We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The brain functional correlates of delusions have been relatively little studied. However, a virtual reality paradigm simulating travel on the London Underground has been found to evoke referential ideation in both healthy subjects and patients with schizophrenia, making brain activations in response to such experiences potentially identifiable.
Method
Ninety patients with schizophrenia/schizoaffective disorder and 28 healthy controls underwent functional magnetic resonance imaging while they viewed virtual reality versions of full and empty Barcelona Metro carriages.
Results
Compared to the empty condition, viewing the full carriage was associated with activations in the visual cortex, the cuneus and precuneus/posterior cingulate cortex, the inferior parietal cortex, the angular gyrus and parts of the middle and superior temporal cortex including the temporoparietal junction bilaterally. There were no significant differences in activation between groups. Nor were there activations associated with referentiality or presence of delusions generally in the patient group. However, patients with persecutory delusions showed a cluster of reduced activation compared to those without delusions in a region in the right temporal/occipital cortex.
Conclusions
Performance of the metro task is associated with a widespread pattern of activations, which does not distinguish schizophrenic patients and controls, or show an association with referentiality or delusions in general. However, the finding of a cluster of reduced activation close to the right temporoparietal junction in patients with persecutory delusions specifically is of potential interest, as this region is believed to play a role in social cognition.
Deficits in emotional intelligence (EI) were detected in patients with bipolar disorder (BD), but little is known about whether these deficits are already present in patients after presenting a first episode mania (FEM). We sought (i) to compare EI in patients after a FEM, chronic BD and healthy controls (HC); (ii) to examine the effect exerted on EI by socio-demographic, clinical and neurocognitive variables in FEM patients.
Methods
The Emotional Intelligence Quotient (EIQ) was calculated with the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Performance on MSCEIT was compared among the three groups using generalized linear models. In patients after a FEM, the influence of socio-demographic, clinical and neurocognitive variables on the EIQ was examined using a linear regression model.
Results
In total, 184 subjects were included (FEM n = 48, euthymic chronic BD type I n = 75, HC n = 61). BD patients performed significantly worse than HC on the EIQ [mean difference (MD) = 10.09, standard error (s.e.) = 3.14, p = 0.004] and on the understanding emotions branch (MD = 7.46, s.e. = 2.53, p = 0.010). FEM patients did not differ from HC and BD on other measures of MSCEIT. In patients after a FEM, EIQ was positively associated with female sex (β = −0.293, p = 0.034) and verbal memory performance (β = 0.374, p = 0.008). FEM patients performed worse than HC but better than BD on few neurocognitive domains.
Conclusions
Patients after a FEM showed preserved EI, while patients in later stages of BD presented lower EIQ, suggesting that impairments in EI might result from the burden of disease and neurocognitive decline, associated with the chronicity of the illness.
The brain functional correlates of autobiographical recall are well established, but have been little studied in schizophrenia. Additionally, autobiographical memory is one of a small number of cognitive tasks that activates rather than de-activates the default mode network, which has been found to be dysfunctional in this disorder.
Methods
Twenty-seven schizophrenic patients and 30 healthy controls underwent functional magnetic resonance imaging while viewing cue words that evoked autobiographical memories. Control conditions included both non-memory-evoking cues and a low level baseline (cross fixation).
Results
Compared to both non-memory evoking cues and low level baseline, autobiographical recall was associated with activation in default mode network regions in the controls including the medial frontal cortex, the posterior cingulate cortex and the hippocampus, as well as other areas. Clusters of de-activation were seen outside the default mode network. There were no activation differences between the schizophrenic patients and the controls, but the patients showed clusters of failure of de-activation in non-default mode network regions.
Conclusions
According to this study, patients with schizophrenia show intact activation of the default mode network and other regions associated with recall of autobiographical memories. The finding of failure of de-activation outside the network suggests that schizophrenia may be associated with a general difficulty in de-activation rather than dysfunction of the default mode network per se.
Although executive and other cognitive deficits have been found in patients with borderline personality disorder (BPD), whether these have brain functional correlates has been little studied. This study aimed to examine patterns of task-related activation and de-activation during the performance of a working memory task in patients with the disorder.
Methods
Sixty-seven DSM-IV BPD patients and 67 healthy controls underwent fMRI during the performance of the n-back task. Linear models were used to obtain maps of within-group activations and areas of differential activation between the groups.
Results
On corrected whole-brain analysis, there were no activation differences between the BPD patients and the healthy controls during the main 2-back v. baseline contrast, but reduced activation was seen in the precentral cortex bilaterally and the left inferior parietal cortex in the 2-back v. 1-back contrast. The patients showed failure of de-activation affecting the medial frontal cortex and the precuneus, plus in other areas. The changes did not appear to be attributable to previous history of depression, which was present in nearly half the sample.
Conclusions
In this study, there was some, though limited, evidence for lateral frontal hypoactivation in BPD during the performance of an executive task. BPD also appears to be associated with failure of de-activation in key regions of the default mode network.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.