We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bloodstream infections (BSIs) are a frequent cause of morbidity in patients with acute myeloid leukemia (AML), due in part to the presence of central venous access devices (CVADs) required to deliver therapy.
Objective:
To determine the differential risk of bacterial BSI during neutropenia by CVAD type in pediatric patients with AML.
Methods:
We performed a secondary analysis in a cohort of 560 pediatric patients (1,828 chemotherapy courses) receiving frontline AML chemotherapy at 17 US centers. The exposure was CVAD type at course start: tunneled externalized catheter (TEC), peripherally inserted central catheter (PICC), or totally implanted catheter (TIC). The primary outcome was course-specific incident bacterial BSI; secondary outcomes included mucosal barrier injury (MBI)-BSI and non-MBI BSI. Poisson regression was used to compute adjusted rate ratios comparing BSI occurrence during neutropenia by line type, controlling for demographic, clinical, and hospital-level characteristics.
Results:
The rate of BSI did not differ by CVAD type: 11 BSIs per 1,000 neutropenic days for TECs, 13.7 for PICCs, and 10.7 for TICs. After adjustment, there was no statistically significant association between CVAD type and BSI: PICC incident rate ratio [IRR] = 1.00 (95% confidence interval [CI], 0.75–1.32) and TIC IRR = 0.83 (95% CI, 0.49–1.41) compared to TEC. When MBI and non-MBI were examined separately, results were similar.
Conclusions:
In this large, multicenter cohort of pediatric AML patients, we found no difference in the rate of BSI during neutropenia by CVAD type. This may be due to a risk-profile for BSI that is unique to AML patients.
Understanding the physics of viscoelastic liquid jets is relevant to jet-based printing and deposition techniques. In this paper we study the behaviour of jets induced from viscoelastic liquid films, using the mechanical impulse provided by a laser pulse to actuate jet formation. We present direct numerical simulations of viscoelastic liquid jets solving the two-phase flow problem, accounting for the Oldroyd-B rheology. We describe how the jet extension time and length are controlled by the Deborah number (ratio of the elastic and inertia-capillary time scales), the viscous dissipation described by the Ohnesorge number (ratio of the viscous-capillary and inertia-capillary time scales), as well as the ratio of laser impulse energy to the energy required to create free surface during jet formation and propagation. Using the droplet ejection laser threshold energy of a Newtonian liquid, we investigate the influence of increasing viscoelastic effects. We show that viscoelastic effects can modify the effective drop size at the tip of the jet, while the maximum jet length increases with increasing Deborah number. Using the simulations, we identify a high-Deborah-number regime, where the time of maximum jet extension can be described as $t_{max} = c_1 De^{1/4}$, with $c_1$ depending on the Ohnesorge number and blister geometry, while the length of maximum extension reaches an asymptotic value $L_{max}^{\infty }$ for $De>100$, $L_{max}^{\infty }$ depending on the Ohnesorge number and laser energy. The observed asymptotic relationships are in good agreement with experiments performed at much higher Deborah numbers.
A fundamental understanding of the filament thinning of viscoelastic fluids is important in practical applications such as spraying and printing of complex materials. Here, we present direct numerical simulations of the two-phase axisymmetric momentum equations using the volume-of-fluid technique for interface tracking and the log-conformation transformation to solve the viscoelastic constitutive equation. The numerical results for the filament thinning are in excellent agreement with the theoretical description developed with a slender body approximation. We show that the off-diagonal stress component of the polymeric stress tensor is important and should not be neglected when investigating the later stages of filament thinning. This demonstrates that such numerical methods can be used to study details not captured by the one-dimensional slender body approximation, and pave the way for numerical studies of viscoelastic fluid flows.
When a solid boundary deforms rapidly into a quiescent liquid layer, a flow is induced that can lead to jet formation. An asymptotic analytical solution is presented for this flow, driven by a solid boundary deforming with dimensionless vertical velocity $V_{b}(x,t)={\it\epsilon}(1+\cos x)\,f(t)$, where the amplitude ${\it\epsilon}$ is small relative to the wavelength and the time dependence $f(t)$ approaches 0 for large $t$. Initially, the flow is directed outwards from the crest of the deformation and slows with the slowing of the boundary motion. A domain-perturbation method is used to reveal that, when the boundary stops moving, nonlinear interactions with the free surface leave a remnant momentum directed back towards the crest, and this momentum can be a precursor to jet formation. This scenario arises in a laser-induced printing technique in which an expanding blister imparts momentum into a liquid film to form a jet. The analysis provides insight into the physics underlying the interaction between the deforming boundary and free surface, in particular, the dependence of the remnant flow on the thickness of the liquid layer and the deformation amplitude and wavelength. Numerical simulations are used to show the range of validity of the analytical results, and the domain-perturbation solution is extended to an axisymmetric domain with a Gaussian boundary deformation to compare with previous numerical simulations of blister-actuated laser-induced forward transfer.
