We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chylothorax after paediatric cardiac surgery incurs significant morbidity; however, a detailed understanding that does not rely on single-centre or administrative data is lacking. We described the present clinical epidemiology of postoperative chylothorax and evaluated variation in rates among centres with a multicentre cohort of patients treated in cardiac ICU.
Methods
This was a retrospective cohort study using prospectively collected clinical data from the Pediatric Cardiac Critical Care Consortium registry. All postoperative paediatric cardiac surgical patients admitted from October, 2013 to September, 2015 were included. Risk factors for chylothorax and association with outcomes were evaluated using multivariable logistic or linear regression models, as appropriate, accounting for within-centre clustering using generalised estimating equations.
Results
A total of 4864 surgical hospitalisations from 15 centres were included. Chylothorax occurred in 3.8% (n=185) of hospitalisations. Case-mix-adjusted chylothorax rates varied from 1.5 to 7.6% and were not associated with centre volume. Independent risk factors for chylothorax included age <1 year, non-Caucasian race, single-ventricle physiology, extracardiac anomalies, longer cardiopulmonary bypass time, and thrombosis associated with an upper-extremity central venous line (all p<0.05). Chylothorax was associated with significantly longer duration of postoperative mechanical ventilation, cardiac ICU and hospital length of stay, and higher in-hospital mortality (all p<0.001).
Conclusions
Chylothorax after cardiac surgery in children is associated with significant morbidity and mortality. A five-fold variation in chylothorax rates was observed across centres. Future investigations should identify centres most adept at preventing and managing chylothorax and disseminate best practices.