We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite the potential benefits of open communication about possible desires to die for patients receiving palliative care, health professionals tend to avoid such conversations and often interpret desires to die as requests for medical aid in dying. After implementing trainings to foster an open, proactive approach toward desire to die, we requested trained health professionals to lead and document desire to die-conversations with their patients. In this article, we explore how trained health professionals experience an open (proactive) approach to desire to die-conversations with their patients.
Methods
Between April 2018 and March 2020, health professionals recorded their conversation-experiences on documentation sheets by answering seven open questions. A subsample was invited to offer deeper insights through semi-structured qualitative interviews. Interviews and documentation sheets were transcribed verbatim and analyzed thematically, then findings from both sources were compared and synthesized.
Results
Overall, N = 29 trained health professionals documented N = 81 open desire to die-conversations. A subsample of n = 13 health professionals participated in qualitative interviews. Desire to die-conversations after the training were reported as a complex but overall enriching experience, illustrated in seven themes: (1) beneficial (e.g., establishing good rapport) and (2) hindering aspects (e.g., patients’ emotional barriers) of desire to die-conversations, (3) follow-up measures, (4) ways of addressing desire to die, as well as (5) patient reactions to it. The interviews offered space for health professionals to talk about (6) content of desire to die-conversation and (7) (self-)reflection (e.g., on patients’ biographies or own performance).
Significance of results
As part of an open (proactive) approach, desire to die-conversations hold potential for health professionals’ (self-)reflection and a deeper understanding of patient background and needs. They may lead to a strengthened health professional–patient relationship and potentially prevent suicide.
The emergence of III-nitride technology and fabrication of high quality GaN based devices is possible due to the advances in the heteroepitaxial growth of III-N thin-films on lattice-mismatched substrates. Typically, the substrate of choice is either SiC or sapphire. We have adopted 100mm Si as our substrate of choice; uniform substrates of high quality are inexpensive and plentiful due to decades of use in the microelectronics industry. Growth of device quality GaN on Si is challenged by the ∼17% lattice mismatch and an additional thermal expansion coefficient (TEC) mismatch of ∼56%. In order to accommodate this strain and TEC mismatch between Si and GaN, a novel transition layer was designed, grown and successfully optimized, ® obviating the need for either a PENDEO based overgrowth process or a SiC interlayer-based process. This growth technique (SIGANTIC®) does not require any wafer conditioning prior to growth and thus reduces the process complexity and maintains the cost effectiveness of the GaN on Si strategy. We will report on this manufacturable 100mm MOCVD heteroepitaxial process that consistently produces device quality AlGaN/GaN heterostructures with two dimensional electron gas (2DEG) mobilities typically around 1400 cm2/Vs at room temperature. Structural and electrical properties as determined by optical reflectance, atomic force microscopy, capacitance-voltage and van der Pauw Hall measurements, which are measured across the 100mm wafer, will be presented. Device results will be mentioned to show continuous wave (CW) RF operation at 2 GHz with competitive power output, gain and power added efficiency (PAE).
A new process route for lateral growth of nearly defect free GaN structures via Pendeo-epitaxy is discussed. Lateral growth of GaN films suspended from {110} side walls of [0001] oriented GaN columns into and over adjacent etched wells has been achieved via MOVPE technique without the use of, or contact with, a supporting mask or substrate. Pendeo-epitaxy is proposed as the descriptive term for this growth technique. Selective growth was achieved using process parameters that promote lateral growth of the {110} planes of GaN and disallow nucleation of this phase on the exposed SiC substrate. Thus, the selectivity is provided by tailoring the shape of the underlying GaN layer itself consisting of a sequence of alternating trenches and columns, instead of selective growth through openings in SiO2 or SiNx mask, as in the conventional lateral epitaxial overgrowth (LEO).
Two modes of initiation of the pendeo-epitaxial GaN growth via MOVPE were observed: Mode A - promoting the lateral growth of the {110} side facets into the wells faster than the vertical growth of the (0001) top facets; and Mode B - enabling the top (0001) faces to grow initially faster followed by the pendeo-epitaxial growth over the wells from the newly formed {110} side facets. Four-to-five order decrease in the dislocation density was observed via transmission electron microscopy (TEM) in the pendeo-epitaxial GaN relative to that in the GaN columns. TEM observations revealed that in pendeo-epitaxial GaN films the dislocations do not propagate laterally from the GaN columns when the structure grows laterally from the sidewalls into and over the trenches. Scanning electron microscopy (SEM) studies revealed that the coalesced regions are either defect-free or sometimes exhibit voids. Above these voids the PEGaN layer is usually defect free.
A new process route for lateral growth of nearly defect free GaN structures via Pendeoepitaxy is discussed. Lateral growth of GaN films suspended from {1120} side walls of [0001] oriented GaN columns into and over adjacent etched wells has been achieved via MOVPE technique without the use of, or contact with, a supporting mask or substrate. Pendeo-epitaxy is proposed as the descriptive term for this growth technique. Selective growth was achieved using process parameters that promote lateral growth of the { 1120) planes of GaN and disallow nucleation of this phase on the exposed SiC substrate. Thus, the selectivity is provided by tailoring the shape of the underlying GaN layer itself consisting of a sequence of alternating trenches and columns, instead of selective growth through openings in SiO2 or SiNx mask, as in the conventional lateral epitaxial overgrowth (LEO).
Two modes of initiation of the pendeo-epitaxial GaN growth via MOVPE were observed: Mode A - promoting the lateral growth of the {1120} side facets into the wells faster than the vertical growth of the (0001) top facets; and Mode B - enabling the top (0001) faces to grow initially faster followed by the pendeo-epitaxial growth over the wells from the newly formed {1120} side facets. Four-to-five order decrease in the dislocation density was observed via transmission electron microscopy (TEM) in the pendeo-epitaxial GaN relative to that in the GaN columns. TEM observations revealed that in pendeo-epitaxial GaN films the dislocations do not propagate laterally from the GaN columns when the structure grows laterally from the sidewalls into and over the trenches. Scanning electron microscopy (SEM) studies revealed that the coalesced regions are either defect-free or sometimes exhibit voids. Above these voids the PEGaN layer is usually defect free.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.