Deep levels studies on a set of n-GaN films grown by MOCVD and HVPE reveal the presence of electron traps with levels near Ec−0.25 eV, Ec−0.55 eV, Ec−0.8 eV, Ec−1 eV, hole traps with levels near Ev+0.9 eV and a band of relatively shallow states in the lower half of the bandgap. The total density of these latter states was estimated to be some 1016 cm−3 and they were tentatively associated with dislocations in GaN based on their high concentration and band-like character. None of the electron or hole traps could be unambiguously related with strong changes of diffusion lengths of minority carriers in various samples. It is proposed that such changes occur due to different surface recombination velocities. An important role of Ec−0.55 eV traps in persistent photoconductivity phenomena in n-GaN has been demonstrated.