Methyl depletion and subsequent moisture uptake have been found to be the primary plasma damages leading to dielectric loss in porous organosilicate (OSG) low-k dielectrics. A vacuum vapor silylation process was developed for dielectric recovery of plasma damaged OSG low-k dielectrics. The methyl or phenyl containing silylation agents were used to convert the hydrophilic -OH groups to hydrophobic groups. Compared with Trimethylchlorosilane (TMCS) and Phenyltrimethoxysilane (PTMOS), Dimethyldichlorosilane (DMDCS) was found to be more effective in recovering surface carbon concentration and surface hydrophobicity. But the carbon recovery effect was limited to the surface region.
Alternatively, UV radiation with thermal activation was applied for dielectric recovery of plasma damaged OSG low-k dielectrics. The combined UV/thermal process was found to be efficient in reducing −OH, physisorbed water, and C=O bonds. The dielectric constant was recovered within 5% of the pristine sample and the leakage current was also much reduced. Aging test in air showed that no moisture retake was observed, indicating the repaired film was stable.