future generations of physicists would (again
in practice!) use the gauge symmetry of Yang–Mills theory and other gauge
theories. One route toward this point stems from the results of the previous
subsections: xx′ consider a minimal description of general covariance/gauge
invariance/diffeomorphism invariance such as BGC, and note that one can sat-
isfy this description by simply rewriting a theory with rigid symmetries using
parametrization fields (as we saw in Section 6.1.1) and then allowing oneself
to vary the parametrization fields and to take into account their local gauge
symmetries. But as we saw earlier, this kind of repackaging does not have the
capacity to yield the nontrivial corner charges that would allow us to (given
appropriate boundary conditions implementing subystem isolation) generate
the empirically significant symmetries of a Yuyi’s boat type scenario – plau-
sibly, any such Kretschmannizing will yield trivial corner charges. Thus, we
can conclude that for the practicing physicist, substantive general covariance
requires that, in addition to BGC, the theory have at least the representational
capacity for the construction of nontrivial corner charges.
Further to this point, is it possible to say anything more incisive about what –

formally speaking – really distinguishes theories with “substantive” gauge
symmetry from the mere freedom to rewrite the theory in an arbitrary frame?
For instance, what kind of formal standard of comparison might one use to
articulate this point? While the full details of an account lie beyond the scope
of this Element, it is possible to sketch a strategy for answering these questions,
based on the work of Cattaneo et al. (2014) and Mathieu et al. (2019).
Recall that in the previous Subsections, Noether’s second theorem (as it

is conceptualized within the covariant phase space formalism) gave us con-
trol over the more subtle distinctions that we needed in order to distinguish
Kretschmannized theories with local symmetry from theories with physically
substantive forms of local symmetry – the latter marked by their non-vanishing
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corner charges. Noether’s theorems spring from the manipulation (and geomet-
rical interpretation) of the fundamental variational formula δL = −E + dθ; in
order to go further in pursuing our strategy, we will need to embark on a radical
reimagining of the concept of a variation itself and what it means for a variation
to vanish.
We are already familiar with the idea of finding the space of solutions in the

standard variational calculus (without boundaries): one sets δS = δ
∫
M L = 0

and thereby goes “on-shell.” The radical reimagining in question is motivated
by the insight that this naive way of making δS “coincide” with zero is unduly
sensitive to mathematically different – but physically equivalent – reformu-
lations of the space of fields, in the sense that these reformulations will in
general produce mathematically distinct spaces of solutions (at least accord-
ing to naively chosen mathematical standards of distinctness), unaccompanied
by the (mathematical) expressive resources to describe their physical equiva-
lence. For instance, in the case of the Kretschmannized theories that we have
discussed, setting δS = 0 clearly produces a distinct space of solutions from
their un-Kretschmannized versions. The resolution of this formal difficulty is
that one can try to construct the “space” of solutions by means of derived inter-
section theory, in which case this novel “space” – called the derived critical
locus – will have the mathematical form of a “stack” within which one really
does have the mathematical resources to express the kind of physical equiv-
alence that we have been discussing.62 In particular, this framework has the
formal resources to express the observables of a theory – and thus the Noether
charges – in a “homological” way that is invariant under superficial mathe-
matical reformulations. The strategy, then, for applying this framework to our
scenario would be to introduce a precise enough definition of Krestchmanniza-
tion to prove a result along the following lines: any Krestchmannized theory
gives rise to the same “solution stack” as its pre-Krestchmannized version, and
in particular, these theories share the same observables.

6.5 Further Reading
The examination of our test cases originated in a context in which substantive
general covariance was being discussed in relation to the notion of “background
independence.” For the early discussion of these cases, see Pooley (2010, 2017)
and references therein, and see Freidel and Teh (2022) for a reassessment of the

62 Such “stacks” remember information about how symmetry transformations identify various
solutions without the need to take a naive quotient, which loses such information – information
that is essential for gluing – and produces nasty singularities.
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relationship between general covariance and background independence in light
of the results of this section.

