We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Exploratory Factor Analysis and Principal Component Analysis are two data analysis methods that are commonly used in psychological research. When applying these techniques, it is important to determine how many factors to retain. This decision is sometimes based on a visual inspection of the Scree plot. However, the Scree plot may at times be ambiguous and open to interpretation. This paper aims to explore a number of graphical and computational improvements to the Scree plot in order to make it more valid and informative. These enhancements are based on dynamic and interactive data visualization tools, and range from adding Parallel Analysis results to "linking" the Scree plot with other graphics, such as factor-loadings plots. To illustrate our proposed improvements, we introduce and describe an example based on real data on which a principal component analysis is appropriate. We hope to provide better graphical tools to help researchers determine the number of factors to retain.
Email your librarian or administrator to recommend adding this to your organisation's collection.