We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A survey of publicly available data from the Intergovernmental Panel on Climate Change (IPCC) suggests that the Middle East will become significantly drier as greenhouse gas levels rise – with potentially devastating consequences. Simulating the climate of the eastern Mediterranean and the Middle East is, however, a tough challenge for climate models and those results should be interpreted with caution. The cyclones which migrate from west to east across the Mediterranean in winter and early spring, and which deliver much of the annual precipitation to the Middle East, are not well resolved by global climate models of the type included in the IPCC archive. Furthermore, the local climate is modified by coastlines and mountains throughout the region. For these reasons we provide a supplement to the IPCC results with simulations from a regional climate model. As in the global models, the regional model projects that, under an A2 (business-as-usual) scenario, precipitation will decrease significantly in the Middle East. Further investigation of the daily statistics of the weather, along with tracking of weather systems in the present day and future climate scenarios, suggest that the dominant mechanism for these changes is a reduction in the strength of the Mediterranean storm track. The Mediterranean storm track is fairly well simulated by the regional climate model, increasing confidence in this projection. […]
The arid climate of the Middle East means that variations in rainfall on all timescales from days to years have an enormous impact on the people who live in the region. Understanding this variability is crucial if we are to interpret model simulations of the region's climate and make meaningful predictions of how the climate may change in the future and how it has changed in the past (Chapters 3 and 4). This study uses rain gauge measurements in conjunction with other meteorological data to address the following questions. How does rainfall vary from day to day and from year to year? How does rainfall vary spatially within Jordan and Israel? How does the atmospheric circulation over the Mediterranean region affect the daily probability of rain? What effect do large-scale modes of variability such as the North Atlantic Oscillation have on rainfall variability in the region?
INTRODUCTION
Variability in precipitation has posed a considerable challenge to the population of the Middle East throughout the Holocene, and continues to be a key issue today. Understanding this variability is crucial for the design and interpretation of climate model experiments that characterise how precipitation has changed in the past and predict how it will change in the future.
In this chapter, we develop an improved understanding of the Mediterranean's past climate through a series of ‘time-slice’ climate integrations relating to the past 12,000 years, performed using a version of the Met Office Hadley Centre's global climate model (HadSM3). The output is dynamically downscaled using a regional version of the same model to offer unprecedented spatial detail over the Mediterranean. Changes in seasonal surface air temperatures and precipitation are discussed at both global and regional scales along with their underlying physical drivers.
In the experiments the Mediterranean experiences more precipitation in the early Holocene than the late Holocene, although the difference is not uniform across the eastern Mediterranean. The results suggest that there may have been a relatively strong reduction in precipitation over the eastern Mediterranean coast during the period around 6–10 thousand years before present (kaBP). The early Holocene also shows a stronger seasonal cycle of temperature throughout the Northern Hemisphere but, over the northeast Mediterranean, this is mitigated by the influence of milder maritime air carried inland from the coast.
INTRODUCTION
Understanding the changes in the Mediterranean climate during the Holocene period is a challenging problem, but one that is critical to interpreting long-term change in human settlement. The region at present displays marked seasonality with dry, hot summers and cool, wet winters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.