7 Epilogue: The Road Forward
Although the discussion of this Element has been restricted to cases in which
we impose gauge-non-invariant boundary conditions (such as setting the gauge
field A equal to a fixed 1-form on the boundary), it is possible to generalize this
to gauge-invariant boundary conditions (such as letting A be gauge equivalent
to a fixed 1-form the boundary); and although we have (for good reason!) spent
much time discussing Yuyi’s boat-type empirical scenarios, there are also other
cases in which physical symmetry plays a crucial role, such as that of Newton’s
Corollary VI. These generalizations and extensions are bound up with present
research at the frontiers of physical symmetry, and it would be a shame not to
give the reader some sense of how our story can be elaborated to include these
aspects. To that end, I leave you with a four-part sketch of how these elements
fit together.

7.1 Donnelly-Freidel Edge Modes
First, the reader might well wonder how the covariant phase space frame-
work might need to be modified if – hypothetically – one did not place any
(gauge-non-invariant) boundary conditions on the fields. This is precisely
the investigation that Donnelly and Freidel (2016) undertook in the case of
Yang–Mills theory and GR. What they found is that if one allows arbitrary
field-independent gauge transformations at the boundary Γ of a spacetime M,
then one ends up with a “symplectic anomaly” – the pre-symplectic form Ω is
no longer invariant under gauge transformations. To restore gauge-invariance,
they extended the phase space by introduced new “edge mode” degrees of free-
dom (and their momenta), as well as a corresponding corner symplectic form.
They also argued that a new kind of physical “boundary symmetry” should
manifest itself at the corner (call this the DF-type boundary symmetry).
Donnelly and Freidel’s extension of the phase space was based on require-

ment of restoring gauge-invariance, but they did not specify the boundary
Lagrangian that led to these edge mode degrees of freedom. Subsequently, in
Mathieu et al. (2019) (see also Geiller and Jai-Akson (2020)), we showed that
kinematically, these edge modes come from imposing a topological boundary
condition (i.e. a fixed trival boundary bundle) on the subsystem, and that the
extended symplectic structure is produced by specifying a particular boundary
(edge mode) Lagrangian on Γ. Furthermore, Mathieu and Teh (2021) argued
that this boundary Lagrangian could be understood as a kind of spontaneous
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symmetry breaking on the boundary, and that the DF-type symmetries could
be interpreted as the result of acting on the boundary condition by means of an
“external automorphism,” in the sense that the transformation is carried out by
an observer in the environment of the subsystem (or whose observational scale
includes the environment).

7.2 Classical Spontaneous Symmetry Breaking
The next part of the story involves the notion of what Strocchi (2011) calls
classical spontaneous symmetry breaking (SSB). To start with, consider the
conceptual elements of what we would generally regard as an SSB scenario
in condensed matter physics: there is a degenerate set of ground states – often
taken to define “superselection sectors” because they cannot be changed by any
subsystem operation – all connected by the “broken” symmetry transforma-
tions; there is an “internal” (or subsystem) observational scale which is unable
to discriminate between which of these ground states the subsystem observer
is in (although the subsystem observer can detect small fluctuations around the
ground state); and there is an “external” (or environmental) scale with respect to
which these ground states are in fact distinguishable. A key objective in apply-
ing the SSB formalism to this kind of scenario is to produce an effective field
theory of the small fluctuations about a ground state; indeed this can be done
very generally using the “coset construction,” which allows us to construct an
effective Lagrangian using only the symmetry-breaking pattern (and without
detailed knowledge of the underlying dynamics, such as one has to hand in the
classic example of Ginzburg-Landau theory).
This framework can be carried over quite straightforwardly to the setting

of classical field theory, with the modification that here one should think of a
particular subsystem boundary condition of a certain type (e.g. Dirichlet) as
defining a superselection sector, in the sense that the subsystem observer is not
(let us arrange) able to perform any operations that can change the boundary
condition. Then, if the relevant boundary conditions are related by a subgroup
of the symmetry group of the theory, we can apply the standard SSB appa-
ratus in this context. Thus, for instance, we can the SSB coset construction
to construct a classical free point-particle Lagrangian as the effective dynam-
ics of a scenario where boosts and translations are spontaneously broken. This
background will be very useful to understand the next part of the story.

