We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
COVID-19 has markedly impacted the provision of neurodevelopmental care. In response, the Cardiac Neurodevelopmental Outcome Collaborative established a Task Force to assess the telehealth practices of cardiac neurodevelopmental programmes during COVID-19, including adaptation of services, test protocols and interventions, and perceived obstacles, disparities, successes, and training needs.
Study Design:
A 47-item online survey was sent to 42 Cardiac Neurodevelopmental Outcome Collaborative member sites across North America within a 3-week timeframe (22 July to 11 August 2020) to collect cross-sectional data on practices.
Results:
Of the 30 participating sites (71.4% response rate), all were providing at least some clinical services at the time of the survey and 24 sites (80%) reported using telehealth. All but one of these sites were offering new telehealth services in response to COVID-19, with the most striking change being the capacity to offer new intervention services for children and their caregivers. Only a third of sites were able to carry out standardised, performance-based, neurodevelopmental testing with children and adolescents using telehealth, and none had completed comparable testing with infants and toddlers. Barriers associated with language, child ability, and access to technology were identified as contributing to disparities in telehealth access.
Conclusions:
Telehealth has enabled continuation of at least some cardiac neurodevelopmental services during COVID-19, despite the challenges experienced by providers, children, families, and health systems. The Cardiac Neurodevelopmental Outcome Collaborative provides a unique platform for sharing challenges and successes across sites, as we continue to shape an evidence-based, efficient, and consistent approach to the care of individuals with CHD.
Our understanding of the complex relationship between schizophrenia symptomatology and etiological factors can be improved by studying brain-based correlates of schizophrenia. Research showed that impairments in value processing and executive functioning, which have been associated with prefrontal brain areas [particularly the medial orbitofrontal cortex (MOFC)], are linked to negative symptoms. Here we tested the hypothesis that MOFC thickness is associated with negative symptom severity.
Methods
This study included 1985 individuals with schizophrenia from 17 research groups around the world contributing to the ENIGMA Schizophrenia Working Group. Cortical thickness values were obtained from T1-weighted structural brain scans using FreeSurfer. A meta-analysis across sites was conducted over effect sizes from a model predicting cortical thickness by negative symptom score (harmonized Scale for the Assessment of Negative Symptoms or Positive and Negative Syndrome Scale scores).
Results
Meta-analytical results showed that left, but not right, MOFC thickness was significantly associated with negative symptom severity (βstd = −0.075; p = 0.019) after accounting for age, gender, and site. This effect remained significant (p = 0.036) in a model including overall illness severity. Covarying for duration of illness, age of onset, antipsychotic medication or handedness weakened the association of negative symptoms with left MOFC thickness. As part of a secondary analysis including 10 other prefrontal regions further associations in the left lateral orbitofrontal gyrus and pars opercularis emerged.
Conclusions
Using an unusually large cohort and a meta-analytical approach, our findings point towards a link between prefrontal thinning and negative symptom severity in schizophrenia. This finding provides further insight into the relationship between structural brain abnormalities and negative symptoms in schizophrenia.