We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Atomic electron tomography (AET) has become a powerful tool for atomic-scale structural characterization in three and four dimensions. It provides the ability to correlate structures and properties of materials at the single-atom level. With recent advances in data acquisition methods, iterative three-dimensional (3D) reconstruction algorithms, and post-processing methods, AET can now determine 3D atomic coordinates and chemical species with sub-Angstrom precision, and reveal their atomic-scale time evolution during dynamical processes. Here, we review the recent experimental and algorithmic developments of AET and highlight several groundbreaking experiments, which include pinpointing the 3D atom positions and chemical order/disorder in technologically relevant materials and capturing how atoms rearrange during early nucleation at four-dimensional atomic resolution.