Blister-actuated laser-induced forward transfer (BA-LIFT) is a versatile printing technique in which fine jets of ink are ejected from a thin donor film onto an acceptor substrate, enabling high-resolution patterns to be formed. Fluid ejections are initiated by the rapid expansion of micrometre-sized blisters that form on a polymer film underneath the ink layer. Recent work has demonstrated that these ejections exhibit novel flow phenomena due to the unique dimensions and geometry of the BA-LIFT configuration. In this work, we study the dynamics of BA-LIFT printing using a computational model in which fluid is forced by a boundary that deforms according to experimental time-resolved measurements of an expanding blister profile. This allows the model’s predictions to be unambiguously correlated with experimental blister-actuated ejections without any fitting parameters. First, we validate the model’s predictive capabilities against experimental results, including the ability to accurately reproduce the size, shape and temporal evolution of the jet as well as the total volume of ink released. The validated model is then used to interrogate the flow dynamics in order to better understand the mechanisms for fluid ejection. Finally, parametric studies are conducted to investigate the influence of ink density, surface tension, viscosity and film thickness as well as the size of the blister used. These results provide key insights into avenues for optimization and better control of the BA-LIFT process for improved resolution and repeatability of the printed features.
Blister-actuated laser-induced forward transfer (BA-LIFT) is a direct-write technique, which enables high-resolution printing of sensitive inks for electronic or biological applications. During BA-LIFT, a polymer laser-absorbing layer deforms into an enclosed blister and ejects ink from an adjacent donor film. In this work, we develop a finite element model to replicate and predict blister expansion dynamics during BA-LIFT. Model inputs consist of standard mechanical properties, strain-rate-dependent material parameters, and a parameter encapsulating the thermal and optical properties of the film. We present methods to determine these material parameters from experimental measurements. The simulated expansion dynamics are shown to be in good agreement with experimental measurements using two different polymer layer thicknesses. Finally, the ability to model high-fluence blister rupture is demonstrated through a strain-based failure approach.
A nanoscale thermal anemometry probe (NSTAP) has been developed to measure velocity fluctuations at ultra-small scales. The sensing element is a free-standing platinum nanoscale wire, 100 nm × 2 μm × 60 μm, suspended between two current-carrying contacts and the sensor is an order of magnitude smaller than presently available commercial hot wires. The probe is constructed using standard semiconductor and MEMS manufacturing methods, which enables many probes to be manufactured simultaneously. Measurements were performed in grid-generated turbulence and compared to conventional hot-wire probes with a range of sensor lengths. The results demonstrate that the NSTAP behaves similarly to conventional hot-wire probes but with better spatial resolution and faster temporal response. The results are used to investigate spatial filtering effects, including the impact of spatial filtering on the probability density of velocity and velocity increment statistics.
Direct-write techniques enable computer-controlled two- and three-dimensional pattern formation in a serial fashion. Among these techniques, the versatility offered by laser-based direct-write methods is unique, given their ability to add, remove, and modify different types of materials without physical contact between a tool or nozzle and the material of interest. Laser pulses used to generate the patterns can be manipulated to control the composition, structure, and even properties of individual three-dimensional volumes of materials across length scales spanning six orders of magnitude, from nanometers to millimeters. Such resolution, combined with the ability to process complex or delicate material systems, enables laser direct-write tools to fabricate structures that are not possible to generate using other serial or parallel fabrication techniques. The goal of the articles in this issue of MRS Bulletin is to illustrate the range of materials processing capabilities, fundamental research opportunities, and commercially viable applications that can be achieved using recently developed laser direct-write techniques. We hope that the articles provide the reader with a fresh perspective on the challenges and opportunities that these powerful techniques offer for the fabrication of novel devices and structures.
This article reviews recent developments in laser direct-write addition (LDW+) processes for printing complex materials. Various applications, ranging from small-scale energy storage and generation devices to tissue engineering, require the ability to deposit precise patterns of multicomponent and multiphase materials without degrading desirable properties such as porosity, homogeneity, or biological activity. Structurally complex inorganic materials for the successful fabrication of alkaline and lithium-based microbatteries, micro-ultracapacitors, and dye-sensitized micro solar cells are shown on various low-processing-temperature and flexible substrates using LDW+. In particular, the ability to deposit thick layers while maintaining pattern integrity allows devices produced in this manner to exhibit higher energy densities per unit area than can be achieved by traditional thin-film techniques. We then focus on more complex systems of living and biologically active materials. Patterns of biomaterials such as proteins, DNA, and even living cells can be printed using LDW+ with high spatial and volumetric resolution on the order of a picoliter or less, without compromising the viability of these delicate structures. These results provide for highly selective sensor arrays or cell seeding for tissue engineering. Finally, we review recent work on LDW+ of entire semiconductor circuits, showing the broad range of applications this technique enables.
