We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
We extend the unpublished work of Handel and Miller on the classification, up to isotopy, of endperiodic automorphisms of surfaces. We give the Handel–Miller construction of the geodesic laminations, give an axiomatic theory for pseudo-geodesic laminations, show that the geodesic laminations satisfy the axioms, and prove that pseudo-geodesic laminations satisfying our axioms are ambiently isotopic to the geodesic laminations. The axiomatic approach allows us to show that the given endperiodic automorphism is isotopic to a smooth endperiodic automorphism preserving smooth laminations ambiently isotopic to the original ones. Using the axioms, we also prove the ‘transfer theorem’ for foliations of 3-manifolds, namely that, if two depth-one foliations ${\mathcal{F}}$ and ${\mathcal{F}}^{\prime }$ are transverse to a common one-dimensional foliation ${\mathcal{L}}$ whose monodromy on the non-compact leaves of ${\mathcal{F}}$ exhibits the nice dynamics of Handel–Miller theory, then ${\mathcal{L}}$ also induces monodromy on the non-compact leaves of ${\mathcal{F}}^{\prime }$ exhibiting the same nice dynamics. Our theory also applies to surfaces with infinitely many ends.
Little is known about terrestrial climate dynamics in the Levant during the penultimate interglacial-glacial period. To decipher the palaeoclimatic history of the Marine Oxygen Isotope Stage (MIS) 6 glacial period, a well-dated stalagmite (~194 to ~154 ka) from Kanaan Cave on the Mediterranean coast in Lebanon was analyzed for its petrography, growth history, and stable isotope geochemistry. A resolved climate record has been recovered from this precisely U–Th dated speleothem, spanning the late MIS 7 and early MIS 6 at low resolution and the mid–MIS 6 at higher resolution. The stalagmite grew discontinuously from ~194 to ~163 ka. More consistent growth and higher growth rates between ~163 and ~154 ka are most probably linked to increased water recharge and thus more humid conditions. More distinct layering in the upper part of the speleothem suggests strong seasonality from ~163 ka to ~154 ka. Short-term oxygen and carbon isotope excursions were found between ~155 and ~163 ka. The inferred Kanaan Cave humid intervals during the mid–MIS 6 follow variations of pollen records in the Mediterranean basins and correlate well with the synthetic Greenland record and East Asian summer monsoon interstadial periods, indicating short warm/wet periods similar to the Dansgaard-Oeschger events during MIS 4–3 in the eastern Mediterranean region.
The Taipan galaxy survey (hereafter simply ‘Taipan’) is a multi-object spectroscopic survey starting in 2017 that will cover 2π steradians over the southern sky (δ ≲ 10°, |b| ≳ 10°), and obtain optical spectra for about two million galaxies out to z < 0.4. Taipan will use the newly refurbished 1.2-m UK Schmidt Telescope at Siding Spring Observatory with the new TAIPAN instrument, which includes an innovative ‘Starbugs’ positioning system capable of rapidly and simultaneously deploying up to 150 spectroscopic fibres (and up to 300 with a proposed upgrade) over the 6° diameter focal plane, and a purpose-built spectrograph operating in the range from 370 to 870 nm with resolving power R ≳ 2000. The main scientific goals of Taipan are (i) to measure the distance scale of the Universe (primarily governed by the local expansion rate, H0) to 1% precision, and the growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the total mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of dark matter halo and stellar mass and environment. The final survey, which will be completed within 5 yrs, will consist of a complete magnitude-limited sample (i ⩽ 17) of about 1.2 × 106 galaxies supplemented by an extension to higher redshifts and fainter magnitudes (i ⩽ 18.1) of a luminous red galaxy sample of about 0.8 × 106 galaxies. Observations and data processing will be carried out remotely and in a fully automated way, using a purpose-built automated ‘virtual observer’ software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio; it will become the primary redshift and optical spectroscopic reference catalogue for the local extragalactic Universe in the southern sky for the coming decade.
