We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter identifies the factors likely to influence employees, managers, and firms given that businesses operate within the context of capitalism. Several common presuppositions about capitalism are discussed – consumers know best, industry and innovation will be rewarded, growth should be encouraged, no centralized distribution, and individual self-interest always leads to mutual benefit. The term “market morality” is introduced as a background for factors such as spending on nonrecyclable goods or a focus on price rather than employee conditions where the goods are made, providing a means to identify consumer hypocrisy and corporate greenwashing. The implications of market failures such as oligopolies are noted, and questions about proper use of government regulation are raised. Moral concerns about the globalization of supply chains and varying normative standards around the world are also discussed, as well as the balance between World Trade Organization standards and national sovereignty. The fact that currencies and credit rely on the moral principle of trust is considered. The final case deals with the ethical concerns that are raised when international companies promote GMO crops to poorer countries.
Scott, Inbar and Rozin (2016) presented evidence that trait disgust predicts opposition to genetically modified food (GMF). Royzman, Cusimano, and Leeman (2017) argued that these authors did not appropriately measure trait disgust (disgust qua oral inhibition or OI) and that, once appropriately measured, the hypothesized association between disgust and GMF attitudes was not present. In their commentary, Inbar and Scott (2018) challenge our conclusions in several ways. In this response, we defend our conclusions by showing (a) that OI is psychometrically distinct from other affective categories, (b) that OI is widely held to be the criterial feature of disgust and (c) that we were well-justified to pair OI with the pathogen-linked vignettes that we used. Furthermore, we extend our critique to the new findings presented by Inbar and Scott (2018); we show that worry and suspicion (not disgust) are the dominant affective states one is likely to experience while thinking about GMF and that the true prevalence of disgust is about zero. We conclude by underscoring that the present argument and findings are a part of a larger body of evidence challenging any causal effect of disgust on morality.
In line with earlier research, a multi-phase study found a significant positive association between a widely used measure of trait disgust and people’s tendency to favor absolutist (non-consequentialist) restrictions on genetically modified food (GMF). However, a more nuanced high-granularity approach showed that it was individual sensitivity to fear (specifically, a tendency to feel creeped out by strange and subtly deviant events) rather than a tendency to be disgusted (orally inhibited) by these events that was a unique predictor of absolutist opposition to GMF and other types of new technology. This finding is consistent with prior theorizing and research demonstrating fear to be “the major determiner of public perception and acceptance of risk for a wide range of hazards” related to new technology (e.g., nuclear power) (Slovic & Peters, 2006, p. 322). The present study calls attention to the importance of conducting future assessments of disgust (and other affective constructs) in a manner that, among other things, recognizes the substantial disconnect between theoretical and lay meanings of the term and illustrates how a policy-guiding result may arise from a sheer miscommunication between a researcher and a subject.
Various methods of genetic modification have been applied to plant breeding as an integral part of agriculture. This article examines a method of targeted mutagenesis – CRISPR-Cas9 – and its dysregulation in the European Union (EU). It provides clarity for food business operators relating to the traceability and labelling of food products induced using this biotechnology. In addition, it outlines policy recommendations to improve the regulation of such food products in the EU.
CRISPR systems are democratizing scientists’ access to new tools required for uncovering future significant scientific, medical, and technological advances. CRISPR–Cas9, however, is not the only tool being used to edit DNA sequences. Much like the use of different types of airplanes and vehicles for human transportation, so too can different tools be used for gene editing. This chapter examines the evolution and development of the different types of modern genome-editing tools that have enabled the targeted manipulation of genetic sequences. In so doing, it elucidates how genome editing is a logical extension of the genetic manipulation enabled by pioneer recombinant-DNA techniques. The chapter argues that genome editing exists today because recombinant-DNA technology and molecular cloning were developed, promoted, and refined to give rise to avant-garde molecular tools. As it progresses, the chapter allows the reader to rummage through the genome-editing toolbox and focuses on examining the advantages and disadvantages of four distinct categories of genome editing: (1) chemistry-based systems; (2) viral-based editing; (3) nucleases that rely on protein-DNA interactions for DNA targeting—such as meganucleases, zinc-finger nucleases, and TALE nucleases; and (4) RNA-guided, DNA-nuclease systems, which comprise CRISPR–Cas systems.
