Recently, we showed that contrast sensitivity for color and high–spatial frequency luminance stimuli is enhanced during smooth pursuit eye movements (Schütz et al., 2008). In this study, we investigated the enhancement over a wide range of temporal and spatial frequencies. In Experiment 1, we measured the temporal impulse response function (TIRF) for colored stimuli. The TIRF for pursuit and fixation differed mostly with respect to the gain but not with respect to the natural temporal frequency. Hence, the sensitivity enhancement seems to be rather independent of the temporal frequency of the stimuli. In Experiment 2, we measured the spatial contrast sensitivity function for luminance-defined Gabor patches with spatial frequencies ranging from 0.2 to 7 cpd. We found a sensitivity improvement during pursuit for spatial frequencies above 2–3 cpd. Between 0.5 and 3 cpd, sensitivity was impaired by smooth pursuit eye movements, but no consistent difference was observed below 0.5 cpd. The results of both experiments are consistent with an increased contrast gain of the parvocellular retinogeniculate pathway.