7.3 Edge Modes from Reference Frames
More recently, Carrozza and Hoehn (2021) have posed the question of how
one might understand the operational meaning of the boundary edge modes
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(and extended phase space) introduced in Donnelly and Freidel (2016). The
following scenario – which can be generalized quite greatly – is exemplary of
the kind of answer that they give.
LetM be a subsystem spacetime with timelike boundary Γ, which divides it

from an environment spacetime M̄ (strictly speaking, the environment space-
time is the complement of M in an ambient spacetime). One of the examples
that Carrozza and Hoehn consider is aU(1) gauge theory set on the total space-
timeM∪ M̄, where M̄ is assumed to have an asymptotic boundary where gauge
transformations fall off sufficiently rapidly – this boundary provides a non-
dynamical anchor for Wilson lines and can be used to represent for example
the heavy degrees of freedom of a measurement apparatus. They start with a
dynamical environment gauge field Ā on M̄ and observe that by taking aWilson
line of Ā from a reference point on the asymptotic boundary to a point x ∈ Γ,
one thereby constructs a U(1)-valued reference frame on Γ, which is precisely
what Donnelly and Freidel call an edge mode. This edge mode on Γ, then, is
a way of “internalizing” to Γ the dynamical reference frame degrees of free-
dom provided by environment, so that even if one proceeds to omit M̄ from the
formalism of the representation, one can still has a formal way of expressing
how the field degrees of freedom on M relate to the field degrees of freedom
on M̄ – in particular, the edge mode helps us to encode the relational informa-
tion (between subsystem and environment) that allows us to reconstruct all the
gauge-invariant observables with support on M ∪ M̄ (including ones that we
would not have been able to reconstruct from just the individual regional data).
In the U(1) case, it is more convenient to work on the Lie algebra level, in

which case the edge mode can be expressed as φ ∈ Ω0(Γ) (the group-valued
reference frame being U = exp(iφ)) and transforms as φ 7→ φ + χ under a
boundary gauge transformation A 7→ A + dχ. As discussed in Donnelly and
Freidel (2016); Mathieu et al. (2019) one can use this edge mode field to dress
the boundary gauge field, thus obtaining a (boundary) gauge-invariant field
a := A|Γ−dφ (which was already introduced inMathieu et al. (2019) in order to
write the boundary symmetry-breaking action). As Carrozza and Hoehn (2021)
observe, this dressed field a is a relational observable, describing the value of
A |Γ (a subsystem degree of freedom) when theU(1) dynamical reference frame
(defined using environment degrees of freedom) is in some orientation.
Carrozza and Hoehn go on to describe the process of imposing gauge-

invariant boundary conditions, that is boundary conditions for the dressed field
a, on the subsystem. They do this for Dirichlet, Neumann, and mixed boundary
conditions, but here I will simply illustrate the Dirichlet case: take the space of
total solutions S over M ∪ M̄ and foliate it into a set of leaves, each of which
is defined by the gauge-invariant Dirichlet boundary conditions a = X0 (where
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X0 is some fixed background 1-form field), so that S =
⊔
X0

SX0 , where a leaf

SX0 is the set of field configurations in S such that a = X0. They then note that
we can proceed to focus just on the subsystem dynamics over M, defined by a
particular boundary condition a = X0: “Since the [boundary condition defines]
the dynamical theory forM [...] we can think of each leaf in the foliation of S as
a particular subregion theory. As such, the global solution space S assumes the
role of a space of subregion theories, in this sense constituting a meta-theory
for the local subregions.”
Indeed, once we follow Carrozza and Hoehn (2021) in the last step, we see

that there are two kinds of transformations that are supported on the subsystem
boundary Γ. First, we have the gauge-transformations A 7→ A+dχ, φ 7→ φ+ χ,
a 7→ a, which lie in the kernel of the extended pre-symplectic form constructed
in Donnelly and Freidel (2016) and Mathieu et al. (2019) – these do not encode
any relational difference between the subsystem and the environment because
one is transforming the gauge field and the edge mode simultaneously. Second,
we have the reference frame re-orientations A 7→ A, φ 7→ φ − ρ, a 7→ a + dρ,
which can be further divided into two types. When ρ stabilizes a (i.e. is a con-
stant, in this case), it preserve the gauge-invariant Dirichlet boundary condition,
and we have what I earlier called a DF-type boundary symmetry – this sym-
metry does explicitly capture a relational difference between the subsystem
and environment degrees of freedom (where the latter are encoded in the edge
mode). On the other hand, a generic spacetime-dependent ρ will not stabilize
a: it will instead take us from the leaf whose boundary condition is a = X0
into a different leaf in whose boundary condition is a = X0 + dρ. Carrozza and
Hoehn call these “meta-symmetries” because they do not transform a solution
to a solution within a subregion theory, but instead transform one subregion
theory into a different subregion theory (in Carrozza and Hoehn (2021)’s use
of “theory”).
But now this picture should look somewhat familiar based on our previ-

