We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Health technology assessment (HTA) plays a vital role in healthcare decision-making globally, necessitating the identification of key factors impacting evaluation outcomes due to the significant workload faced by HTA agencies.
Objectives
The aim of this study was to predict the approval status of evaluations conducted by the Brazilian Committee for Health Technology Incorporation (CONITEC) using natural language processing (NLP).
Methods
Data encompassing CONITEC’s official report summaries from 2012 to 2022. Textual data was tokenized for NLP analysis. Least Absolute Shrinkage and Selection Operator, logistic regression, support vector machine, random forest, neural network, and extreme gradient boosting (XGBoost), were evaluated for accuracy, area under the receiver operating characteristic curve (ROC AUC) score, precision, and recall. Cluster analysis using the k-modes algorithm categorized entries into two clusters (approved, rejected).
Results
The neural network model exhibited the highest accuracy metrics (precision at 0.815, accuracy at 0.769, ROC AUC at 0.871, and recall at 0.746), followed by XGBoost model. The lexical analysis uncovered linguistic markers, like references to international HTA agencies’ experiences and government as demandant, potentially influencing CONITEC’s decisions. Cluster and XGBoost analyses emphasized that approved evaluations mainly concerned drug assessments, often government-initiated, while non-approved ones frequently evaluated drugs, with the industry as the requester.
Conclusions
NLP model can predict health technology incorporation outcomes, opening avenues for future research using HTA reports from other agencies. This model has the potential to enhance HTA system efficiency by offering initial insights and decision-making criteria, thereby benefiting healthcare experts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.