We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathfrak {g}$ be a complex semisimple Lie algebra with associated Yangian $Y_{\hbar }\mathfrak {g}$. In the mid-1990s, Khoroshkin and Tolstoy formulated a conjecture which asserts that the algebra $\mathrm {D}Y_{\hbar }\mathfrak {g}$ obtained by doubling the generators of $Y_{\hbar }\mathfrak {g}$, called the Yangian double, provides a realization of the quantum double of the Yangian. We provide a uniform proof of this conjecture over $\mathbb {C}[\kern-1.2pt\![{\hbar }]\!\kern-1.2pt]$ which is compatible with the theory of quantized enveloping algebras. As a by-product, we identify the universal R-matrix of the Yangian with the canonical element defined by the pairing between the Yangian and its restricted dual.
We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding a factorization of the universal R-matrix of the double of the shuffle algebra in question. We conjecture that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.
Let $U_q'({\mathfrak {g}})$ be a quantum affine algebra with an indeterminate $q$, and let $\mathscr {C}_{\mathfrak {g}}$ be the category of finite-dimensional integrable $U_q'({\mathfrak {g}})$-modules. We write $\mathscr {C}_{\mathfrak {g}}^0$ for the monoidal subcategory of $\mathscr {C}_{\mathfrak {g}}$ introduced by Hernandez and Leclerc. In this paper, we associate a simply laced finite-type root system to each quantum affine algebra $U_q'({\mathfrak {g}})$ in a natural way and show that the block decompositions of $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$ are parameterized by the lattices associated with the root system. We first define a certain abelian group $\mathcal {W}$ (respectively $\mathcal {W} _0$) arising from simple modules of $\mathscr {C}_{\mathfrak {g}}$ (respectively $\mathscr {C}_{\mathfrak {g}}^0$) by using the invariant $\Lambda ^\infty$ introduced in previous work by the authors. The groups $\mathcal {W}$ and $\mathcal {W} _0$ have subsets $\Delta$ and $\Delta _0$ determined by the fundamental representations in $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$, respectively. We prove that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ is an irreducible simply laced root system of finite type and that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} , \Delta )$ is isomorphic to the direct sum of infinite copies of $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ as a root system.
We introduce and investigate new invariants of pairs of modules $M$ and $N$ over quantum affine algebras $U_{q}^{\prime }(\mathfrak{g})$ by analyzing their associated $R$-matrices. Using these new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable $U_{q}^{\prime }(\mathfrak{g})$-modules to become a monoidal categorification of a cluster algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.