ous sketch of Classical SSB: as Teh and Mathieu (forthcoming) have recently
observed, in this case, Carrozza and Hoehn have essentially defined a Classi-
cal SSB scenario for U(1) gauge theory, where the subsystem leaves define a
degenerate set of superselection sectors of the scenario that are related by non-
constant local U(1) gauge transformations, and each superselection sector is
stabilized by a global U(1) subgroup. In other words, the symmetry-breaking
pattern is that of local U(1) to global U(1). As a sanity check, we can go in the
reverse direction: we can start with just this symmetry-breaking pattern and eas-
ily compute the effective dynamics within a superselection sector by means of
the coset construction. Reassuringly, at lowest order, the effective Lagrangian

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
00

86
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009008600


70 Philosophy of Physics

is precisely that of a free U(1) gauge theory – precisely the dynamics from
which (with the gauge-invariant Dirichlet boundary condition) we defined this
symmetry-breaking pattern to begin with!

7.4 Yuyi’s Boat and Corollary VI
What does any of this have to do with Yuyi’s boat-type scenarios and New-
ton’s Corollary VI? To see the connection with Yuyi’s boat, I refer the reader
to toy mechanical model for edge modes introduced in Carrozza and Hoehn
(2021), where they use a particle degree of freedom in the environment to
define an edge mode reference frame, and use another particle as a stand-in for
the “boundary.” For gauge-invariant Dirichlet boundary conditions on the sub-
system particle degree of freedom xi(t), they show that any uniform (Galilean)
boost of the particle relative to the edge mode will take one boundary condition
to another, and so in the classical SSB terminology that we have been develop-
ing, this is a scenario where the Galilean boost symmetry is completely broken
(since there are no nontrivial stabilizers). Nonetheless, an internal observer
(Yuyi running short-range experiments on this boat) is still unable to distinguish
between different superselection sectors.
To see the connection with Newton’s Corollary VI, consider that the (pure)

potential part of the Newtonian gravitational Lagrangian

S =
∫
R×M

(
1
2
m Ûu2 − mϕ (r, t)

)
δ(3) (u (t) − r) − 1

8πG
(∇ϕ)2 d3rdt (16)

is very reminiscent of the U(1) gauge theory Lagrangian, except that in the
former the exterior derivative and Hodge star are purely spatial, and the result-
ing equations of motion are elliptic (and fixed completely by the boundary
data). By running an analysis that is analogous to the U(1) gauge theory anal-
ysis that we just sketched, one can define an edge mode (using the frame of a
body in the environment) for a Newtonian gravitational subsystem and show
that gauge-invariant Dirichlet boundary conditions for the potential lead to a
Classical SSB scenario from the local in time boosts of Newton’s Corollary VI
to the constant (or global) Galilean boosts of Yuyi’s boat. And, in fact, when we
think hard about it, what else is Newton’s Corollary VI but a statement of SSB
in this sense? For consider again what Newton writes: “If bodies are moved in
any way among themselves, and are urged by equal accelerative forces along
parallel lines, they will all continue to move among themselves in the same
way as if they were not acted on by those forces.” Newton of course knew that
in speaking of this physical indistinguishability, he was describing it from the
perspective of a subsystem observer equipped with a certain measurement scale
(think of local measurements made in the vicinity of Jupiter and its moons) and
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that there could also be an “external” observational scale according to which
different uniform accelerations could be discriminated (say, observations of
the Jupiter subsystem relative to the sun). The indistinguishability that New-
ton is discussing is thus the inability of the subsystem observer to discriminate
between a degenerate set of SSB superselection sectors, which are related to
each other by (nonconstant) time-dependent boosts, and stabilized by Galilean
boosts. And again very reassuringly, the coset construction tells us that the
symmetry-breaking pattern from time-local to time-global boosts results pre-
cisely in the dynamics of the Poisson equation at lowest order. Thus, we see that
our present line of thought has managed to unify both Yuyi’s boat and Newton’s
Corollary VI under the rubric of edge modes and Classical SSB.
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