We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Advanced cerebral amyloid angiopathy (CAA) consists of vascular deposition of amyloid and secondary breakdown of amyloid-laden vessel walls. This chapter focuses on the pathogenesis of CAA, clinical and genetic risk factors, presentations and diagnosis, and prospects for treatment. CAA-related intracerebral hemorrhage (ICH) accounts for a substantial proportion of all spontaneous ICH in the elderly. CAA-related lobar ICH presents similarly to other types of lobar ICH with acute onset of neurological symptoms and the variable presence of headache, seizures, or decreased consciousness according to hemorrhage size and location. CAA-related hemorrhages can also be small and clinically silent. CAA can also present with transient neurological symptoms, another syndrome where diagnosis during life is of particular practical importance. Future treatments for CAA are likely to focus on preventive or protective therapy aimed at decreasing the deposition or toxicity of vascular amyloid.
Vascular malformations constitute an important cause of intracranial hemorrhage especially in younger patients. These malformations may arise from any segment of the different functional units of the brain vasculature, including arteries, arterioles, capillaries, venules, and veins. Among vascular malformations causing intracranial hemorrhage, brain arteriovenous malformations (AVMs) are among the most frequently encountered. Brain AVMs commonly affect distal arterial branches and in roughly half of the cases, the malformation is found in the borderzone region shared by the distal anterior, middle, and/or posterior cerebral arteries. Cerebral angiography may help to differentiate brain AVMs from other types of intracranial anomalies with arterio-venous shunting. Resection of an associated developmental venous anomaly is contraindicated as its occlusion may lead to venous stasis, brain edema, and eventual hemorrhage. A developmental venous anomaly (DVA) is found in up to 30% of cerebral cavernous malformations (CCM) patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.