Genetically engineered (GE) herbicide-resistant crops have been widely adopted by farmers in the United States and other countries around the world, and these crops have caused significant changes in herbicide use patterns. GE crops have been blamed for increased problems with herbicide-resistant weeds (colloquially called by the misnomer “superweeds”); however, there has been no rigorous analysis of herbicide use or herbicide-resistant weed evolution to quantify the impact of GE crops on herbicide resistance. Here, I analyze data from the International Survey of Herbicide Resistant Weeds and the USDA and demonstrate that adoption of GE corn varieties did not reduce herbicide diversity, and therefore likely did not increase selection pressure for herbicide-resistant weeds in that crop. Adoption of GE herbicide-resistant varieties substantially reduced herbicide diversity in cotton and soybean. Increased glyphosate use in cotton and soybean largely displaced herbicides that are more likely to select for herbicide-resistant weeds, which at least partially mitigated the impact of reduced herbicide diversity. The overall rate of newly confirmed herbicide-resistant weed species to all herbicide sites of action (SOAs) has slowed in the United States since 2005. Although the number of glyphosate-resistant weeds has increased since 1998, the evolution of new glyphosate-resistant weed species as a function of area sprayed has remained relatively low compared with several other commonly used herbicide SOAs.
Despite initial intentions to better align transatlantic regulation and associated practices in the negotiation of the Transatlantic Trade and Investment Partnership (TTIP), this was not possible for rules concerning genetically modified organisms and data privacy. By 2016 both matters effectively fell off the TTIP negotiating agenda. This paper identifies the factors responsible, specifically the critical role played by independent regulatory agencies and associated bureaucratic politics, transnational coalitions of private sector organizations, and non-government organizations and contingency. These factors are not exclusive to the two salient regulations considered here, with the implication that the identification of cross-border spillovers is at best a necessary condition for the successful negotiation of binding trade rules on behind-the-border government policies.
Herbicide-resistant cultivars account for over 90% of the canola grown in western Canada and cultivars resistant to glyphosate dominate the market. Field experiments were conducted at three locations in Alberta to compare the glyphosate system with more traditional herbicide regimes. Glyphosate applied before seeding in spring resulted in better weed control, lower dockage, and higher canola yield and net return than 2,4-D applied in the fall. Glyphosate applied once (two- to four-leaf canola) or twice (two- to four-leaf followed by five- to six-leaf canola) in-crop provided similar weed control, dockage, and canola yield as ethalfluralin applied PRE in the fall followed by an in-crop mixture of sethoxydim, ethametsulfuron, and clopyralid; and superior weed control and canola yield and lower dockage than ethalfluralin alone or an in-crop mixture of sethoxydim and ethametsulfuron. The in-crop glyphosate applications resulted in higher net revenues than the other treatments. There was little or no advantage to applying glyphosate twice compared with once in-crop. The amount of active ingredient entering the environment varied with the herbicide regime but was lower with the glyphosate system than with most of the traditional regimes, especially when glyphosate was applied only once in-crop.
Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.
The potential for future commercialization of glyphosate-resistant wheat necessitates evaluation of agronomic merits of this technology. Experiments were established to evaluate glyphosate-resistant wheat and weed responses to glyphosate rate, application timing, and tank mixtures. Glyphosate at 1,680 g/ha did not injure wheat. Wheat response to glyphosate applied to one- to three- or three- to five-leaf wheat was not different from that of untreated wheat. Wheat was injured more from glyphosate plus thifensulfuron or glyphosate plus dicamba than from individual herbicides at one of six locations, but grain yield was not affected by glyphosate tank mixtures. Glyphosate application timing did not affect control of wild oat or common lambsquarters 56 d after treatment. Glyphosate when applied to one- to three-leaf wheat provided better control of wild buckwheat than later glyphosate application, whereas glyphosate applied to three- to five-leaf wheat provided the best control of green and yellow foxtail, redroot pigweed, and Canada thistle. Weed control with glyphosate tended to be better than with conventional herbicides, and wheat treated with glyphosate produced approximately 10% more grain than wheat treated with conventional herbicide tank mixes.
New and improved glyphosate-resistant (GR) crops continue to be rapidly developed. These crops confer greater crop safety to multiple glyphosate applications, higher rates, and wider application timings. Many of these crops will also have glyphosate resistance stacked with traits that confer resistance to herbicides with other modes of actions to expand the utility of existing herbicides and to increase the number of mixture options that can delay the evolution of GR weeds. Some breeding stacks of herbicide resistance traits are currently available, but the trend in the future will be to combine resistance genes in molecular stacks. The first example of such a molecular stack has a new metabolically based mechanism to inactivate glyphosate combined with an active site-based resistance for herbicides that inhibit acetolactate synthase (ALS). This stack confers resistance to glyphosate and all five classes of ALS-inhibiting herbicides. Other molecular stacks will include glyphosate resistance with resistance to auxin herbicides and herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) and 4-hydroxyphenyl pyruvate dioxygenase (HPPD). Scientists are also studying a number of other herbicide resistance transgenes. Some of these new transgenes will be used to make new multiple herbicide-resistant crops that offer growers more herbicide options to meet their changing weed management needs and to help sustain the efficacy of glyphosate.