New speleothem records from northeastern Iberian caves provide data to explore the climatic patterns during the Holocene. We present δ13C and Mg/Ca from three speleothems from two different caves located in the Iberian Range allowing replication of the climatic signal for several millennia. Through the integration of those stalagmites covering since the Holocene onset to 2 ka, the early Holocene (11.7–8.5 ka) appears as the wettest interval. A marked change towards aridity is observed during the middle Holocene (8.5–4.8 ka) and an increase of humidity afterwards (4.8–2 ka). This three-part pattern, contrasting with other Iberian sequences, seems to be associated with the different role that seasonality has played in the response of different proxies (or records) to changes in water availability. Interpreting our speleothem records as changes in winter-spring precipitation along the Holocene allows reconciling previous data on hydrological variability from the western Mediterranean borderlands.
Saline lagoons are priority habitats in the United Kingdom supporting several protected specialist species. One specialist, the amphipod Gammarus insensibilis, is infected with behaviour-altering microphallid trematodes such as Microphallus papillorobustus. In saline lagoons around the coast of England (Gilkicker and Lymington–Keyhaven on the Hampshire coast and Moulton Marsh in Lincolnshire) there is variation in the prevalence of this parasite in the gammarid populations (0 at Salterns in the Lymington–Keyhaven lagoon system to 98% at Gilkicker). Infection intensity ranged from 0 to 20 metacercariae in individual amphipods. Higher infection intensity can alter the shape of the amphipod's head. Under experimental conditions respiration rate is significantly reduced in infected animals and reproductive output (expressed as early stage embryos mg g dry weight−1) is significantly lower in infected females. It is important to consider the role of host–parasite interactions in order to understand the ecology of specialist lagoon species such as G. insensibilis and their lagoon habitats.
We present a shoreline-based, millennial-scale record of lake-level changes spanning 12.8–2.3 ka for a large closed-basin lake system on the southwestern Tibetan Plateau. Fifty-three radiocarbon and eight U–Th series ages of tufa and beach cement provide age control on paleoshorelines ringing the basin, supplemented by nineteen ages from shell and aquatic plant material from natural exposures generally recording lake regressions. Our results show that paleo-Ngangla Ring Tso exceeded modern lake level (4727 m asl) continuously between ~ 12.8 and 2.3 ka. The lake was at its highstand 135 m (4862 m asl) above the modern lake from 10.3 ka to 8.6 ka. This is similar to other closed-basin lakes in western Tibet, and coincides with peak Northern Hemisphere summer insolation and peak Indian Summer Monsoon intensity. The lake experienced a series of millennial-scale oscillations centered on 11.5, 10.8, 8.3, 5.9 and 3.6 ka, consistent with weak monsoon events in proxy records of the Indian Summer Monsoon. It is unclear whether these events were forced by North Atlantic or Indian Ocean conditions, but based on the abrupt lake-level regressions recorded for Ngangla Ring Tso, they resulted in significant periodic reductions in rainfall over the western Tibetan Plateau throughout the Holocene.
It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries—namely, with regard to artificially (super)intelligent persons—but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.
The idea—the possibility—of reading the mind, from the outside or indeed even from the inside, has exercised humanity from the earliest times. If we could read other minds both prospectively, to discern intentions and plans, and retrospectively, to discover what had been “on” those minds when various events had occurred, the implications for morality and for law and social policy would be immense. Recent advances in neuroscience have offered some, probably remote, prospects of improved access to the mind, but a different branch of technology seems to offer the most promising and the most daunting prospect for both mind reading and mind misreading. You can’t have the possibility of the one without the possibility of the other. This article tells some of this story.
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending 50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
The IntCal09 and Marine09 radiocarbon calibration curves have been revised utilizing newly available and updated data sets from 14C measurements on tree rings, plant macrofossils, speleothems, corals, and foraminifera. The calibration curves were derived from the data using the random walk model (RWM) used to generate IntCal09 and Marine09, which has been revised to account for additional uncertainties and error structures. The new curves were ratified at the 21st International Radiocarbon conference in July 2012 and are available as Supplemental Material at www.radiocarbon.org. The database can be accessed at http://intcal.qub.ac.uk/intcal13/.
High-quality data from appropriate archives are needed for the continuing improvement of radiocarbon calibration curves. We discuss here the basic assumptions behind 14C dating that necessitate calibration and the relative strengths and weaknesses of archives from which calibration data are obtained. We also highlight the procedures, problems, and uncertainties involved in determining atmospheric and surface ocean 14C/12C in these archives, including a discussion of the various methods used to derive an independent absolute timescale and uncertainty. The types of data required for the current IntCal database and calibration curve model are tabulated with examples.