We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The in vitro corrosion mechanism of the biodegradable cast Mg–10% Ca binary alloy in Hanks' solution was evaluated through transmission electron microscopy observations. The corrosion behavior depends strongly on the microstructural peculiarity of Mg2Ca phase surrounding the island-like primary Mg phase and the fast corrosion induced by the interdiffusion of O and Ca via the Mg2Ca phase of lamellar structure. At the corrosion front, we found that a nanosized crack-like pathway was formed along the interface between the Mg2Ca phase and the primary Mg phase. Through the crack-like pathway, O and Ca are atomically exchanged each other and then the corroded Mg2Ca phase was transformed to Mg oxides. The in vitro corrosion by the exchange of Ca and O at the nanosized pathway led to the rapid bulk corrosion in the Mg–Ca alloys.
Si delta-doping in the GaN layer has been successfully demonstrated by low-pressure metalorganic chemical vapor deposition at a growth temperature of 1040 . Si delta-doping concentration increases and then decreases with an increase in delta-doping time. This indicates that delta-doping concentration is limited by the desorption process owing to much higher thermal decomposition efficiency of silane at high growth temperatures of GaN. In addition, it was observed that the use of a post-purge step in the ammonia ambient reduces Si delta-doping concentration. From capacitance-voltage measurement, a sharp carrier concentration profile with a full-width at half maximum of 4.1 nm has been achieved with a high peak concentration of 9.8 1018 cm−3.
Si delta-doping in the GaN layer has been successfully demonstrated by low-pressure metalorganic chemical vapor deposition at a growth temperature of 1040°C. Si delta-doping concentration increases and then decreases with an increase in delta-doping time. This indicates that delta-doping concentration is limited by the desorption process owing to much higher thermal decomposition efficiency of silane at high growth temperatures of GaN. In addition, it was observed that the use of a post-purge step in the ammonia ambient reduces Si delta-doping concentration. From capacitance-voltage measurement, a sharp carrier concentration profile with a full-width at half maximum of 4.1 nm has been achieved with a high peak concentration of 9.8 x 1018 cm-3
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.