We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter describes a pedagogy whereby students learn how to engage in collaborative creative processes similar to professional knowledge workers. The five themes of knowledge building are (1) Community knowledge: students work together to advance the knowledge of the entire community; (2) Idea improvement: all ideas can be continually revised in an ongoing creative process; (3) Dialogue: community knowledge building involves public discourse along the lines of professional discourse in a scientific community; (4) Constructive use of authoritative information: students always need to work with authoritative information, even while they are creating new knowledge. New knowledge creation must be coherent with what is already known; (5) Epistemic artifacts: knowledge building is more effective if learners create externally sharable things. The chapter describes the authors’ influential Knowledge Forum application, one of the first networked collaborative idea-generation tools.
There are substantial similarities between deep learning and the processes by which knowledge advances in the disciplines. During the 1960s efforts to exploit these similarities gave rise to learning by discovery, guided discovery, inquiry learning, and Science: A Process Approach (American Association for the Advancement of Science, 1967). Since these initial reform efforts, scholars have learned a great deal about how knowledge advances. A mere listing of keywords suggests the significance and diversity of ideas that have come to prominence since the 1960s: Thomas Kuhn, Imre Lakatos, sociology of science, the “Science Wars,” social constructivism, schema theory, mental models, situated cognition, explanatory coherence, the “rhetorical turn,” communities of practice, memetics, connectionism, emergence, and self-organization. Educational approaches have changed in response to some of these developments; there is a greater emphasis on collaborative rather than individual inquiry, the tentative nature of empirical laws is more often noted, and argumentation has become an important part of some approaches. But the new “knowledge of knowledge” has much larger educational implications: Ours is a knowledge-creating civilization. A growing number of “knowledge societies” (Stehr, 1994), are joined in a deliberate effort to advance all the frontiers of knowledge. Sustained knowledge advancement is seen as essential for social progress of all kinds and for the solution of societal problems. From this standpoint the fundamental task of education is to enculturate youth into this knowledge-creating civilization and to help them find a place in it.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.