We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
SMART is a model to derive both star formation history and chemical evolution simultaneously from color-magnitude diagrams of resolved stars in a galaxy. We present current progress and discuss the prospects of SMART for the next decade.
We present a new numerical model of star formation history and chemical evolution using the color-magnitude diagrams of resolved stars in galaxies. Our model differs from previous models in that it generates the simulated color-magnitude diagrams with the metal enrichment law calculated from the galactic chemical evolution model. We present a case of applying our model to a resolved galaxy in the Local Group: the Sextans dwarf spheroidal galaxy. It is found the the primary origin of the radial gradient of stellar population in this galaxy is star formation followed by metallicity.
We report the discovery of three new star clusters in the halo of the Local Group dwarf irregular galaxy NGC 6822. These clusters were found in the deep images taken with the MegaPrime at the CFHT covering a total field of 2 deg $\times$ 2 deg. The most remote cluster is found to be located as far as 79 arcmin away from the center of NGC 6822. This distance is several times larger than the size of the region in NGC 6822 where star clusters were previously found. Morphological structures of the clusters and color-magnitude diagrams of the resolved stars in the clusters show that at least two of these clusters are proabably old globular clusters.
The Far-ultraviolet IMaging Spectrograph (FIMS) is a small spectrograph optimized for the observations of diffuse hot interstellar medium in far-ultraviolet wavebands (900–1150Å and 1335–1750Å). The instrument is expected to be sensitive to emission line fluxes an order of magnitude fainter than any previous missions. FIMS is currently under development and is scheduled for launch in 2002.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.