We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Systemic-to-pulmonary shunts are used as a source of pulmonary blood flow in palliated Congenital Heart Disease in neonates and young infants. Shunt thrombosis, often requiring shunt interventions during index hospitalisation, is associated with poor outcomes. We hypothesised that extensive use of perioperative pro-coagulant products may be associated with shunt thrombosis.
Methods:
Children (≤18 years) undergoing systemic-to-pulmonary shunts with in-hospital shunt reinterventions between 2016 and 2020 were reviewed retrospectively. Perioperative associations to shunt thrombosis were examined by univariate logistic regression and Wilcoxon rank sum tests as appropriate. Cox and log transformed linear regression were used to analyse postoperative ventilation duration, length of stay, and cost.
Results:
Of 71 patients requiring in-hospital shunt intervention after systemic-to-pulmonary shunts, 10 (14%) had acute shunt thrombosis, and among them five (50%) died. The median age was four (interquartile range: 0-15) months. There were 40 (56%) males, 41 (58%) had single ventricle anatomy, and 29 (40%) were on preoperative anticoagulants. Patients with acute shunt thrombosis received greater volume of platelets (p = 0.04), cryoprecipitate (p = 0.02), and plasma (p = 0.04) postoperatively in the ICU; experienced more complications (p = 0.01) including re-exploration for bleeding (p = 0.008) and death (p = 0.02), had longer hospital length of stays (p = 0.004), greater frequency of other arterial/venous thrombosis (p = 0.02), and greater hospital costs (p = 0.002).
Conclusions:
Patients who develop acute shunt thrombosis receive more blood products perioperatively and experience worse hospital outcomes and higher hospital costs. Future research on prevention/early detection of shunt thrombosis is needed to improve outcomes in infants after systemic-to-pulmonary shunt surgery.
Patent ductus arteriosus closure is traditionally performed by thoracotomy approach. Video-assisted thoracoscopic surgery is a less frequently utilised alternative. We sought to compare elective surgical outcomes between the two methods via a single-centre retrospective cohort analysis.
Methods:
All patients >3.2 kg undergoing surgical patent ductus arteriosus ligation at a single institution from 2000 to 2018 were retrospectively reviewed. Propensity matching for age, weight, diuretic usage, and preterm status was conducted to adjust for differences in baseline patient characteristics. Outcome measures included operative time, hospitalisation duration, post-operative complications, and re-operation.
Results:
A total of 173 patients were included, 127 thoracoscopy and 46 thoracotomy. In the unmatched cohorts, no significant difference in closure success was found (94% thoracoscopy versus 100% thoracotomy, p = 0.192). Although median operative time was longer for thoracoscopy (87 versus 56 minutes, p < 0.001), hospitalisation duration was shorter (1.05 versus 2.41 days, p < 0.001), as was ICU stay (0.00 versus 0.75 days, p < 0.001). There were no significant differences in re-operation or complication rates, except chest tube placement (11% thoracoscopy versus 50% thoracotomy, p < 0.001). After matching (69 thoracoscopy versus 20 thoracotomy), these differences persisted, including median operative time (81 versus 56 minutes, p = 0.007; thoracoscopy versus thoracotomy), hospitalisation duration (1.25 versus 2.27 days, p < 0.001), and chest tube placement (17% versus 60%, p < 0.001). There remained no significant difference in complications or re-operations.
Conclusions:
Thoracoscopic ligation was associated with shorter ICU and hospital stays and less frequent chest tube placement, but longer operative times. Other risks, including bleeding, chylothorax, and recurrent laryngeal nerve injury, were similar.
The optimal approach to unifocalisation in pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries (pulmonary artery/ventricular septal defect/major aortopulmonary collaterals) remains controversial. Moreover, the impact of collateral vessel disease burden on surgical decision-making and late outcomes remains poorly defined. We investigated our centre’s experience in the surgical management of pulmonary artery/ventricular septal defect/major aortopulmonary collaterals.
Materials and methods
Between 1996 and 2015, 84 consecutive patients with pulmonary artery/ventricular septal defect/major aortopulmonary collaterals underwent unifocalisation. In all, 41 patients received single-stage unifocalisation (Group 1) and 43 patients underwent multi-stage repair (Group 2). Preoperative collateral vessel anatomy, branch pulmonary artery reinterventions, ventricular septal defect status, and late right ventricle/left ventricle pressure ratio were evaluated.
Results
Median follow-up was 4.8 compared with 5.7 years for Groups 1 and 2, respectively, p = 0.65. Median number of major aortopulmonary collaterals/patient was 3, ranging from 1 to 8, in Group 1 compared with 4, ranging from 1 to 8, in Group 2, p = 0.09. Group 2 had a higher number of lobar/segmental stenoses within collateral vessels (p = 0.02). Group 1 had fewer catheter-based branch pulmonary artery reinterventions, with 5 (inter-quartile range from 1 to 7) per patient, compared with 9 (inter-quartile range from 4 to 14) in Group 2, p = 0.009. Among patients who achieved ventricular septal defect closure, median right ventricle/left ventricle pressure was 0.48 in Group 1 compared with 0.78 in Group 2, p = 0.03. Overall mortality was 6 (17%) in Group 1 compared with 9 (21%) in Group 2.
Discussion
Single-stage unifocalisation is a promising repair strategy in select patients, achieving low rates of reintervention for branch pulmonary artery restenosis and excellent mid-term haemodynamic outcomes. However, specific anatomic substrates of pulmonary artery/ventricular septal defect/major aortopulmonary collaterals may be better suited to multi-stage repair. Preoperative evaluation of collateral vessel calibre and function may help inform more patient-specific surgical management.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.