Genetically engineered varieties of creeping bentgrass, resistant to glyphosate, have been developed. Studies were initiated in 2000 and 2001 to examine the relative competitive lateral spread of several transformed lines of creeping bentgrass, nontransformed controls, and cultivar standards. Five-centimeter-diameter vegetative plugs of creeping bentgrass were transplanted into a 1-yr-old stand of perennial ryegrass in Columbus, OH, and 10-yr-old bermudagrass or 10-yr-old St. Augustinegrass in Loxley, AL. Plots were watered to prevent moisture stress to either the bentgrass plugs or surrounding turf swards. Monthly average diameter of the creeping bentgrass was determined by measuring the longest spread and shortest spread. At the end of the experiment, no differences (P = 0.05) in lateral spread were observed between individual lines of transgenic bentgrass, standard cultivars, and nontransformed control lines. Lateral spread of transgenic lines was similar to or less than their nontransformed parent and the standard cultivars tested. Results indicate that glyphosate-resistant creeping bentgrass lines do not spread laterally more than nontransgenic lines. Therefore, if the glyphosate-resistant creeping bentgrass escaped into surrounding turfgrass swards, the potential for spread would not be greater than other creeping bentgrass cultivars currently in use.
This article analyses the recent reform to the EU’s genetically modified organisms (GMO) regime which allows Member States to restrict the cultivation of GMO on their territory for reasons that do not relate to issues of health and safety or the environment. By allowing for national differentiation – although on legally questionable grounds – new Article 26b of Directive 2001/18/EC has been presented as a solution to overcome the impasse in GMO decision-making. However, this article finds that the reform fails to provide a solution for the EU regime’s most pressing problem, namely its disregard for scientific uncertainty and disagreement.
Understanding the genetic composition and population structure of plant species at a molecular level is essential for the development of adequate strategies aimed at enhancing the conservation and use of their genetic resources. In addition, such knowledge can help to plan ahead for a scenario under which wild and cultivated species come into contact with their genetically modified (GM) counterpart(s). Using ten simple sequence repeat markers, we genotyped 409 samples pertaining to the species in the Manihot genus known to occur in Colombia, i.e. cassava (Manihot esculenta) and its wild relatives Manihot brachyloba, Manihot carthaginensis and Manihot tristis. High genetic variation was observed in all the species (HE= 0.212–0.603), with cassava showing highest diversity. Most of the genetic variation was found within species populations. Our results suggest that outcrossing events among populations occur much more frequently in M. tristis and M. esculenta, and particularly so in the latter, where the exchange of varieties among local farmers plays a key role in maintaining and introducing new genetic diversity. The occurrence of gene flow within and among populations of Manihot species in Colombia becomes relevant in a biosafety context, where gene flow from GM cassava, if introduced to the country, might have detrimental effects on the structure and dynamics of populations of wild species. The baseline information on the genetic diversity and structure of the four Colombian species that we have presented here provides a first and indispensable step towards the development of targeted interventions necessary to preserve their genetic resources.
This paper reports results from a U.S. national telephone survey ongenetically modified foods (vegetable oil, cornflakes, and salmon). Thesurvey featured a contingent valuation in which respondents chose betweenthe GM and non-GM alternatives with an option of indifference. The binomialand multinomial logit models yielded estimated willingness to pay (WTP) toavoid the GM alternatives. Respondents were willing to pay 20.9%, 14.8%,28.4%, and 29.7% of the base prices to avoid GM vegetable oil, GMcornflakes, GM-fed salmon, and GM salmon, respectively. The inclusion ofindifference option could increase the sample size and moderate the meanWTP.
Regulations 1829/2003/CE and 1830/2003/CE have allowed the placing on the European market of GM products in food and feed chains, and have defined their rules of traceability and labeling. For some supply chains, like for soy and its derived products that are used in the production of feed, manufacturers have to face both non-GM and GM production, although there are no labeling requirements for animal products derived from animals fed with GMOs. This study presents the strategies of stakeholders involved in the feed production chain to maintain concurrent production of compound feed with GM and non-GM soy products, by dealing with the coexistence between those two crops. The stakeholders include importers, traders, soy processors, feed processors and retailers. The study shows that many tools are in place to ensure and maintain the current coexistence. However, a profound harmonization of procedures and methods at a European level should be encouraged.
The techniques used to detect genetically modified organisms (GMO), including qualitative polymerase chain reaction (PCR), quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and many others, are systematically described and discussed. The application progress of GMO in species-specific detection, endogenous genes, standard substances and restraining factors influencing detection are reviewed. The ongoing problems and development prospects of detection techniques of GMO are also pointed out.