This paper introduces an innovative conceptual design of a 400 kW solid-state power amplifier (SSPA) station and presents preliminary measurements for the key components. Recent advancements and benefits of solid-state technology have made the prospect of replacing vacuum tubes increasingly appealing. Historically, a significant challenge was the limited output power capacity of individual solid-state transistors, necessitating the integration of numerous units to generate high-power microwave signals in the range of hundreds of kilowatts. However, modern transistors capable of producing over 2 kW of output power have emerged, facilitating this transition. Another weak point was low power efficiency in high-power operating mode. The advanced rugged technology (ART) of solid-state devices enables the utilization of these transistors in nonlinear and switching operating classes, thereby enabling the creation of high-efficiency high-power amplifiers. In this conceptual design, 264 SSPA modules based on ART, each with a power output of 1.6 kW, are combined. The measurements revealed a single SSPA capable of delivering up to 2 kW output power with a power efficiency of 73% at frequency of 352 MHz. Due to the minimal losses during module combination and working SSPA in Class-C operation mode, the power efficiency of the station is expected to closely mirror that of a single module.