We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The principal aim of this article is to attach and study $p$-adic $L$-functions to cohomological cuspidal automorphic representations $\Pi$ of $\operatorname {GL}_{2n}$ over a totally real field $F$ admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive because we draw heavily upon the methods used in the recent and separate works of all three authors. By construction, our $p$-adic $L$-functions are distributions on the Galois group of the maximal abelian extension of $F$ unramified outside $p\infty$. Moreover, we work under a weaker Panchishkine-type condition on $\Pi _p$ rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the $p$-adic $L$-functions at all critical points. This has the striking consequence that, given a unitary $\Pi$ whose standard $L$-function admits at least two critical points, and given a prime $p$ such that $\Pi _p$ is ordinary, the central critical value $L(\frac {1}{2}, \Pi \otimes \chi )$ is non-zero for all except finitely many Dirichlet characters $\chi$ of $p$-power conductor.
The main result of this article states that the Galois representation attached to a Hilbert modular eigenform defined over $\overline{\mathbb{F}}_{p}$ of parallel weight 1 and level prime to $p$ is unramified above $p$. This includes the important case of eigenforms that do not lift to Hilbert modular forms in characteristic 0 of parallel weight 1. The proof is based on the observation that parallel weight 1 forms in characteristic $p$ embed into the ordinary part of parallel weight $p$ forms in two different ways per prime dividing $p$, namely via ‘partial’ Frobenius operators.
The aim of this chapter is to explain how one can obtain information regarding the membership of a classical weight one eigenform in a Hida family from the geometry of the Eigencurve at the corresponding point. We show, in passing, that all classical members of a Hida family, including those of weight one, share the same local type at all primes dividing the level.
1. Introduction
Classical weight one eigenforms occupy a special place in the correspondence between Automorphic Forms and Galois Representations since they yield two dimensional Artin representations with odd determinant. The construction of those representations by Deligne and Serre [5] uses congruences with modular forms of higher weight. The systematic study of congruences between modular forms has culminated in the construction of the p-adic Eigencurve by Coleman and Mazur [4]. A p-stabilized classical weight one eigenform corresponds then to a point on the ordinary component of the Eigencurve, which is closely related to Hida theory.
An important result of Hida [11] states that an ordinary cuspform of weight at least two is a specialization of a unique, up to Galois conjugacy, primitive Hida family. Geometrically this translates into the smoothness of the Eigencurve at that point (in fact, Hida proves more, namely that the map to the weight space is etale at that point). Whereas Hida's result continues to hold at all non-critical classical points of weight two or more [13], there are examples where this fails in weight one [6].
Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a totally real number field. Under the assumptions that ρ has a large image and admits a low-weight crystalline modular deformation we show that any low-weight crystalline deformation of ρ unramified outside a finite set of primes will be modular. We follow the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-type lemma for the local component at ρ of the middle degree cohomology of a Hilbert modular variety. As an application we relate the algebraic p-part of the value at one of the adjoint L-function associated with a Hilbert modular newform to the cardinality of the corresponding Selmer group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.