The objective of this study was to classify spindle and first polar body (PB1) chromosome images in ovulated mouse oocytes over time to predict the developmental competence of metaphase II (MII) oocytes. Oocytes were collected at 12, 15, 20, and 25 h after human chorionic gonadotropin (hCG) injection, and stained for spindle tubulin, chromosomes, and PB1 chromosomes. MII spindle morphology was classified as tapered type or barrel type and PB1 chromosomes were categorized as aggregated, separated, dot, or collapsed. To determine whether differences in spindle and PB1 images in MII oocytes are associated with fertilization success, we performed in vitro fertilization (IVF) at various times after hCG injection. Barrel-type spindles and aggregate-type PB1 were dominant at 12 h after hCG injection. Oocyte spindles collected 1 h after injection were tapered, and PB1 chromosomes were separated. At 20 and 25 h after treatment, spindle and PB1 images were classified as collapsed. The rate of development to 2-cell embryos after IVF did not differ between the 12 h and 15 h treatments; however, it was significantly lower for the 25 h treatment than for other treatments. The rates of development to blastocysts at 12, 15, 20, and 25 h after hCG injection were 61, 46, 42, and 9%, respectively. MII oocytes with barrel-type spindles and aggregate-type PB1 had high rates of fertilization and blastocyst development, and spindle and PB1 characteristics were correlated with the outcomes of IVF and embryo culture. These results suggested that images of spindles combined with those of PB1 chromosomes enable the prediction of oocytic and/or embryonic quality.