We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This gold standard text has kept its readers abreast of rapid advancements in reproductive medicine and surgery since 1983. Continuing this tradition, this fifth edition has been fully updated and revised to provide clear, didactic advice on best practice for a variety of clinical situations faced by practitioners across many specialties - including urologists, gynecologists, reproductive endocrinologists, medical endocrinologists and many in internal medicine and family practice who see men with suboptimal fertility and reproductive problems. Completely restructured to include pedagogical features such as easily accessible key concepts that cement understanding and real-world use. Covering everything from foundations of anatomy and embryology, through clinical evaluation, diagnostic approaches, treatment and fertility care in context within the healthcare system and society, thrilling advances and future directions are also included. This new edition is an essential reference for all who are working in this young and rapidly evolving field.
The new edition of this canonical text on male reproductive medicine will cement the book's market-leading position. Practitioners across many specialties - including urologists, gynecologists, reproductive endocrinologists, medical endocrinologists and many in internal medicine and family practice – will see men with suboptimal fertility and reproductive problems. The book provides an excellent source of timely, well-considered information for those training in this young and rapidly evolving field. While several recent books provide targeted 'cookbooks' for those in a male reproductive laboratory, or quick reference for practising generalists, the modern, comprehensive reference providing both a background for male reproductive medicine as well as clinical practice information based on that foundation has been lacking until now. The book has been extensively revised with a particular focus on modern molecular medicine. Appropriate therapeutic interventions are highlighted throughout.
This chapter discusses the development of the adult population of Leydig cells from the stem cell precursor through the progenitor and immature Leydig cell stages. The morphogenetic events of early testis differentiation are controlled by the Sry (sex-determining region on the Y chromosome) gene. Lack of luteinizing hormone (LH) stimulation results in reduced steroidogenic enzyme activities and in Leydig cell atrophy. As men age, progressive decreases in serum concentrations of testosterone occur. Associated with these decreases are significant health consequences, including reduced sexual function, energy, muscle function, and bone density, and increased frailty and cognitive impairment. A number of hypotheses have been put forward over the years to explain changes that occur in aging cells, including late-onset gene expression, telomere shortening, gene modifications, changes in the immune system, and accumulated reactive oxygen-induced damage to DNA, lipids, and/or proteins.
Human semen is ejaculated into the anterior vagina and, within minutes, spermatozoa enter the cervix by traversing the cervical mucus. Human sperm capacitation is initiated when the male gamete traverses the cervical mucus, with the removal of inhibitory factors from the seminal plasma. Studies performed in several mammalian species have shown that sperm cells that have completed capacitation first bind to the zona pellucida (ZP) and undergo acrosomal exocytosis (AE). Acrosome-reacted spermatozoa penetrate the ZP, reach the perivitelline space, and bind and fuse to the egg plasma membrane. Sperm-ZP binding involves the interaction of ZP components with sperm surface proteins of capacitated cells, known as primary binding. The evaluation of the subfertile male should include a basic semen analysis, followed by bioassays aimed at assessing sperm functional competence. Many of the molecular mechanisms underlying mammalian sperm capacitation, AE, and fusion with the egg modulate somatic cell functions.