We propose a new kinetic model for surface segregation during vapor phase growth that accounts for multiple segregation mechanisms, including mechanisms for terrace mediated exchange and step edge mediated exchange. The major result of the model is an analytic expression for the experimentally measured segregation length and profile broadening that can be readily calculated without the need for numerical simulations. We compare the model to experimental measurements for the temperature dependence of segregation of Sb in Si(001). The model is able to accurately describe both the anomalous segregation at low temperature and the transition between equilibrium and kinetically limited segregation at high temperature. An excellent agreement is obtained using realistic energies and pre-exponential factors for the kinetic rate constants. The model can be applied to other segregating systems in planar geometries, including metallic and III-V semiconducting thin films.
Over the last two decades, there has been a trend towards the development of smaller and more autonomous electronic devices, yet the question of how to power these microdevices with correspondingly small power sources remains. To address this problem, we employ a laser forward-transfer process in combination with ultraviolet laser micromachining, to fabricate mesoscale electrochemical power sources, such as microbatteries and micro-ultracapacitors. This direct-write laser-engineering approach enables the deposition of battery materials (hydrous ruthenium oxide, manganese oxide, lithium cobalt oxide, etc.) under ambient temperature and atmospheric conditions, resulting in films with the desired morphological and electrochemical properties. Planar and stacked cell configurations are produced and tested for their energy storage and power delivery capabilities and exhibit favorable performance in comparison to current battery technology.
We are developing a laser engineering approach to fabricate and optimize various types of alkaline microbatteries. Microbattery cells are produced using a laser forward transfer process that is compatible with the materials required to make the anode, cathode, separator and current collectors. The use of an ultraviolet transfer laser (wavelength = 355 nm, 30 ns FWHM) enables other operations such as surface processing, trimming and micromachining of the transferred materials and substrate and is performed in situ. Such multi-capability for adding, removing and processing material is unique to this direct-write technique and provides the ability to laser pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cell by laser direct-write under ambient conditions. The microbattery cells exhibit 1.5–1.6 V open circuit potentials, as expected for the battery chemistry and show flat discharge behavior under constant current loads.
Microbatteries and integrated microbattery systems are likely to be the sole power source or a power-source component for the next generation of microelectronic devices. As part of the LEAPS (Laser Engineering of Advanced Power Sources) program, custom-designed microbatteries and ultracapacitors will be integrated in microelectronic circuits for optimum performance. The Naval Research Laboratory's Matrix-Assisted Pulsed-Laser Deposition Direct-Write (MAPLE DW) process is used to rapidly fabricate various primary and secondary (non-rechargeable and chargeable) electrochemical power sources. This laser forward-transfer process can be used to transfer any type of battery material and battery material mixtures, including polymers, hydrated oxides, metals, and corrosive electrolytes. Additional laser micromachining capabilities are used to tailor the battery sizes, interfaces, and configurations. Examples are given for planar RuO2 ultracapacitors and stacked alkaline batteries.
We are using a laser engineering approach to develop and optimize hydrous ruthenium dioxide (RuOxHy or RuO2·0.5 H2O) pseudocapacitors. We employ a novel laser forward transfer process, Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE-DW), in combination with UV laser machining, to fabricate mesoscale pseudocapacitors and microbatteries under ambient temperature and atmospheric conditions. Thin films with the desired high surface area morphology are obtained without compromising their electrochemical performance. The highest capacitance structures are achieved by depositing mixtures of sulfuric acid with the RuO2·0.5 H2O electrode material. Our pseudocapacitors exhibit linear discharge behavior and their properties scale proportionately when assembled in parallel and series configurations.
Recent research in whole-plant stomatal physiology, conducted largely with potted plants in controlled
environments, suggests that stomatal conductance (gs) might be more closely linked to plant chemical variables
than to hydraulic variables. To test this in a field situation, seasonal gs was examined in relation to a number of
plant and environmental variables in 11 temperate, deciduous forest tree species. Stomatal conductance was
generally better correlated with environmental variables (air temperature, vapor pressure deficit, PPFD) than with
plant variables, and slightly better correlated with plant hydraulic variables (shoot water and osmotic potentials)
than with plant chemical variables (xylem sap ABA concentration, xylem sap pH). We examined a model,
developed previously for maize, which describes regulation of gs by xylem sap ABA concentration with leaf water
status acting to modify stomatal sensitivity to the ABA signal. This model explained slightly more variation in
seasonal gs in the forest trees than did single plant variables but not more variation than most single environmental
variables. Response surface models, especially those incorporating environmental variables, were more consistently
successful at explaining gs across species.